

Exceptional service in the national interest

Target Detection on Hyperspectral Images Using MCMC and VI Trained Bayesian Neural Networks

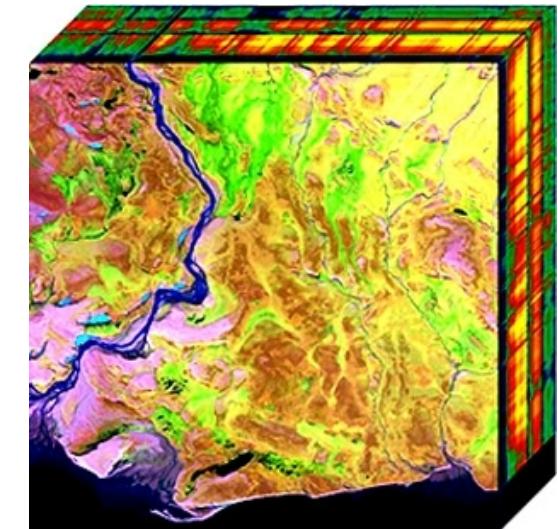
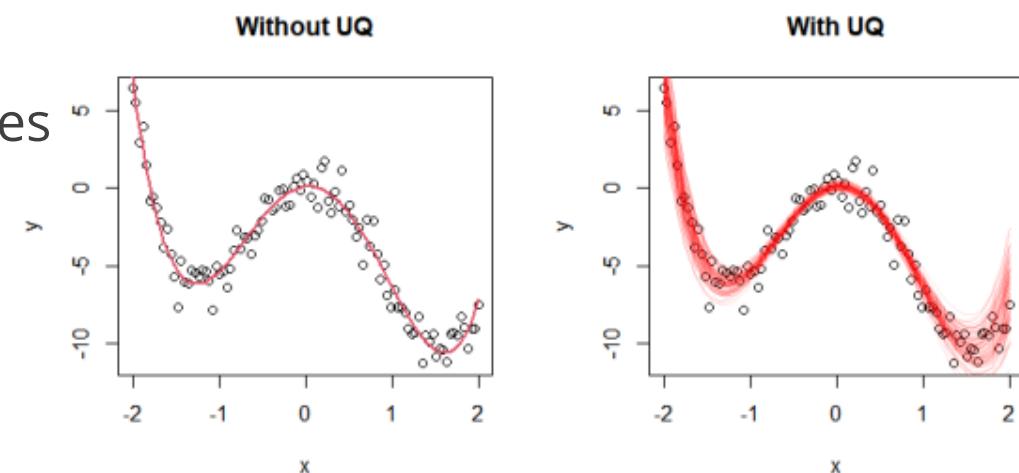
Daniel Ries, Jason Adams, Joshua Zollweg

3/10/2022

IEEE Aerospace 2022

Motivation

- Deep learning (DL) has become popular tool for finding trends in hyperspectral imagery (HSI)
- Traditional DL does not quantify uncertainty of predictions
 - This is problematic for high **consequence** problems
- Bayesian neural networks (BNN) provides uncertainties for powerful DL predictions



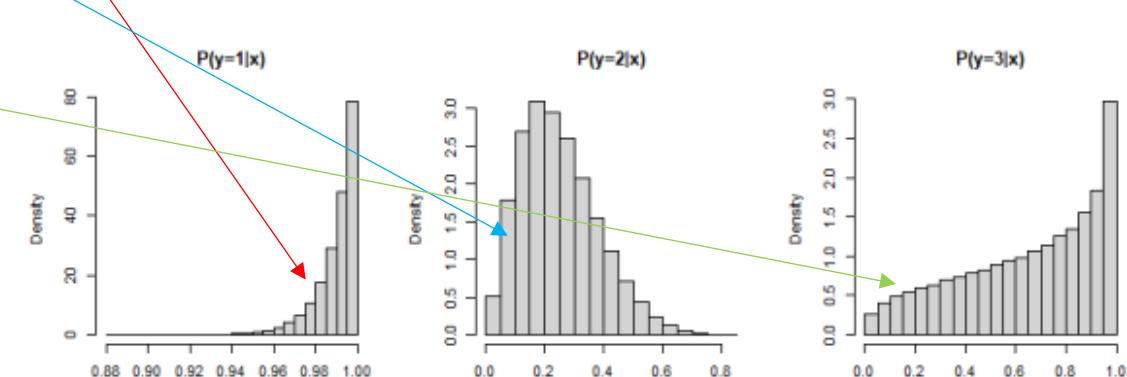
Target Detection Example

Do these pixels contain target? ($y_i = 1$ means target)

