
Online Fault Tolerance with
Kokkos Resilient Execution Spaces

PRESENTED BY

Elisabeth Giem

Elisabeth Giem, Nicolas Morales, Keita Teranishi, Matthew Whitlock

Sandia National Laboratories is a mul-
timission laboratory managed and oper-

ated by National Technology & Engineer-
ing Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell Interna-
tional Inc., for the U.S. Department of

Energy’s National Nuclear Security Admin-
istration under contract DE-NA0003525.

SAND2022-2116CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

1 Increasing Heterogeneity at Extreme Scale

◦ Increasing heterogeneity at extreme scale: macro- and micro-architectures
◦ Different parallel runtime expertise required for maximum performance
◦ Performance portability as opposed to portability

2 Kokkos

Kokkos is a performance portable parallel programming model

◦ C ++library, modern C++ compliant (requires C++ 14, soon will require C++ 17)
◦ No new language extensions
◦ Scalable
◦ Write algorithm using Kokkos and C++, run on many architectures

◦ CPU, GPU
◦ plus more, with other backends in development

C++ is a popular scientific programming language, and Kokkos is highly versatile and widely
used, a good choice for a resilient performance portable parallel programming model

3 Transient Faults
There are two types of faults:

1+1 = 3

◦ Fail-stop errors are easy to detect, the program crashes
◦ Often handled by checkpointing and restart
◦ Out of scope for this talk, interested in fail-continue (soft) errors
◦ Observed fail-continue errors: lock semantics, encryption/decryption, database index corruption,

and more

4 Resiliency

Resiliency is the ability to tolerate errors in computing or memory.
Identified by the DOE as a top-10 challenge in future exascale computing, and by industry:

◦ Blue Waters—NCSA: Cray machine with unexpected distribution of faults and inadequate failover
mechanisms

◦ Titan—ORNL: 18k GPUs requiring 11k GPUs replaced because of faults due to aging
◦ Facebook—18-month fleet study, soft errors a systemic issue occurring orders of magnitude more

frequently than FIT simulation estimates
◦ Google—Fleet study, “Mercurial Cores” generating soft errors, cannot be fixed with updates and

require resiliency

Our work is to create a resilient execution space for Kokkos, so that algorithms written using
Kokkos can handle soft errors during computing

5 Parallel Patterns

Parallel Patterns

◦ Parallel patterns execute in a given par-
allel execution space

◦ Our research is focused on making these
patterns resilient

◦ Three main patterns:
◦ parallel_for

◦ parallel_reduce

◦ parallel_scan

◦ Accompanied by a policy and body

Code example courtesy Carter Edward

6 Parallel Policies

Parallel Policies

◦ Execution policy informs pattern how to iterate
◦ Many policy types:

◦ RangePolicy (1D range)
◦ MDRangePolicy (multidimensional tiling)
◦ Teams (hierarchical parallelism)
◦ Others

7 Bodies and Work Items

Bodies and Work Items

◦ Each iteration of a computational body is a work
item

◦ A total amount of work items are given to Kokkos
patterns as a functor

◦ For ease of use, can be represented as lambda cap-
ture

◦ If using a lambda capture, must be by value and
not by reference

8 Kokkos Views

Kokkos::View

◦ Multi-dimensional array with
architecture-dependent layouts

◦ Takes care of memory
management
◦ Caching on CPU
◦ Coalescing on GPU
◦ Etc.

◦ User only needs to know minimal
specifics of architecture

◦ Same API regardless of hardware

Code example courtesy Carter Edward

9 Resilient Execution Spaces

We introduce a natural extension to execution spaces: the resilient execution space.

◦ Views are replicated, and then patterns are executed concurrently on the replicated views
◦ Simple majority voting system: three executions, if two agree, the result is considered correct and

the application progresses
◦ Voting step proceeds in parallel after triplicate execution completed

10 Control Flow

Resilient execution space with triple modular redundancy

11 Control Flow: View Duplication

Resilient execution space: View duplication

12 View Duplication

How is view duplication actually achieved? The easy ResilientView API presented to the user
covers a ViewSubscriber added to the original Kokkos View.

◦ Upcoming experimental feature in Kokkos
◦ Compile time callback
◦ Copy constructor invokes view duplicator
◦ Directly invokes view duplicator, not a dynamic dispatch
◦ Zero overhead in terms of actually invoking code

13 Control Flow: Triple Execution

Resilient execution space: Triple execution

14 Concurrent Execution

Once the views are duplicated, three executions must then proceed. Two obvious desirable
characteristics for these executions: Asynchronous operation and concurrent execution.

Asynchronous operation is easily achieved:

◦ Independent work items are required for the pattern in the first place to execute correctly
◦ The only synchronization which must be performed is at the end of execution: this is explicitly

called

Concurrent execution requires more thought:

◦ Scheduling achieved by more evenly balancing work using smart distribution
◦ Lambda captured functor is triplicated
◦ Highly tailored: every pattern and every policy requires a different implementation

15 Control Flow: Duplicate Resolution

Resilient execution space: Duplicate resolution

16 Detecting Soft Errors

Control is handed from the pattern to the duplicate combiner, which invokes the view subscriber
for duplicate resolution.
View subscriber requires datatype at compile time to perform equality check between duplicated
views:

◦ a = b for integral types
◦ |a − b| < ϵ for floating point types
◦ Check can be easily customized

If no resolution is reached, the combiner hands control back to the pattern and re-execution is
attempted a user-specified number of times.
If no resolution is reachable, an exception is thrown.
All checks are done in parallel.

17 CUDA Result

18 Conclusions and Future Work

◦ We have successfully created a prototype resilient performance portable parallel programming
model by adding triple modular redundancy to Kokkos execution spaces

◦ Results show that overhead is less than might be expected, but larger studies are needed
◦ Future steps include more applications and different types of execution spaces and further polices

to adapt
◦ We also want to explore using execution spaces in concert with checkpointing

Thank you! Questions?
This work was sponsored in part by NICE: NRT for Integrated Computational Entomology, US NSF award 1631776.

	Heterogeneity and Kokkos
	Transient Faults and Resiliency
	Kokkos::Nuts and Bolts
	Resilient Kokkos: Resilient Execution Spaces
	VeloC Heat Distribution Test

