This paper describes objective technical results and analysis. Any subiective views or opinions that might'belexpressed in SAND2022-2116C
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Online Fault Tolerance with
Kokkos Resilient Execution Spaces

PRESENTED BY
Elisabeth Giem

@&NERGY ASA

Sandia National Laboratories is a mul-
timission laboratory managed and oper-
ated by National Technology & Engineer-
ing Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell Interna-
tional Inc., for the U.S. Department of

. . L L . . . - - Energy’s National Nuclear Security Admin-
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions/of Sandia, LLC, a/whollylowned istration under contract DE-NA0003525.

subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration'under/contract DE-NA0003525.

1 ‘ Increasing Heterogeneity at Extreme Scale

—

Intel Multicore Intel Accelerator NVIDIA GPU AMD Multicore AMD GPU IBM Power ARM

o Increasing heterogeneity at extreme scale: macro- and micro-architectures
o Different parallel runtime expertise required for maximum performance

o Performance portability as opposed to portability

2> | Kokkos

. kokkos

Kokkos is a performance portable parallel programming model

o C ++library, modern C++ compliant (requires C++ 14, soon will require C++ 17)
o No new language extensions
o Scalable
o Write algorithm using Kokkos and C++4-, run on many architectures
o CPU, GPU
o plus more, with other backends in development

C++ is a popular scientific programming language, and Kokkos is highly versatile and widely
used, a good choice for a resilient performance portable parallel programming model

3 ‘Transient Faults

There are two types of faults:

Fail-Stop Error! Soft Error!

Execution Execution
Time Time

Segmentation fault

(core dumped) 1+1 =3

o Fail-stop errors are easy to detect, the program crashes
o Often handled by checkpointing and restart
o Out of scope for this talk, interested in fail-continue (soft) errors

o Observed fail-continue errors: lock semantics, encryption/decryption, database index corruption,
and more

+ 1 Resiliency

Resiliency is the ability to tolerate errors in computing or memory:.
Identified by the DOE as a top-10 challenge in future exascale computing, and by industry:

o Blue Waters—NCSA: Cray machine with unexpected distribution of faults and inadequate failover
mechanisms

o Titan—ORNL: 18k GPUs requiring 11k GPUs replaced because of faults due to aging

o Facebook—18-month fleet study, soft errors a systemic issue occurring orders of magnitude more
frequently than FIT simulation estimates

o Google—Fleet study, “Mercurial Cores” generating soft errors, cannot be fixed with updates and

require resiliency

Our work is to create a resilient execution space for Kokkos, so that algorithms written using
Kokkos can handle soft errors during computing

5 | Parallel Patterns

Parallel Patterns

o Parallel patterns execute in a given par-
allel execution space

o Our research is focused on making these
patterns resilient

o Three main patterns:
O parallel for
O parallel reduce
O parallel scan

o Accompanied by a policy and body

Clode examnbple conrtesv Clarter Fdward

Serial

OpenMP

Kokkos

std: :vector<double> X (N) ;
for (size_t i = 0; 1 < N; ++i)
{
X[1i] = ..
}

std: :vector<double> X (N) ;
#pragma omp parallel for
for (size_t i1 = 0; 1 < N; ++1)
{

X[1i] = ..
}

Kokkos: :View<double *> X (N);

parallel for (N, [=] (const size_ t 1)

s | Parallel Policies

Parallel Policies

o Execution policy informs pattern how to iterate
o Many policy types:

o RangePolicy (1D range)

o MDRangePolicy (multidimensional tiling)

o Teams (hierarchical parallelism)

o Others

7 | Bodies and Work ltems

Bodies and Work Items

o Each iteration of a computational body is a work
item

o A total amount of work items are given to Kokkos
patterns as a functor

o For ease of use, can be represented as lambda cap-
ture

o If using a lambda capture, must be by value and
not by reference

Kokkos: :View<double *> X (N);
parallel for (N, [=] (const size t 1)

{
X(i) = ..
} Y

s | Kokkos Views

Kokkos: :View

o Multi-dimensional array with
architecture-dependent layouts

o Takes care of memory
management

o Caching on CPU
o Coalescing on GPU
o Etc.

o User only needs to know minimal
specifics of architecture

o Same API regardless of hardware

Clode examnbple conrtesv Clarter Fdward

View < double*, LayvoutRight, HostSpace > X{(N);

parallel for { RangePolicy < OpenMP > (0, Nj,
X(i) = ...
bis

[=]

(int i)