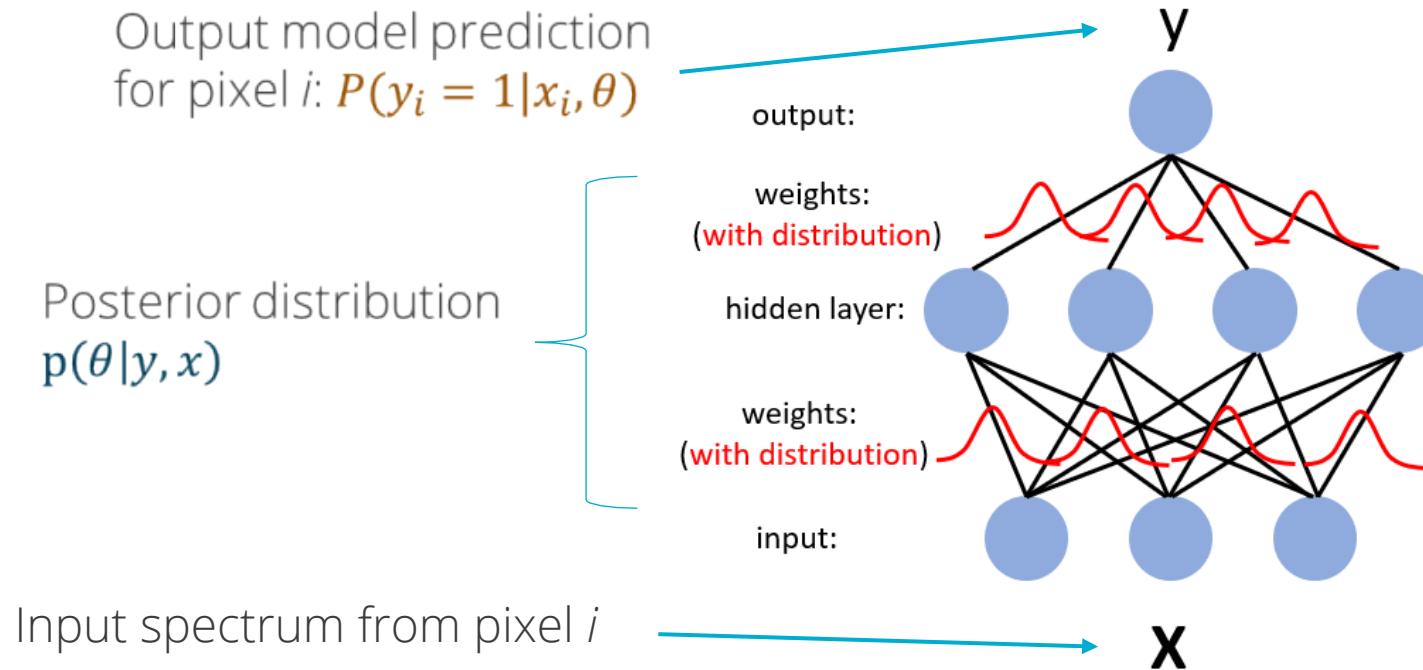
- Pixel 1: $P(\widehat{y_i = 1} | x_1, \theta) = 0.99$
- Pixel 2: $P(\widehat{y_i = 1} | x_2, \theta) = 0.25$
- Pixel 3: $P(\widehat{y_i = 1} | x_3, \theta) = 0.70$

How confident are we in *estimates* of $P(y_i = 1 | x_i, \theta)$?

- Pixel 1: We are very confident there's a target
- Pixel 2: We are pretty sure there's no target
- Pixel 3: Our "best" estimate is 0.7, but who knows?



Bayesian Neural Network



Goal: estimate posterior distribution of θ , $p(\theta|y, x)$, so we can estimate $P(y_i = 1|x_i, \theta)$, with uncertainty

Operationalizing Decisions using Uncertainty

We can use **high confidence (HC) sets** to help make decisions about our target detection models' predictions

HC set contains all pixels such that:

- $P(P(y_i = 1|x_i, \theta), < L|y) > 1 - \alpha$ OR $P(P(y_i = 1|x_i, \theta), > U|y) > 1 - \alpha$
 - $(1 - \alpha)$ is the confidence you want in your prediction
 - L, U are your decision thresholds for not-target and target, respectively

Choosing α, L, U according to your application, we can:

