This paper describes obijective technical results and analysis. Any subjective views or opinions that might be expressed in SAND2022-2099C
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Towards Access Pattern Aware
Checkpointing For Kokkos Applications

Nigel Tan, Bogdan Nicolae, Nicolas Morales,
Keita Teranishi, Sanjukta Bhowmick,
Franck Cappello, Michela Taufer

UNT Argonne &

NORTH-TExas TENNESSEE @ Sandia

KNOXVIILLE National
Laboratories

Checkpointing is Difficult at Scale

| Local burst buffer model | | Shared burst buffer model |

' | Network Contention |

NV
Gateway Nodes « Will | need to use a different API to
: access burst buffers on each system?
C_ontentlon for Shared - Cray DataWarp, Intel, [BM
File System Resources « HIO, others?
« Wil | need to change my /O strategy to
- get good performance?
Contention from

Other Clusters for File
System

Parallel File System

e Performance and scalability
o Need to checkpoint frequently (failures happen more often, many intermediate datasets, etc.)
o Many processes, each featuring a large checkpoint size
o Limited I/O bandwidth available per process due to contention (processes checkpoint simultaneously)

e Heterogeneity and complexity of storage hierarchy
o Many options in addition to PFS: burst buffers, object stores, caching layers, etc.
o Many vendors, each with its own API

THE UNIVERSITY OF

NS T

KNOXVILLE

Naive Checkpointing is Unfeasible

® \Writing checkpoints directly to the parallel file system

(naive checkpointing) incurs unacceptable overheads
e Why do users still do it?
Application o Not aware of the complexity of the storage stack (are
other storage tiers are available?)
User level o Not aware how to leverage storage tiers efficiently (e.g.
———— async flushing from fast to slow tiers)

System level .
Y I/O Interface e Even if users are knowledgeable, the development

_ effort is overwhelming

O Too many combinations of storage tiers and strategies,
each with their own performance model and/or API

THE UNIVERSITY OF

TENNESSEE [§

KNOXVILLE

Efficient Checkpointing is Complex

Application resumes

>

User level

I/O Interface System level

Need to delegate these steps to
dedicated runtimes!

--------sd33s Sunuiodydayy-------

Vendor-specific 1/0 API

THE UNIVERSITY OF

TENNESSEE [§

KNOXVILLE

State of Art

Ty
\\ EXASCALE
) COMPUTING
\ PROJECT
R

" kokkos

Performance portability framework
e Implement powerful execution and memory
abstractions for developing fast portable applications
across modern platforms
® Provide useful containers such as multidimensional
arrays (Views) that support CPUs and GPUs

https://kokkos.org

Very Low Overhead
Checkpointing (VeloC)

Asynchronous checkpoint-restart runtime
e Delivers efficient and scalable asynchronous
checkpointing using complex heterogeneous storage
hierarchies
e Flexible modular architecture to support a large variety
of strategies and vendor APIs

https://veloc.readthedocs.io

Portable Resilience: combines Kokkos abstractions (memory views) with VELOC abstractions
(protected memory regions) to enable an efficient performance-portable resilience runtime

Morales, N., Teranishi, K., Nicolae, B., Trott, C. and Cappello, F. 2021.Towards High Performance Resilience Using Performance Portable
Abstractions. EuroPar’21: 27th International European Conference on Parallel and Distributed Systems (Lisbon, Portugal, 2021).

THE UNIVERSITY OF

TENNESSEE [§

KNOXVILLE

Kokkos+VeloC: Portable+Efficient Ckpt

User level
System level

App resumes

>

--------sd33s Sunuiodydayy-------

I/O Interface Vendor-specific 1/0 API

e Optimizes performance

e Minimizes user effort at application-level - - -

THE UNIVERSITY OF

TENNESSEE [§

KNOXVILLE

Goal: Memory-Pattern Aware Ckpt

Naive Checkpointing Optimized Checkpointing OPPOrtunity: Memory-Pattern Awareness
User level _ m Application
System level _ data
Portable H Analyze and
> Resilience —_— — optimize

checkpoint based
on access pattern

User level Resilience

Systemlevel | /5 |nterface /0 Interface

| tardware | | tordvare | heckoom
< .
checkpoint
. Portable and efficient I/O Interface
Unfeasible but treats all memory
view equally

THE UNIVERSITY OF

TENNESSEE [§

KNOXVILLE

Memory Pattern Aware Checkpointing

We look at memory access patterns for opportunities to improve
checkpointing

System level Collect memory pattern information

Kokkos Resilience

Analyze patterns and generate hints

Optimize checkpointing based hints

Tightly couple the software layers to enable more efficient checkpointing
based on runtime properties

THE UNIVERSITY OF

NS T

KNOXVILLE

Example: Sparse Update Patterns
]

