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● Performance and scalability
○ Need to checkpoint frequently (failures happen more often, many intermediate datasets, etc.)
○ Many processes, each featuring a large checkpoint size
○ Limited I/O bandwidth available per process due to contention (processes checkpoint simultaneously)

● Heterogeneity and complexity of storage hierarchy
○ Many options in addition to PFS: burst buffers, object stores, caching layers, etc.
○ Many vendors, each with its own API

Checkpointing is Difficult at Scale



Naive Checkpointing is Unfeasible
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● Writing checkpoints directly to the parallel file system 
(naive checkpointing) incurs unacceptable overheads

● Why do users still do it? 
○ Not aware of the complexity of the storage stack (are 

other storage tiers are available?)
○ Not aware how to leverage storage tiers efficiently (e.g. 

async flushing from fast to slow tiers)

● Even if users are knowledgeable, the development 
effort is overwhelming
○ Too many combinations of storage tiers and strategies, 

each with their own performance model and/or API



Efficient Checkpointing is Complex
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Decide checkpoint frequency

Decide what storage tiers are 
available and can be used 

Select optimal transfer strategy and 
API between tiers

Collect the checkpointing data and 
copy it on fast storage tiers

Flush checkpoints asynchronously  from 
fast tiers to slower, persistent tiers

Vendor-specific I/O API

Apply other resilience strategies (e.g. erasure 
coding to minimize I/O to  slow tiers)

User level 

System level

Parallel FS
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Need to delegate these steps to 
dedicated runtimes!



State of Art
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Very Low Overhead 
Checkpointing (VeloC)

Performance portability framework
● Implement powerful execution and memory 

abstractions for developing fast portable applications 
across modern platforms

● Provide useful containers such as multidimensional 
arrays (Views) that support CPUs and GPUs 

Asynchronous checkpoint-restart runtime
● Delivers efficient and scalable asynchronous 

checkpointing using complex heterogeneous storage 
hierarchies

● Flexible modular architecture to support a large variety 
of strategies and vendor APIs

This research was supported by the Exascale Computing Project (ECP), Project Number: 17-SC-20-SC, a collaborative effort of two DOE organizations -- the Office of Science and the National Nuclear 
Security  Administration, responsible for the planning and preparation of a capable exascale ecosystem, including software, applications, hardware, advanced system engineering and early testbed 
platforms, to support the nation's exascale computing imperative. It is also supported by the National Science Foundation (NSF) under Grants CCF-1617488, CCF-1619253, OAC-2003709, 
OAC-1948447/2034169, and OAC-2003624/2042084.

Portable Resilience: combines Kokkos abstractions (memory views) with VELOC abstractions 
(protected memory regions) to enable an efficient performance-portable resilience runtime

https://veloc.readthedocs.iohttps://kokkos.org

Morales, N., Teranishi, K., Nicolae, B., Trott, C. and Cappello, F. 2021.Towards High Performance Resilience Using Performance Portable 
Abstractions. EuroPar’21: 27th International European Conference on Parallel and Distributed Systems (Lisbon, Portugal, 2021).



VeloC

Kokkos+VeloC: Portable+Efficient Ckpt
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Decide checkpoint frequency

Mark critical memory views

Decide storage tiers and create 
blocking copies to fast tiers 

Collect information about memory 
views

Apply resilience strategies and flush 
to slow, persistent tiers

Vendor-specific I/O API

Analyze collected information and 
setup checkpoint parameters

User level 

System level

Parallel FS

● Optimizes performance
● Minimizes user effort at application-level
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Goal: Memory-Pattern Aware Ckpt
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Naive Checkpointing Optimized Checkpointing

Unfeasible

Application

Kokkos

Portable 
Resilience

VeloC

I/O Interface

Hardware

Opportunity: Memory-Pattern Awareness

Application 
data

Analyze and 
optimize 

checkpoint based 
on access pattern

Optimized 
checkpoint

Portable and efficient 
but treats all memory 

view equally



Memory Pattern Aware Checkpointing

8

VeloC

Kokkos

Kokkos Resilience

System level Collect memory pattern information

Analyze patterns and generate hints

We look at memory access patterns for opportunities to improve 
checkpointing

Optimize checkpointing based hints

Tightly couple the software layers to enable more efficient checkpointing 
based on runtime properties



Example: Sparse Update Patterns 
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Step i

Updated cell

Unchanged cell



Full Checkpoint

Example: Sparse Update Patterns II 
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Step i

Updated cell

Checkpoints 
everything!

Total Checkpoint 
64 cells

Unchanged cell



Incremental 
Checkpoint

Full Checkpoint

Example: Sparse Update Patterns III
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Step i

Updated cell

Checkpoints 
everything!