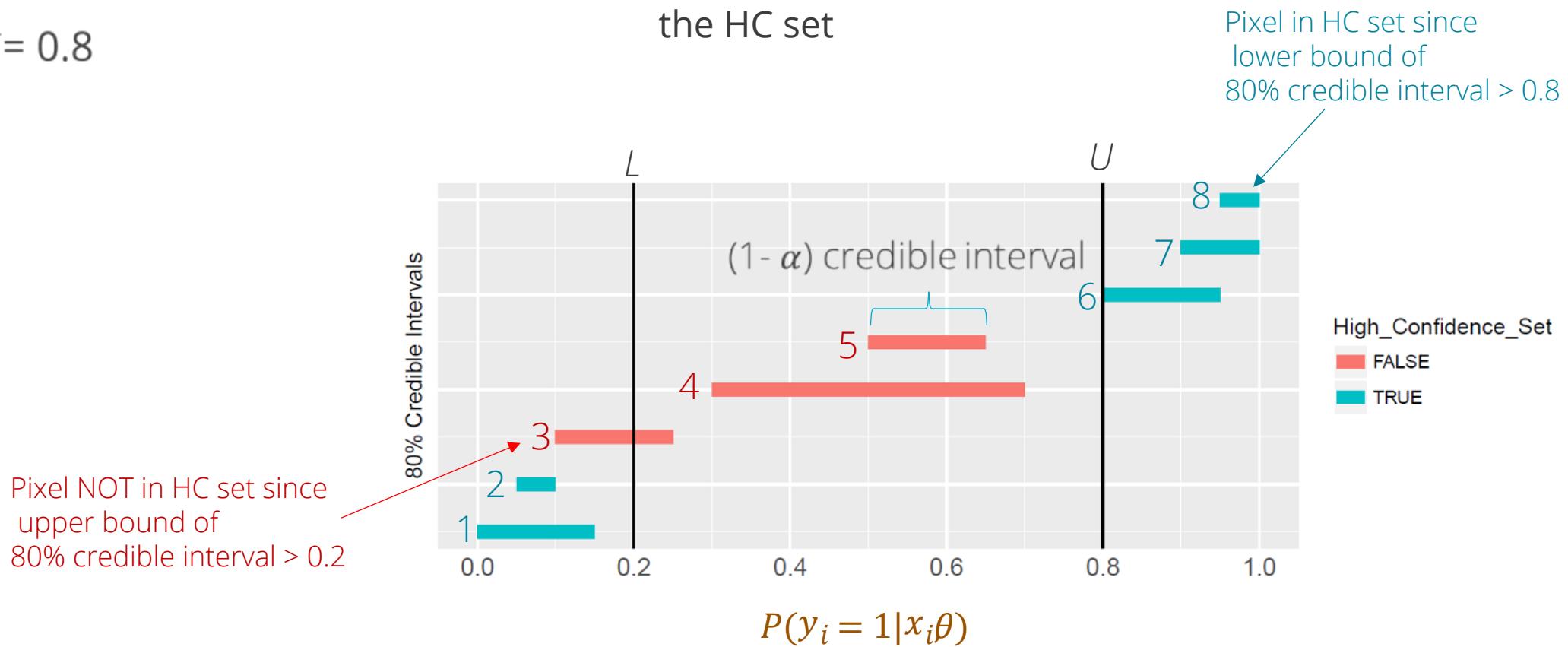
- Reduce false alarm rates
- Reduce burden on analysts
 - E.g. Automate predictions/decisions on HC pixels, send remaining to analysts for further review

HC Set Example

Example with:

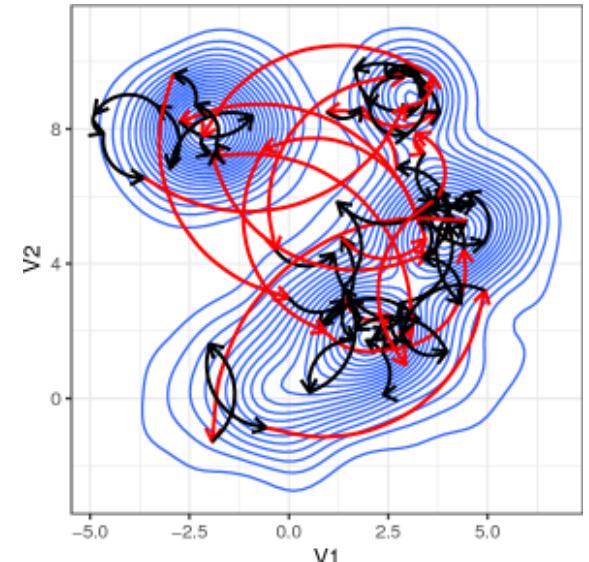
- $\alpha = 0.2$ (80% confidence)
- $L = 0.2$
- $U = 0.8$

