
Towards Access Pattern Aware
Checkpointing For Kokkos Applications

Nigel Tan, Bogdan Nicolae, Nicolas Morales,
Keita Teranishi, Sanjukta Bhowmick,

Franck Cappello, Michela Taufer

1
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE- NA0003525.

SAND2022-2099CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

● Performance and scalability
○ Need to checkpoint frequently (failures happen more often, many intermediate datasets, etc.)
○ Many processes, each featuring a large checkpoint size
○ Limited I/O bandwidth available per process due to contention (processes checkpoint simultaneously)

● Heterogeneity and complexity of storage hierarchy
○ Many options in addition to PFS: burst buffers, object stores, caching layers, etc.
○ Many vendors, each with its own API

Checkpointing is Difficult at Scale

Naive Checkpointing is Unfeasible

3

I/O Interface

Storage

Kokkos

Kokkos
Resilience

VeloC

Application

User level

System level

● Writing checkpoints directly to the parallel file system
(naive checkpointing) incurs unacceptable overheads

● Why do users still do it?
○ Not aware of the complexity of the storage stack (are

other storage tiers are available?)
○ Not aware how to leverage storage tiers efficiently (e.g.

async flushing from fast to slow tiers)

● Even if users are knowledgeable, the development
effort is overwhelming
○ Too many combinations of storage tiers and strategies,

each with their own performance model and/or API

Efficient Checkpointing is Complex

4

Decide checkpoint frequency

Decide what storage tiers are
available and can be used

Select optimal transfer strategy and
API between tiers

Collect the checkpointing data and
copy it on fast storage tiers

Flush checkpoints asynchronously from
fast tiers to slower, persistent tiers

Vendor-specific I/O API

Apply other resilience strategies (e.g. erasure
coding to minimize I/O to slow tiers)

User level

System level

Parallel FS

-------C
h

eckp
o

in
tin

g step
s--------I/O Interface

Hardware

Application

Application resumes

Need to delegate these steps to
dedicated runtimes!

State of Art

5

Very Low Overhead
Checkpointing (VeloC)

Performance portability framework
● Implement powerful execution and memory

abstractions for developing fast portable applications
across modern platforms

● Provide useful containers such as multidimensional
arrays (Views) that support CPUs and GPUs

Asynchronous checkpoint-restart runtime
● Delivers efficient and scalable asynchronous

checkpointing using complex heterogeneous storage
hierarchies

● Flexible modular architecture to support a large variety
of strategies and vendor APIs

This research was supported by the Exascale Computing Project (ECP), Project Number: 17-SC-20-SC, a collaborative effort of two DOE organizations -- the Office of Science and the National Nuclear
Security Administration, responsible for the planning and preparation of a capable exascale ecosystem, including software, applications, hardware, advanced system engineering and early testbed
platforms, to support the nation's exascale computing imperative. It is also supported by the National Science Foundation (NSF) under Grants CCF-1617488, CCF-1619253, OAC-2003709,
OAC-1948447/2034169, and OAC-2003624/2042084.

Portable Resilience: combines Kokkos abstractions (memory views) with VELOC abstractions
(protected memory regions) to enable an efficient performance-portable resilience runtime

https://veloc.readthedocs.iohttps://kokkos.org

Morales, N., Teranishi, K., Nicolae, B., Trott, C. and Cappello, F. 2021.Towards High Performance Resilience Using Performance Portable
Abstractions. EuroPar’21: 27th International European Conference on Parallel and Distributed Systems (Lisbon, Portugal, 2021).