Total Checkpoint 
64 cells

Unchanged cell
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Example App: Fido (Graph Alignment)
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• Compare two graphs based on 
common substructures called 
graphlets

Algorithm:
For each graph

For i in [0,num_vertices]
Calculate graphlet degree 
vector (GDV) for vertex i
If (i%checkpoint_interval)==0

Checkpoint GDVs
Match vertices with similar GDVs
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Sparse Update Pattern in Fido
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We track the memory access pattern for two sets of graphs (i.e., Ecology and Open 
Street Maps)

Graphs from SuiteSparse collection: sparse.tamu.edu
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Sparse Update Pattern in Fido
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We track the memory access pattern for two sets of graphs (i.e., Ecology and Open 
Street Maps)

No 
updates

Sparse 
updates

Graphs from SuiteSparse collection: sparse.tamu.edu
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Incremental Checkpointing for Sparse Updates
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Adjust memory layout

System level Provide hooks into the applications memory access pattern

Detect whether data is sparsely updated

Goal: Instead of full checkpoints, write only diffs to previous checkpoints
Challenge: Faster I/O due to smaller ckpt size, but additional overheads

Restructure data for checkpointing

Select granularity and scope of diffs

Deduplicate

Collect application information at 
runtime

Analyze collected information and 
generate checkpointing hints

Block size, reference checkpoints

Eliminate redundant data from checkpoint

Apply checkpointing strategies

{Additional 
overheads



Incremental Checkpoints for Sparse Updates
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Goal: Collect pattern information from the application
Challenge: Must not require any code changes by the user

Adjust memory layout

System level Provide hooks into the applications memory access pattern

Detect whether data is sparsely updated

Restructure data for checkpointing

Select granularity and scope of diffs

Deduplicate

Collect application information at 
runtime

Analyze collected information and 
generate checkpointing hints

Block size, reference checkpoints

Eliminate redundant data from checkpoint

Apply checkpointing strategies

{Additional 
overheads



Incremental Checkpoints for Sparse Updates
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Goal: Find differences between checkpoints
Challenge: Analysis overhead

Adjust memory layout

System level Provide hooks into the applications memory access pattern

Detect whether data is sparsely updated

Restructure data for checkpointing

Select granularity and scope of diffs

Deduplicate

Collect application information at 
runtime

Analyze collected information and 
generate checkpointing hints

Block size, reference checkpoints

Eliminate redundant data from checkpoint

Apply checkpointing strategies

{Additional 
overheads



Detecting Updates
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Approaches:
• Dirty page tracking
• Naive scanning 
• Hash based

VeloC
Kokkos

Kokkos 
Resilience

VeloC

Checkpoint i

Checkpoint i+1

Updates:

How do we efficiently identify the 
differences between the current and 

all previous checkpoints?



Dirty Page Tracking

• Fast, no computation or 
comparisons

• Tracking is automatically 
done by the OS

• Requires up-to-date kernel
• Coarse grain (4-64KB)
• Does not work for GPU 

based applications
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0 1 0 0 0 1 1 0

Diff

VeloC
Kokkos

Kokkos 
Resilience

VeloC

OS tracks which pages have been written to. 
Check pagemap for dirty pages.



Scanning For Updates

• High overhead due to scanning 
through multiple checkpoints
• Potentially many 

checkpoints
• Checkpoints are large

• Large overhead from many 
comparisons
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Naive scanning: Scan data at 

checkpoint i and i+1 for differences

Checkpointᵢ Checkpointᵢ₊₁



Hash Based Methods
• Extra computation cost for hashes
• Tradeoff based on block size

• Smaller blocks => smaller checkpoint
• Larger blocks => faster to find 

differences

• Tradeoff based on hash function
• Strong hash => less collisions
• Weak hash => faster computation
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Hash0

Hash1

Hash2

Hash0

Hash1

Hash2
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Hash based: Divide checkpoint into blocks, 
compute hashes for each block and compare 

hashes between checkpoint i and i+1

Checkpointᵢ Checkpointᵢ₊₁

VeloC
Kokkos

Kokkos 
Resilience

VeloC

Primary method we use for this 
work



Incremental Checkpoints for Sparse Updates
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Goal: Create an incremental checkpoint from application data
Challenge: Additional overhead must not exceed savings from 
smaller checkpoint

Adjust memory layout

System level Provide hooks into the applications memory access pattern

Detect whether data is sparsely updated

Restructure data for checkpointing

Select granularity and scope of diffs

Deduplicate

Collect application information at 
runtime

Analyze collected information and 
generate checkpointing hints

Block size, reference checkpoints

Eliminate redundant data from checkpoint

Apply checkpointing strategies

{Additional 
overheads



Incremental Checkpoints for Sparse Updates
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Challenge: Memory layout may not be optimal for checkpointing
Tradeoff: Cost to adjust memory layout vs cost to create incremental 
checkpoints