- Locations 1,2,6,7,8 are in the HC set
- Locations 3,4,5 are not in the HC set

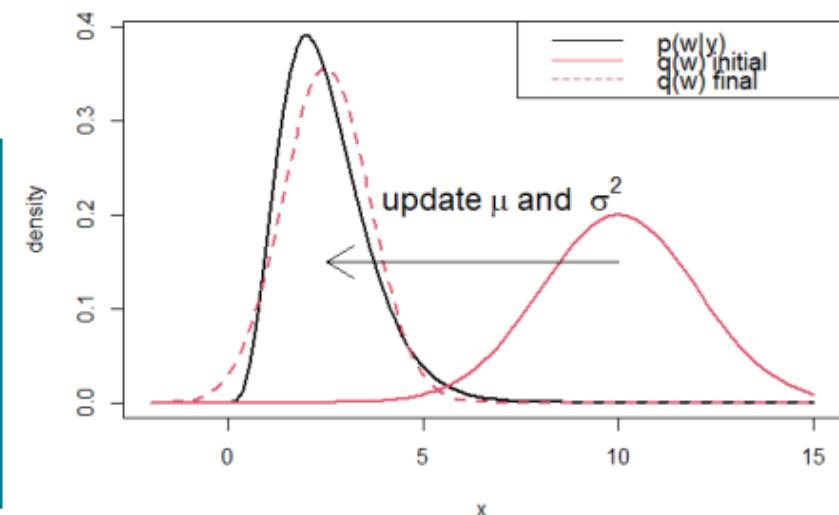


How do we train a BNN?

- Markov Chain Monte Carlo (MCMC)
 - Very accurate
 - Relatively slow
 - MCMC's approximation improves as the number of MC samples increases
- Variational Inference (VI)
 - Very fast
 - Mean-field assumption can affect accuracy of results
 - VI's approximation improves as the sample size n increases



VI Schematic



VI is constrained in its ability to approximate the posterior by data size and MCMC is constrained by computation time.

Megascene

Simulate **9** HSI scenes “Megascene” from DIRSIG

- **Three** MODTRAN-based atmospheres
 - Mid-latitude summer (MLS)
 - Sub-artic summer (SAS)
 - Tropical (TROP)
- **Three** times of day
 - 12:00
 - 14:30
 - 15:45

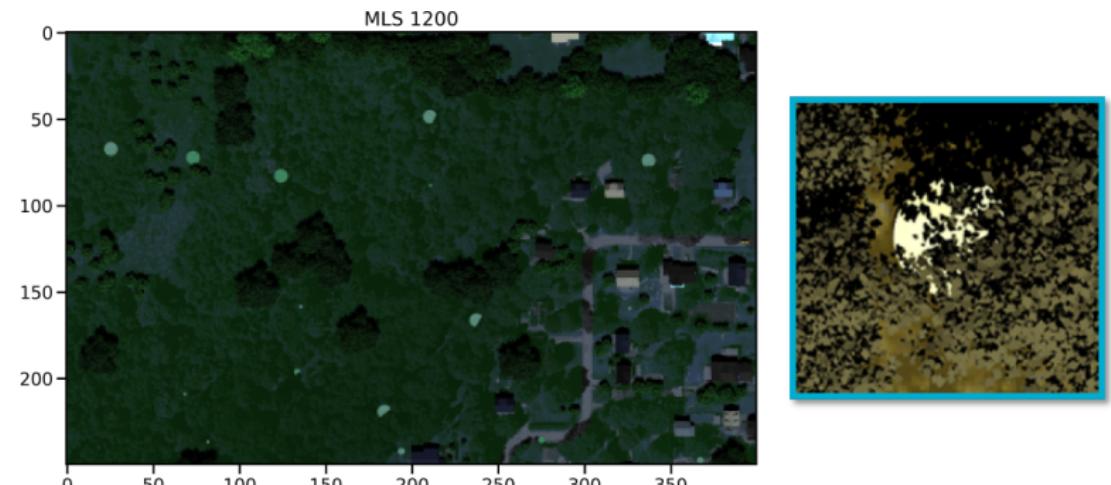
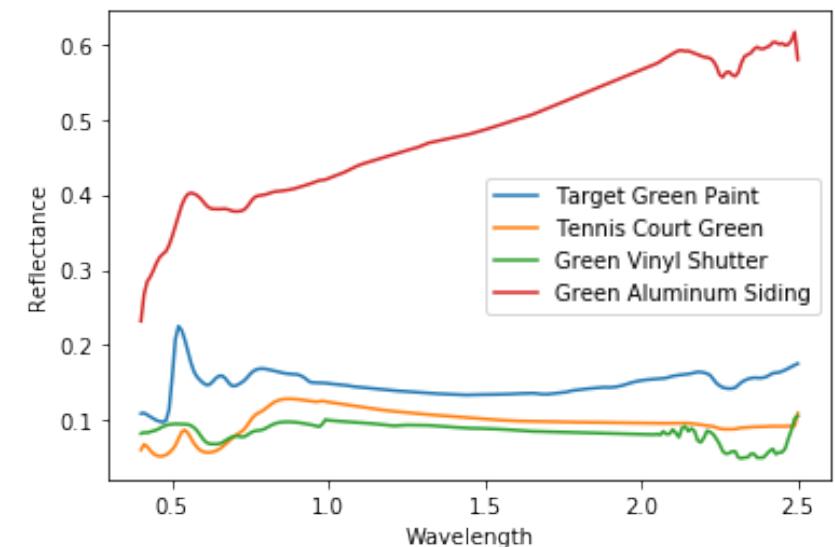
At every pixel, we have a full spectrum response across 211 spectral bands using AVIRIS-like sensor