VeloC

Kokkos+VeloC: Portable+Efficient Ckpt

6

Decide checkpoint frequency

Mark critical memory views

Decide storage tiers and create
blocking copies to fast tiers

Collect information about memory
views

Apply resilience strategies and flush
to slow, persistent tiers

Vendor-specific I/O API

Analyze collected information and
setup checkpoint parameters

User level

System level

Parallel FS

● Optimizes performance
● Minimizes user effort at application-level

I/O Interface

Hardware

Application

Kokkos

Portable
Resilience

-------C
h

eckp
o

in
tin

g step
s--------

App resumes

Goal: Memory-Pattern Aware Ckpt

7

I/O Interface

Hardware

Kokkos

Kokkos
Resilience

VeloC

Application

I/O Interface

Hardware

Application

Kokkos

Portable
Resilience

VeloCUser level

System level

User level

System level

Naive Checkpointing Optimized Checkpointing

Unfeasible

Application

Kokkos

Portable
Resilience

VeloC

I/O Interface

Hardware

Opportunity: Memory-Pattern Awareness

Application
data

Analyze and
optimize

checkpoint based
on access pattern

Optimized
checkpoint

Portable and efficient
but treats all memory

view equally

Memory Pattern Aware Checkpointing

8

VeloC

Kokkos

Kokkos Resilience

System level Collect memory pattern information

Analyze patterns and generate hints

We look at memory access patterns for opportunities to improve
checkpointing

Optimize checkpointing based hints

Tightly couple the software layers to enable more efficient checkpointing
based on runtime properties

Example: Sparse Update Patterns

9

Step i

Updated cell

Unchanged cell

Full Checkpoint

Example: Sparse Update Patterns II

10

Step i

Updated cell

Checkpoints
everything!

Total Checkpoint
64 cells

Unchanged cell

Incremental
Checkpoint

Full Checkpoint

Example: Sparse Update Patterns III

11

Step i

Updated cell

Checkpoints
everything!

Total Checkpoint
64 cells

Unchanged cell

0

0

5

2 Checkpoint Size: 6

Checkpoint
ONLY the
changes

Row
Col

Example App: Fido (Graph Alignment)

12

• Compare two graphs based on
common substructures called
graphlets

Algorithm:
For each graph

For i in [0,num_vertices]
Calculate graphlet degree
vector (GDV) for vertex i
If (i%checkpoint_interval)==0

Checkpoint GDVs
Match vertices with similar GDVs

o

f
u

p
d

at
es

 t
o

 G
D

V
s

Sparse Update Pattern in Fido

13

We track the memory access pattern for two sets of graphs (i.e., Ecology and Open
Street Maps)

Graphs from SuiteSparse collection: sparse.tamu.edu

o

f
u

p
d

at
es

 t
o

 G
D

V
s

o

f
u

p
d

at
es

 t
o

 G
D

V
s

Sparse Update Pattern in Fido

14

We track the memory access pattern for two sets of graphs (i.e., Ecology and Open
Street Maps)

No
updates

Sparse
updates

Graphs from SuiteSparse collection: sparse.tamu.edu

o

f
u

p
d

at
es

 t
o

 G
D

V
s

Incremental Checkpointing for Sparse Updates

15

Adjust memory layout

System level Provide hooks into the applications memory access pattern

Detect whether data is sparsely updated

Goal: Instead of full checkpoints, write only diffs to previous checkpoints
Challenge: Faster I/O due to smaller ckpt size, but additional overheads

Restructure data for checkpointing

Select granularity and scope of diffs

Deduplicate

Collect application information at
runtime

Analyze collected information and
generate checkpointing hints

Block size, reference checkpoints

Eliminate redundant data from checkpoint

Apply checkpointing strategies

{Additional
overheads

Incremental Checkpoints for Sparse Updates

16

Goal: Collect pattern information from the application
Challenge: Must not require any code changes by the user

Adjust memory layout

System level Provide hooks into the applications memory access pattern

Detect whether data is sparsely updated

Restructure data for checkpointing

Select granularity and scope of diffs

Deduplicate

Collect application information at
runtime

Analyze collected information and
generate checkpointing hints

Block size, reference checkpoints

Eliminate redundant data from checkpoint

Apply checkpointing strategies

{Additional
overheads

Incremental Checkpoints for Sparse Updates

17

Goal: Find differences between checkpoints
Challenge: Analysis overhead

Adjust memory layout

System level Provide hooks into the applications memory access pattern

Detect whether data is sparsely updated

Restructure data for checkpointing

Select granularity and scope of diffs

Deduplicate

Collect application information at
runtime

Analyze collected information and
generate checkpointing hints

Block size, reference checkpoints

Eliminate redundant data from checkpoint

Apply checkpointing strategies

{Additional
overheads

Detecting Updates

18

Approaches:
• Dirty page tracking
• Naive scanning
• Hash based

VeloC
Kokkos

Kokkos
Resilience

VeloC

Checkpoint i

Checkpoint i+1

Updates:

How do we efficiently identify the
differences between the current and

all previous checkpoints?