Stepi

. Updated cell

Unchanged cell

Example: Sparse Update Patterns Il

|] -~ = N
Full Checkpoint eiemes = otal Checkpoint
] \)
Step i

. Updated cell

Unchanged cell

THE UNIVERSITY

TENNESSEE

Example: Sparse Update Patterns llI

- 4])
. Checkpoints Total Checkpoint
FU” Ch@CprIﬂt everything! = 64 cells
Step i a B
. Updated cell |ncrementa| Checkpoint Row |0 |5
Unchaneed cell) ONLYthe Col | o |2 | Checkpoint Size: 6
nenangEa ee Checkpoint changes
- /

THE UNIVERSITY OF

TENNESSEE [§

KNOXVILLE

Example App: Fido (Graph Alighment)

e Compare two graphs based on
common substructures called
graphlets

Algorithm:
For each graph
For i in [0,num vertices]
Calculate graphlet degree
vector (GDV) for vertex i
If (i%checkpoint interval)==
Checkpoint GDVs
Match vertices with similar GDVs

THE UNIVERSITY OF

NS T

KNOXVILLE

Sparse Update Pattern in Fido

We track the memory access pattern for two sets of graphs (i.e., Ecology and Open
Street Maps)

5 Ecology 5 Open Street Maps
w 4 o 4 ® o ® ® e
> >
[a)] (]
G))
S 3 =) = 8 3 ® o
g g
© ©
2 2| = 8 21 =
S5 >
© ©
0- CEEEERT CEZETIRD P ERETEEmEr IR e e 0- CEE) GEDEHESEREED G5 - e
0 25 50 5 100 0 25 50 5 100
Iteration Iteration

THE UNIVERSITY OF

NS T

KNOXVILLE

of updates to GDVs

Sparse Update Pattern in Fido

We track the memory access pattern for two sets of graphs (i.e., Ecology and Open

Street Maps)

5 Ecology

4 /

3 @ =

21 =

1-

0] oo cowms CE T EUTTEIIERD

0 25 50 5 100

Iteration

Sparse 5
updates

of updates to GDVs

S
#
[

updates0

Open Street Maps

4_

3_

N

@ D @ o o
(=53
&
E CERp DT 5 Ee
0 25 50 75 100
Iteration

THE UNIVERSITY OF

NS T

KNOXVILLE

Incremental Checkpointing for Sparse Updates

Goal: Instead of full checkpoints, write only diffs to previous checkpoints
Challenge: Faster I/O due to smaller ckpt size, but additional overheads

System level Provide hooks into the applications memory access pattern
Analyze collected inf.on.nati?n I Detect whether data is sparsely updated
generate checkpointing hints
iti Restr r for checkpointin
Additional estructure data for checkpointing
overheads

Block size, reference checkpoints

Eliminate redundant data from checkpoint

THE UNIVERSITY OF

NS T

KNOXVILLE

Incremental Checkpoints for Sparse Updates

Goal: Collect pattern information from the application
Challenge: Must not require any code changes by the user

_PLVide\hooks into the applications memory access pattern

Rnalyze collected mformation and ,
nalyze coflected Information an Detect whether data is sparsely updated
generate checkpointing hints

System level

Additional Restructure data for checkpointing

overheads Block size, reference checkpoints

Eliminate redundant data from checkpoint

THE UNIVERSITY OF

NS T

KNOXVILLE

Incremental Checkpoints for Sparse Updates

Goal: Find differences between checkpoints
Challenge: Analysis overhead

System level Provide hooks into the applications memory access pattern

Analyze collected information and
generate checkpointing hints

Additional
overheads

Detect whether data is sparsely updated

Restructure data for checkpointing
Block size, reference checkpoints

Eliminate redundant data from checkpoint

THE UNIVERSITY OF

NS T

KNOXVILLE

Kokkos

Detecting Updates e

checkpoint 1 (T[N (e) ()]

updates: [I I Approaches:
e Dirty page tracking
How do we efficiently identify the e Naive scanning
differences between the current and e Hash based

all previous checkpoints?

THE UNIVERSITY OF

TENNESSEE gy

Dirty Page Tracking

Kokkos
Resili

OS tracks which pages have been written to.
Check pagemap for dirty pages.

Fast, no computation or
comparisons

Tracking is automatically
done by the OS

Requires up-to-date kernel
Coarse grain (4-64KB)
Does not work for GPU
based applications

THE UNIVERSITY OF

TENNESSEE | §

NOXVIILILE

Kokkos

Scanning For Updates e

Checkpointj Checkpointij+ . .
L " e High overhead due to scanning

== . through multiple checkpoints
—= —> I e Potentially many

—= checkpoints

== e Checkpoints are large

__ = W e Large overhead from many
== comparisons

== => .