- 0.4 to $2.5 \mu m$
- Elevation 4km
- Pixel size $1m^2$

Megascene Targets

We manually add targets (green paint) to the scene

- 125 green discs in each of the **9** scenes, in different locations for each scene
- Radii of discs ranges from **0.1** to **4m**
- Scene contains other green elements with similar spectral signatures

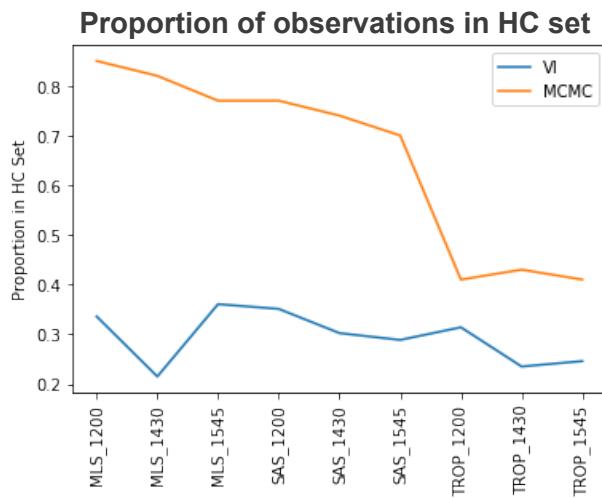
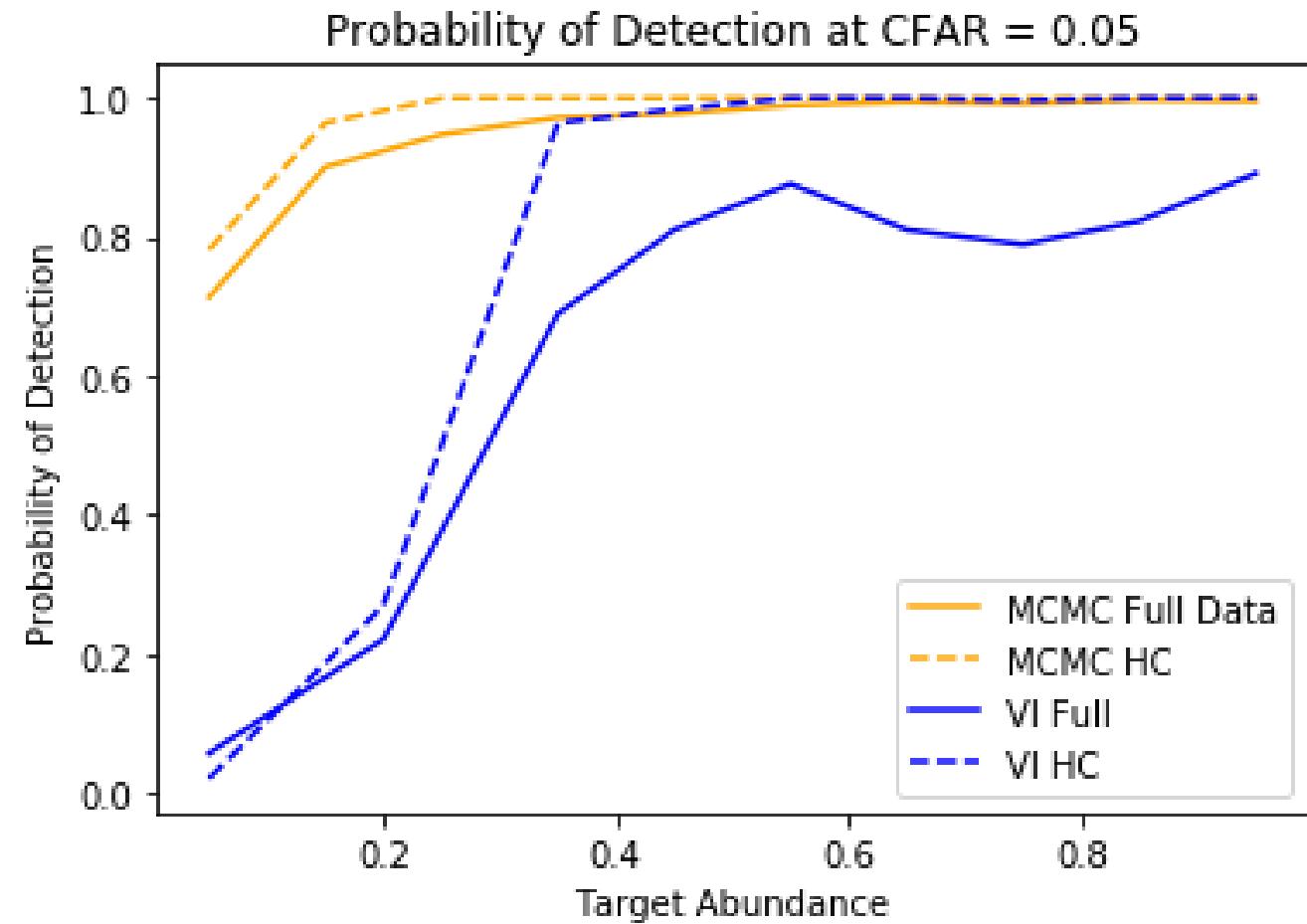