1

o I Resilient Execution Spaces

ResilientView < double*, LayoutRight, ResHostSpace > X(N);

parallel for [RangePolicy < ResOpenMP > (0, Nj, [=] (int 1) ¢{
X(i) = ...
i

We introduce a natural extension to execution spaces: the resilient execution space.

o Views are replicated, and then patterns are executed concurrently on the replicated views

o Simple majority voting system: three executions, if two agree, the result is considered correct and
the application progresses

o Voting step proceeds in parallel after triplicate execution completed

10 | Control Flow

Resilient execution space with triple modular redundancy

Implementation: not exposed to the user .
ﬁ I I I ‘

——
|

parallel for()

(parallel_for() combine_results()

parallel for()

u
u
u
u
u
u
u
u
u
u
L

API: user-defined

.IIIIIIIIIIIIIIIIIIII *

EIViewSubscriber
A captures and
Ekduplicates views

| Results compared
in parallel and
stored in original views J

parallel for()

'%.IIIJ

11 | Control Flow: View Duplication

Resilient execution space: View duplication
ll“‘

Implementation: not exposed to the user

parallel_for()

parallel for() ‘ combine_results()
| Results compared

in parallel and
parallel_for() lstored in original views J

)

parallel for()

u
u
u
u
u
u
u
u
u
u
a

API: user-defined

|
%,

.IIIJ

12 | View Duplication

How is view duplication actually achieved? The easy ResilientView API presented to the user
covers a ViewSubscriber added to the original Kokkos View.

o Upcoming experimental feature in Kokkos

o Compile time callback

o Copy constructor invokes view duplicator

o Directly invokes view duplicator, not a dynamic dispatch

o Zero overhead in terms of actually invoking code

static void copy constructed (View &self, const View &other) {
if (in resilient parallel 1loop) {
//View Duplication

Control Flow: Triple Execution

Resilient execution space: Triple execution

- J N NN ENNNNDRN.]

Implementation: not exposed to the user
r I I I ‘

——
|

(parallel_for() combine_results()

API: user-defined

EIViewSubscriber
1 captures and
Ekduplicates views

| Results compared
in parallel and
stored in original views

'%.IIIJ

14 | Concurrent Execution

Once the views are duplicated, three executions must then proceed. Two obvious desirable
characteristics for these executions: Asynchronous operation and concurrent execution.

Asynchronous operation is easily achieved:

o Independent work items are required for the pattern in the first place to execute correctly
o The only synchronization which must be performed is at the end of execution: this is explicitly
called

Concurrent execution requires more thought:

o Scheduling achieved by more evenly balancing work using smart distribution
o Lambda captured functor is triplicated

o Highly tailored: every pattern and every policy requires a different implementation

15 | Control Flow: Duplicate Resolution

Resilient execution space: Duplicate resolution

: Implementation: not exposed to the user

parallel_for()

P
R N

combine_results()

parallel for()

API: user-defined

EIViewSubscriber
1 captures and
kdu plicates views

parallel for()

16 | Detecting Soft Errors

Control is handed from the pattern to the duplicate combiner, which invokes the view subscriber
for duplicate resolution.

View subscriber requires datatype at compile time to perform equality check between duplicated
VIEWsS:

o a = b for integral types

o |a — b| < e for floating point types

o Check can be easily customized
If no resolution is reached, the combiner hands control back to the pattern and re-execution is
attempted a user-specified number of times.

[f no resolution is reachable, an exception is thrown.
All checks are done in parallel.

‘ CUDA Result

Performance impact of resilient execution with MD mini app (Volta 70)

90 f
46.15%

125

80

70

(4]

60.38%

a0
30 100 00
20 ‘ 183.95
‘ 689.47%
) | . .

1

Relative Time

Problem Size
Reference time = ‘ 0.019 ‘

M Baseline ™ Resilient Exec

18 | Conclusions and Future Work

o We have successfully created a prototype resilient performance portable parallel programming
model by adding triple modular redundancy to Kokkos execution spaces

o Results show that overhead is less than might be expected, but larger studies are needed

o Future steps include more applications and different types of execution spaces and further polices
to adapt

o We also want to explore using execution spaces in concert with checkpointing

Thank you! Questions?

This work was sponsored in part by NICE: NRT for Integrated Computational Entomology, US NSF award 1631776.

	Heterogeneity and Kokkos
	Transient Faults and Resiliency
	Kokkos::Nuts and Bolts
	Resilient Kokkos: Resilient Execution Spaces
	VeloC Heat Distribution Test