Adjust memory layout

System level Provide hooks into the applications memory access pattern

Detect whether data is sparsely updated

Restructure data for checkpointing

Select granularity and scope of diffs

Deduplicate

Collect application information at 
runtime

Analyze collected information and 
generate checkpointing hints

Block size, reference checkpoints

Eliminate redundant data from checkpoint

Apply checkpointing strategies

{Additional 
overheads



Memory Layout 
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VeloC
Kokkos

Kokkos 
Resilience

VeloC

We want to reorganize memory such that updates are 
contiguous for better checkpoint performance

LayoutLeft (Column major order) LayoutRight (Row major order)

LayoutLeft is preferred in this example (updates are dense and contiguous)



LayoutLeft vs LayoutRight: Ecology Graphs
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LayoutLeft LayoutRight

For the Ecology Graphs, LayoutLeft leads to updates being grouped closer together 
(dense and contiguous). Other graphs may exhibit different behavior.

VeloC
Kokkos

Kokkos 
Resilience

VeloC

Graphs from SuiteSparse collection: sparse.tamu.edu

Updates are 
very sparse

Updates are dense
 and contiguous



Incremental Checkpoints for Sparse Updates
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Challenge: Small block size leads to smaller checkpoints but 
increases overhead compared to larger block sizes
Tradeoff: Checkpoint size vs cost to find differences

Adjust memory layout

System level Provide hooks into the applications memory access pattern

Detect whether data is sparsely updated

Restructure data for checkpointing

Select granularity and scope of diffs

Deduplicate

Collect application information at 
runtime

Analyze collected information and 
generate checkpointing hints

Block size, reference checkpoints

Eliminate redundant data from checkpoint

Apply checkpointing strategies

{Additional 
overheads



Update Detection Granularity
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Tradeoff: Checkpoint size vs update detection cost

VeloC
Kokkos

Kokkos 
Resilience

VeloC

Checkpoint 
data

Coarse 
granularity 
(2 chunks) Lots of unnecessary data but fewer comparisons to detect updates

Fine 
granularity 
(8 chunks) Less unnecessary data but more comparisons to detect updates



Checkpoint Size vs Update Detection Cost
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Problem 1: Message Race Event Graph Problem 2: Unstructured Mesh Event Graph

Smaller block sizes lead to smaller checkpoints but need more comparisons to find differences

VeloC
Kokkos

Kokkos 
Resilience

VeloC

smaller checkpointsless comparisons smaller checkpointsless comparisons 

Message race and unstructured mesh are graphs modeling point-to-point communication patterns



Checkpoint Size vs Update Detection Cost
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Problem 1: Message Race Event Graph Problem 2: Unstructured Mesh Event Graph

VeloC
Kokkos

Kokkos 
Resilience

VeloC

Message race and unstructured mesh are graphs modeling point-to-point communication patterns

Different problems have different checkpoint similarities

Checkpoints are small 
with outliers

Checkpoints are more 
impacted by block size



Incremental Checkpoints for Sparse Updates
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Challenge: Minimize incremental checkpointing overhead
Tradeoff: CPU vs GPU deduplication for minimizing application 
stalls

Adjust memory layout

System level Provide hooks into the applications memory access pattern

Detect whether data is sparsely updated

Restructure data for checkpointing

Select granularity and scope of diffs

Deduplicate

Collect application information at 
runtime

Analyze collected information and 
generate checkpointing hints

Block size, reference checkpoints

Eliminate redundant data from checkpoint

Apply checkpointing strategies

{Additional 
overheads



Checkpoint Deduplication
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Compute hashes

Compare hashes

Create diff

Divide data into chunks and calculate hashes

Compare hashes to find updated chunks

Collect chunks into a contiguous buffer for 
checkpointing

How to eliminate redundant data while minimizing application 
stalls? 

VeloC
Kokkos

Kokkos 
Resilience

VeloC

Two cases for mixed CPU-GPU applications
● Perform deduplication on the CPU
● Perform deduplication on the GPU



Ecology

Deduplication Performance on CPU and GPU

32

VeloC
Kokkos

Kokkos 
Resilience

VeloC

GPU deduplication 
is much faster but 
blocks execution

● More data movement between CPU 
and GPU for CPU deduplication

● GPU deduplication is blocking
● CPU deduplication can be done 

asynchronously while the application 
is running on the GPU

GPU 63x 
faster

46x

24x

12x

Deduplication strategy 
must minimize the overall 
checkpoint overhead by 
minimizing stalls to the 

application



Summary and Future Work
Summary

• Combining Kokkos and VeloC with the Kokkos Resilience layer enables access 
pattern aware checkpoints for improving checkpoint performance

• Incremental checkpoints can drastically reduce the size of checkpoints for 
sparsely updated data

• There are trade-offs between checkpoint size and complexity that depend on the 
update pattern 

Future work
• Tightly couple the software layers (Kokkos, Kokkos Resilience, VeloC) for greater 

performance 
• Investigate other access patterns
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VeloC
https://veloc.readthedocs.iohttps://kokkos.org