BNN Architecture Details

- 3 hidden layers
- 10 nodes per layer
- Sigmoid activation functions
- Priors on all model weights $\sim N(0,10)$
- Do fPCA on each spectrum, and use first 25 PCs as input features for that pixel

Comparison of MCMC vs VI and Full vs HC

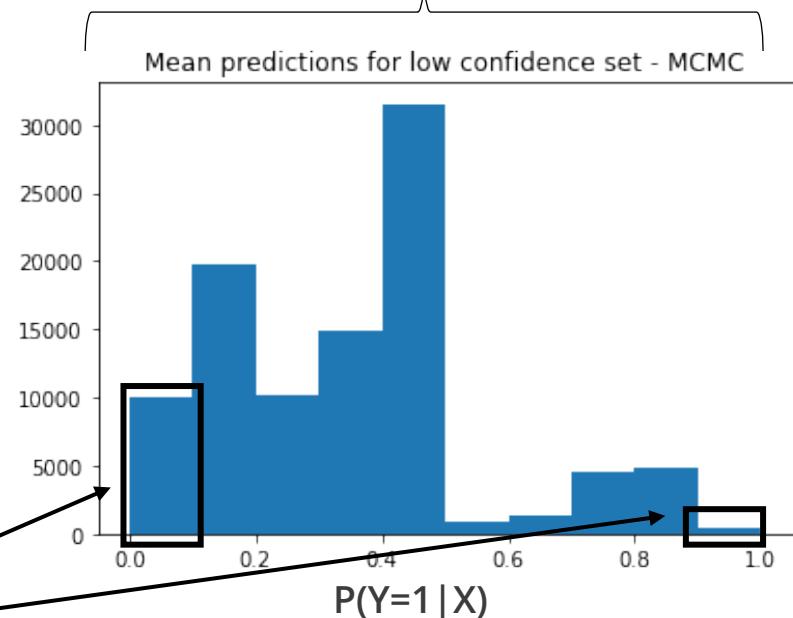
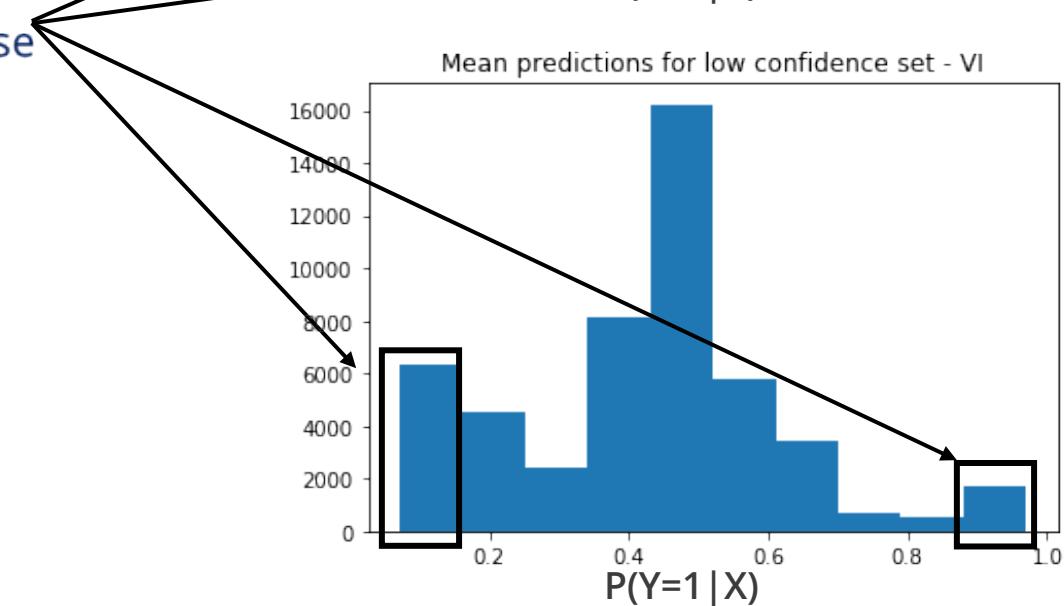
- MCMC vastly outperforms VI at low target abundance levels
 - Methods converge at ~35% target abundance for HC data
 - MCMC outperforms VI for full data at all target abundances