Naive scanning: Scan data at
checkpoint i and i+1 for differences

THE UNIVERSITY OF

NS T

KNOXVILLE

Kokkos

Hash Based Methods e

Checkpointi Checkpointij+

N

e Extra computation cost for hashes
[Hasho | == | Hasho |/ gy =3 e Tradeoff based on block size

e Smaller blocks => smaller checkpoint
e Larger blocks => faster to find

| Hashi | == [Hashi - differences

e Tradeoff based on hash function
e Strong hash => less collisions

| Hash2 | == [Hash2 | => e Weak hash => faster computation
Hash based: Divide checkpoint into blocks, Primary method we use for this
compute hashes for each block and compare
hashes between checkpoint i and i+1 work

THE UNIVERSITY OF

NS T

KNOXVILLE

Incremental Checkpoints for Sparse Updates

Goal: Create an incremental checkpoint from application data
Challenge: Additional overhead must not exceed savings from
smaller checkpoint

System level [Collect app'icati‘t’_“ information at] Provide hooks into the applications memory access pattern
runtime

{ Analyze collected information and 1

Detect whether data is sparsely updated

gererateeheeRpoiR SIS i
4)
" i Restr r for checkpointin
Additional k Adjust memory layout | estructure data for checkpointing
(R
overheads Select granularity and scope of diffs | Block size, reference checkpoints
\ /
(R
Deduplicate Eliminate redundant data from checkpoint

\ /
e <
L Apply checkpointing strategies J

THE UNIVERSITY OF

TENNESSEE [§

KNOXVILLE

Incremental Checkpoints for Sparse Updates

Challenge: Memory layout may not be optimal for checkpointing
Tradeoff: Cost to adjust memory layout vs cost to create incremental
checkpoints

System level Provide hooks into the applications memory access pattern
Analyze collected information and |)0t \hether data is sparsely updated
Additional Restructure data for checkpointing ‘
overheads

Block size, reference checkpoints

Eliminate redundant data from checkpoint

THE UNIVERSITY OF

NS T

KNOXVILLE

Kokkos

Memory Layout

We want to reorganize memory such that updates are
contiguous for better checkpoint performance

I
/\

RN LT 1] il § BN B BEE B

LayoutLeft (Column major order) LayoutRight (Row major order)

LayoutLeft is preferred in this example (updates are dense and contiguous)

THE UNIVERSITY OF

24 TENNESSEE [§

KNOXVILLE

Kokkos

LayoutLeft vs LayoutRight: Ecology Graphs i

N

ar Updates are dense 4t |
and cc»Tt *uous

LayoutLeft

Updates are|
very sparse -

Checkpoint Number
w
Checkpoint Number
w
T

| 1 |
0 5x10® 1x107 1.5x107 2x107 2.5x107 3x107 3.5x107 0 1x107 2x107 3x107 4x107 5x107 6x107 7x107
Block (4 bytes) Block (4 bytes)

For the Ecology Graphs, LayoutLeft leads to updates being grouped closer together
(dense and contiguous). Other graphs may exhibit different behavior.

THE UNIVERSITY OF

NS T

KNOXVILLE

Incremental Checkpoints for Sparse Updates

Challenge: Small block size leads to smaller checkpoints but

increases overhead compared to larger block sizes
Tradeoff: Checkpoint size vs cost to find differences

System level [Collect app'icati‘t’_“ information at] Provide hooks into the applications memory access pattern
runtime

Analyze collected informationand | 1.0 \yhether data is sparsely updated
generate checkpointing hints

. i Restr r for checkpointin
Additional ‘ 3 Adjust memory layout } estructure data for checkpointi g ‘
(R

overheads Select granularity and scope of diffs | Block size, reference checkpoints

Eliminate redundant data from checkpoint

A LA

\
L Deduplicate
.

Apply checkpointing strategies

U J

THE UNIVERSITY OF

TENNESSEE [§

KNOXVILLE

Kokkos

Kokkos

Update Detection Granularity

VeloC

Checkpoint
data

Coarse |
granularity
(2 chunks) Lots of unnecessary data but fewer comparisons to detect updates

||| ||| ||| | ||| ||| |||
granularity

(8 chunks) Less unnecessary data but more comparisons to detect updates

Tradeoff: Checkpoint size vs update detection cost

THE UNIVERSITY OF

TENNESSEE [§

KNOXVILLE

Kokkos

Checkpoint Size vs Update Detection Cost

VeloC

Problem 1: Message Race Event Graph Problem 2: Unstructured Mesh Event Graph

100 100
- 90 1 - . - 90 1
5 801 less comparisons smaller checkpoints| = 801less comparisons smaller checkpoints
o 70 | P o 70
0O 60 - O 60
O O
S 50- S 50-
L 401 L 40- %I %
O O
e 30- = o
S 201 1 S 201 ljf;l
g I g 5
10 - 10 -
5 l— 1 =l - B G % = I L
4K 2K 1K 512256128 64 32 16 8 4 4K 2K 1K 512256128 64 32 16 8 4
Blocksize in bytes Blocksize in bytes

