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Using in-situ TEM to observe materials at high temperatures is a popular way to analyze
material behavior in extreme environments. The development of in-situ laser heating enables
determination of mechanisms of microstructural evolution during heat processing such as welding,
annealing and laser processing, such as many metal additive manufacturing processes. All of these
techniques include high heating and cooling rates creating far-from-equilibrium conditions. In-situ
laser TEM allows site-specific heating of the sample and has previously been used to synthesize
nanowires, increase grain size, and initiate phase transformations in metals [1, 2]. The I’'TEM
facility at Sandia National Laboratories is equipped with a specimen drive infrared (IR) laser with
a maximum power of 20 W, enabling high temperatures and fast cooling rates to be applied to
samples in single and double tilt, as well as heating, cryogenic, and other environmental TEM
holders. Combining in-situ laser heating with an environmental holder such as a low temperature
cryogenic holder enables the manipulation of cooling rates beyond those reached in environmental
holders alone, resulting in observation of the differences in microstructural evolution induced by
widely varying cooling rates.

As an exemplar, a stainless steel 304L VAR alloy was used to observe differences in
dissolution kinetics of boride precipitates at high temperatures with varying cooling rates. The
alloy examined is known to contain delta ferrite stringers associated with boride precipitates, the
latter of which is known to dissolve during annealing. Observation of the dissolution of boride
precipitate using in-situ laser TEM (Figure 1) is dependent on the reflectivity of the material, the
laser power, and the stability of the temperature reached. The determination of the temperature of
the sample in in-situ laser TEM experiments is not trivial due to the reflectivity of different
materials in the sample; therefore, selected area diffraction (SAD) patterns were used to attempt
to determine expansion of the austenite lattice which, when combined with the austenitic
coefficient of thermal expansion (CTE) for 304, would result in the temperature of the sample.
However, degradation of the diffraction pattern during laser exposure, particularly at high laser
powers, results in unreliable temperature calculation. A FLIR camera to measure IR light emitted
by the sample is currently being incorporated to measure the temperature reached.

To observe the difference in behavior of the boride precipitate at varying cooling rates, the
in-situ laser was combined with heating and cryogenic TEM stages. Use of a heating stage leads
to a slower cooling rate after high temperature is reached, enabling closer observation of
microstructural kinetics similar to those achieved during furnace cooling, while cooling the sample
to cryogenic temperatures during laser exposure enables observation of kinetics similar to those
seen during rapid solidification processes such as laser additive manufacturing.
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Figure 1. Stainless steel 304L VAR after 15 minutes at 2 W (left) and after 1 hour at 4.8 W laser
power. The borides are both still present while the austenite matrix and delta ferrite stringer are
degraded. The diffraction patterns in both states are inserted.
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