Doesn't $P(Y=1 | X)$ give my uncertainty?

- "If $P(y_i = 1 | x_i, \theta) = 0.95$, shouldn't I be 95% confident in my prediction?"
 - $P(y_i = 1 | x_i, \theta)$ is an *estimate* itself
- What if your estimate of 0.95 had a confidence interval of (0.05, 0.98)?
 - This isn't just a thought exercise
 - There were a significant number of pixels whose estimated $P(Y=1 | X)$ was close to 0 or 1, but whose CI width was >0.8 (a width of 1 is a CI of 0-1!)

Distribution of estimates with CI widths > 0.8



Conclusions

- Quantifying uncertainty in target detection has **significant** benefits
 - Create HC sets for quicker analyses
 - Reduce false alarms
- **Don't** treat an estimated probability ($P(y_i = 1|x_i, \theta)$) as your only *degree of confidence* for target/non-target
 - Particularly for high-consequence problems
- MCMC gave **better** results than VI
 - Although computationally faster, VI took a lot of work to train
 - Recommend caution with VI algorithms by non-Bayesian experts

Questions?

Thank you for listening!

dries@sandia.gov

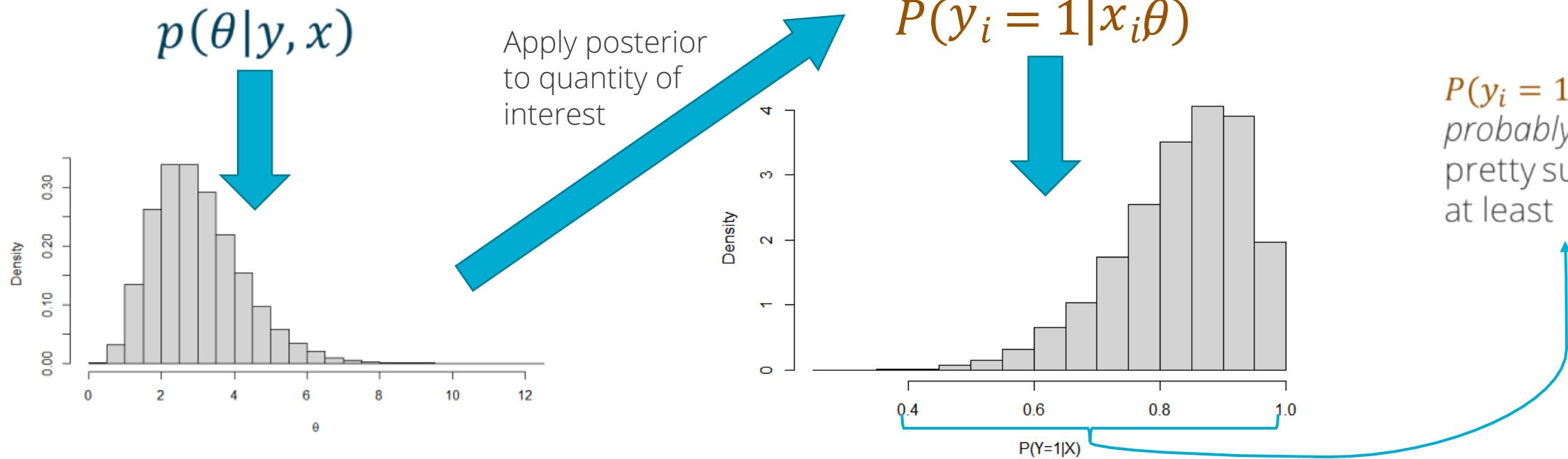
Backup Slides

Bayesian Uncertainty for Target Detection

For the HSI target detection problem, we are interested in:

$$P(\text{pixel } i \text{ contains target} | \text{spectral measurements}) \equiv P(y_i = 1 | x_i, \theta)$$

Uncertainty in this estimate can be captured by the **posterior distribution**, $p(\theta | y, x)$