Smaller block sizes lead to smaller checkpoints but need more comparisons to find differences

THE UNIVERSITY OF

TENNESSEE [§

KNOXVILLE

Percentage of GDVs saved

Checkpoint Size vs Update Detection Cost

Kokkos

VeloC

100

90
80 -
70 A
60 -
50 -
40 A
30 A
20
104

0

Problem 1: Message Race Event Graph

Checkpoints are small
with outliers

lllll

4K 2K 1K 512256128 64 32 16 8
Blocksize in bytes

L=
a

Percentage of GDVs saved

100

90 -
80 -
704 |
60 -
50 -
40 -
30 -
20 -
10 -

0

Problem 2: Unstructured Mesh Event Graph

]

Checkpoints are more
impacted by block size

?%%%%%44;4

4K

2K 1K 512256128 64 32 16 8 4
Blocksize in bytes

Different problems have different checkpoint similarities

THE UNIVERSITY OF

TENNESSEE [§

KNOXVILLE

Incremental Checkpoints for Sparse Updates

Challenge: Minimize incremental checkpointing overhead
Tradeoff: CPU vs GPU deduplication for minimizing application

stalls
System level [Collect app'icati‘t’_“ information at] Provide hooks into the applications memory access pattern
runtime
Analyze collected information and | ot \whether data is sparsely updated
generate checkpointing hints
Additional Adjust memory layout } Restructure data for checkpointing
overheads Select granularity and scope of diffs W Block size, reference checkpoints

Eliminate redundant data from checkpoint ‘

Apply checkpointing strategies

{
‘ [Deduplicate

— A A

THE UNIVERSITY OF

TENNESSEE [§

KNOXVILLE

Checkpoint Deduplication e

Kokkos

How to eliminate redundant data while minimizing application

stalls?

Compute hashes

Compare hashes

Create diff

Divide data into chunks and calculate hashes

Compare hashes to find updated chunks

Collect chunks into a contiguous buffer for
checkpointing

Two cases for mixed CPU-GPU applications

® Perform deduplication on the CPU
® Perform deduplication on the GPU

THE UNIVERSITY OF

NS T

KNOXVILLE

Kokkos

Deduplication Performance on CPU and GPU e

Ecology
1 o mmm Copy GDVs to CPU ; ;
s GPU deduplication | me compute hasnce Dedupll_catllon strategy
; is much faster but | ™= compare hashes must minimize the overall
] blocks execution | == ::::)?i::r:es wepy Checkpoint overhead by
_10°4 mmm Copy changestoCPU minimizing stalls to the
&] 24X [Copy diff to CPU application
v mE Case 1 (CPU)
'E 10_1 @ Case 2 (GPU)
e More data movement between CPU
: and GPU for CPU deduplication
10 e GPU deduplication is blocking
® CPU deduplication can be done
512 1024 - 2048 4096 asynchronously while the application
Chunk size is running on the GPU

THE UNIVERSITY OF

TENNESSEE i §

KNOXVILLE

Summary and Future Work

Summary

e Combining Kokkos and VeloC with the Kokkos Resilience layer enables access
pattern aware checkpoints for improving checkpoint performance

e Incremental checkpoints can drastically reduce the size of checkpoints for
sparsely updated data

e There are trade-offs between checkpoint size and complexity that depend on the
update pattern

Future work

e Tightly couple the software layers (Kokkos, Kokkos Resilience, VeloC) for greater
performance
e Investigate other access patterns

THE UNIVERSITY OF

NS T

KNOXVILLE

Acknowledgements

This work was supported in part by the National Science Foundation under Grant #1900888 and Grant
#1900765. The authors acknowledge IBM through a Shared University Research Award.

This research was supported by the Exascale Computing Project (ECP), Project Number: 17-SC-20-SC, a
collaborative effort of two DOE organizations -- the Office of Science and the National Nuclear Security
Administration, responsible for the planning and preparation of a capable exascale ecosystem, including
software, applications, hardware, advanced system engineering and early testbed platforms, to support the
nation's exascale computing imperative. It is also supported by the National Science Foundation (NSF) under
Grants CCF-1617488, CCF-1619253, OAC-2003709, OAC-1948447/2034169, and OAC-2003624/2042084.

“kokkos v,e.oc ECVP s

https://kokkos.org https://veloc.readthedocs.io

THE UNIVERSITY OF

TENNESSEE [§

KNOXVILLE