Dirty Page Tracking

• Fast, no computation or
comparisons

• Tracking is automatically
done by the OS

• Requires up-to-date kernel
• Coarse grain (4-64KB)
• Does not work for GPU

based applications

19

0 1 0 0 0 1 1 0

Diff

VeloC
Kokkos

Kokkos
Resilience

VeloC

OS tracks which pages have been written to.
Check pagemap for dirty pages.

Scanning For Updates

• High overhead due to scanning
through multiple checkpoints
• Potentially many

checkpoints
• Checkpoints are large

• Large overhead from many
comparisons

20

VeloC
Kokkos

Kokkos
Resilience

VeloC

==
==
==
==
==
==
==
==
==
==
==
==

=>
=>

=>

=>
Naive scanning: Scan data at

checkpoint i and i+1 for differences

Checkpointᵢ Checkpointᵢ₊₁

Hash Based Methods
• Extra computation cost for hashes
• Tradeoff based on block size

• Smaller blocks => smaller checkpoint
• Larger blocks => faster to find

differences

• Tradeoff based on hash function
• Strong hash => less collisions
• Weak hash => faster computation

21

Hash0

Hash1

Hash2

Hash0

Hash1

Hash2

=>

=>

==

==

==

Hash based: Divide checkpoint into blocks,
compute hashes for each block and compare

hashes between checkpoint i and i+1

Checkpointᵢ Checkpointᵢ₊₁

VeloC
Kokkos

Kokkos
Resilience

VeloC

Primary method we use for this
work

Incremental Checkpoints for Sparse Updates

22

Goal: Create an incremental checkpoint from application data
Challenge: Additional overhead must not exceed savings from
smaller checkpoint

Adjust memory layout

System level Provide hooks into the applications memory access pattern

Detect whether data is sparsely updated

Restructure data for checkpointing

Select granularity and scope of diffs

Deduplicate

Collect application information at
runtime

Analyze collected information and
generate checkpointing hints

Block size, reference checkpoints

Eliminate redundant data from checkpoint

Apply checkpointing strategies

{Additional
overheads

Incremental Checkpoints for Sparse Updates

23

Challenge: Memory layout may not be optimal for checkpointing
Tradeoff: Cost to adjust memory layout vs cost to create incremental
checkpoints

Adjust memory layout

System level Provide hooks into the applications memory access pattern

Detect whether data is sparsely updated

Restructure data for checkpointing

Select granularity and scope of diffs

Deduplicate

Collect application information at
runtime

Analyze collected information and
generate checkpointing hints

Block size, reference checkpoints

Eliminate redundant data from checkpoint

Apply checkpointing strategies

{Additional
overheads

Memory Layout

24

VeloC
Kokkos

Kokkos
Resilience

VeloC

We want to reorganize memory such that updates are
contiguous for better checkpoint performance

LayoutLeft (Column major order) LayoutRight (Row major order)

LayoutLeft is preferred in this example (updates are dense and contiguous)

LayoutLeft vs LayoutRight: Ecology Graphs

25

LayoutLeft LayoutRight

For the Ecology Graphs, LayoutLeft leads to updates being grouped closer together
(dense and contiguous). Other graphs may exhibit different behavior.

VeloC
Kokkos

Kokkos
Resilience

VeloC

Graphs from SuiteSparse collection: sparse.tamu.edu

Updates are
very sparse

Updates are dense
 and contiguous

Incremental Checkpoints for Sparse Updates

26

Challenge: Small block size leads to smaller checkpoints but
increases overhead compared to larger block sizes
Tradeoff: Checkpoint size vs cost to find differences

Adjust memory layout

System level Provide hooks into the applications memory access pattern

Detect whether data is sparsely updated

Restructure data for checkpointing

Select granularity and scope of diffs

Deduplicate

Collect application information at
runtime

Analyze collected information and
generate checkpointing hints

Block size, reference checkpoints

Eliminate redundant data from checkpoint

Apply checkpointing strategies

{Additional
overheads

Update Detection Granularity

27

Tradeoff: Checkpoint size vs update detection cost

VeloC
Kokkos

Kokkos
Resilience

VeloC

Checkpoint
data

Coarse
granularity
(2 chunks) Lots of unnecessary data but fewer comparisons to detect updates

Fine
granularity
(8 chunks) Less unnecessary data but more comparisons to detect updates

Checkpoint Size vs Update Detection Cost

28

Problem 1: Message Race Event Graph Problem 2: Unstructured Mesh Event Graph

Smaller block sizes lead to smaller checkpoints but need more comparisons to find differences

VeloC
Kokkos

Kokkos
Resilience

VeloC

smaller checkpointsless comparisons smaller checkpointsless comparisons

Message race and unstructured mesh are graphs modeling point-to-point communication patterns

Checkpoint Size vs Update Detection Cost

29

Problem 1: Message Race Event Graph Problem 2: Unstructured Mesh Event Graph

VeloC
Kokkos

Kokkos
Resilience

VeloC

Message race and unstructured mesh are graphs modeling point-to-point communication patterns

Different problems have different checkpoint similarities

Checkpoints are small
with outliers

Checkpoints are more
impacted by block size

Incremental Checkpoints for Sparse Updates

30

Challenge: Minimize incremental checkpointing overhead
Tradeoff: CPU vs GPU deduplication for minimizing application
stalls

Adjust memory layout

System level Provide hooks into the applications memory access pattern

Detect whether data is sparsely updated

Restructure data for checkpointing

Select granularity and scope of diffs

Deduplicate

Collect application information at
runtime

Analyze collected information and
generate checkpointing hints

Block size, reference checkpoints

Eliminate redundant data from checkpoint

Apply checkpointing strategies

{Additional
overheads

Checkpoint Deduplication

31

Compute hashes

Compare hashes

Create diff

Divide data into chunks and calculate hashes

Compare hashes to find updated chunks

Collect chunks into a contiguous buffer for
checkpointing

How to eliminate redundant data while minimizing application
stalls?

VeloC
Kokkos

Kokkos
Resilience

VeloC

Two cases for mixed CPU-GPU applications
● Perform deduplication on the CPU
● Perform deduplication on the GPU

Ecology

Deduplication Performance on CPU and GPU

32

VeloC
Kokkos

Kokkos
Resilience

VeloC

GPU deduplication
is much faster but
blocks execution

● More data movement between CPU
and GPU for CPU deduplication

● GPU deduplication is blocking
● CPU deduplication can be done

asynchronously while the application
is running on the GPU

GPU 63x
faster

46x

24x

12x

Deduplication strategy
must minimize the overall
checkpoint overhead by
minimizing stalls to the

application

Summary and Future Work
Summary

• Combining Kokkos and VeloC with the Kokkos Resilience layer enables access
pattern aware checkpoints for improving checkpoint performance

• Incremental checkpoints can drastically reduce the size of checkpoints for
sparsely updated data

• There are trade-offs between checkpoint size and complexity that depend on the
update pattern

Future work
• Tightly couple the software layers (Kokkos, Kokkos Resilience, VeloC) for greater

performance
• Investigate other access patterns

33

Acknowledgements
This work was supported in part by the National Science Foundation under Grant #1900888 and Grant
#1900765. The authors acknowledge IBM through a Shared University Research Award.

This research was supported by the Exascale Computing Project (ECP), Project Number: 17-SC-20-SC, a
collaborative effort of two DOE organizations -- the Office of Science and the National Nuclear Security
Administration, responsible for the planning and preparation of a capable exascale ecosystem, including
software, applications, hardware, advanced system engineering and early testbed platforms, to support the
nation's exascale computing imperative. It is also supported by the National Science Foundation (NSF) under
Grants CCF-1617488, CCF-1619253, OAC-2003709, OAC-1948447/2034169, and OAC-2003624/2042084.

34

VeloC
https://veloc.readthedocs.iohttps://kokkos.org