Bayesian Neural Network

A Bayesian neural network (BNN) for target detection can be written mathematically by:

$$y_i|x_i, \theta \sim \text{Bernoulli}(\mu(x_i; \theta))$$

$$\mu(x_i; \theta) = f_{\theta_o} \left(f_{\theta_L} \left(f_{\theta_{L-1}} \left(\dots f_{\theta_1}(x_i) \dots \right) \right) \right)$$

$$\theta \sim D(\Psi)$$

y_i : binary indicator for whether pixel i contains target or not

x_i : spectral band (vector of length 211)

$\mu(x_i; \theta)$: $P(y_i = 1|x_i, \theta)$, or the probability that pixel i contains target

θ : model parameters/weights to be estimated ($\theta = (\theta_o, \theta_1, \theta_2, \dots, \theta_L)$)

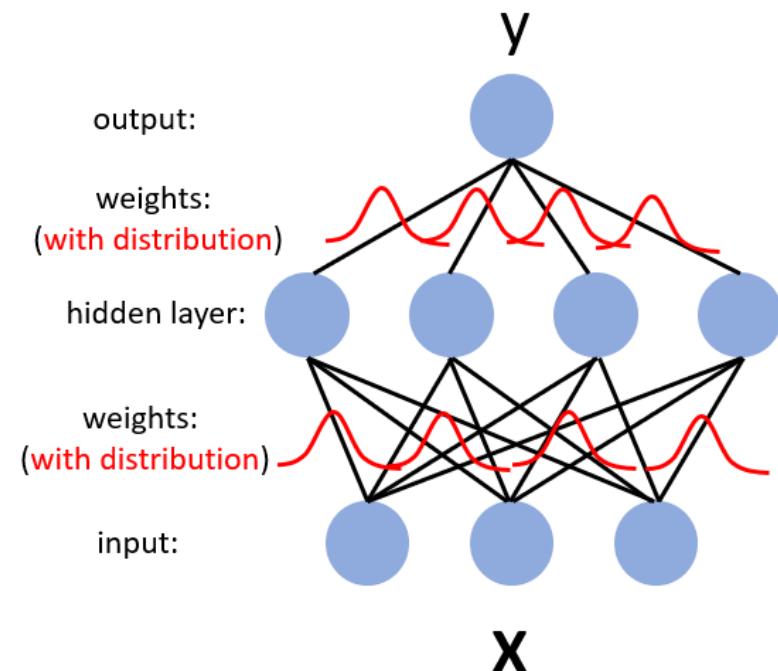
Ψ : hyperpriors (assumed to be known)

f_{θ_o} : output function with parameters θ_o

f_{θ_l} : nonlinear activation function with parameters $\theta_l, l = 1, \dots, L$

Goal: estimate posterior distribution of θ , $p(\theta|y, x)$, so we can estimate

$P(y_i = 1|x_i, \theta)$, with uncertainty



Training/Test Splits

In order to understand the generalizability of the models across atmospheres, time, and space:

- Train on left hand side of **only** MLS1200
- Test on right hand side of all **9** scenes

Train on pixels in shaded region

MLS 1200

Test on pixels in shaded region

MLS 1200

MLS 1430

MLS 1545

SAS 1200

SAS 1430

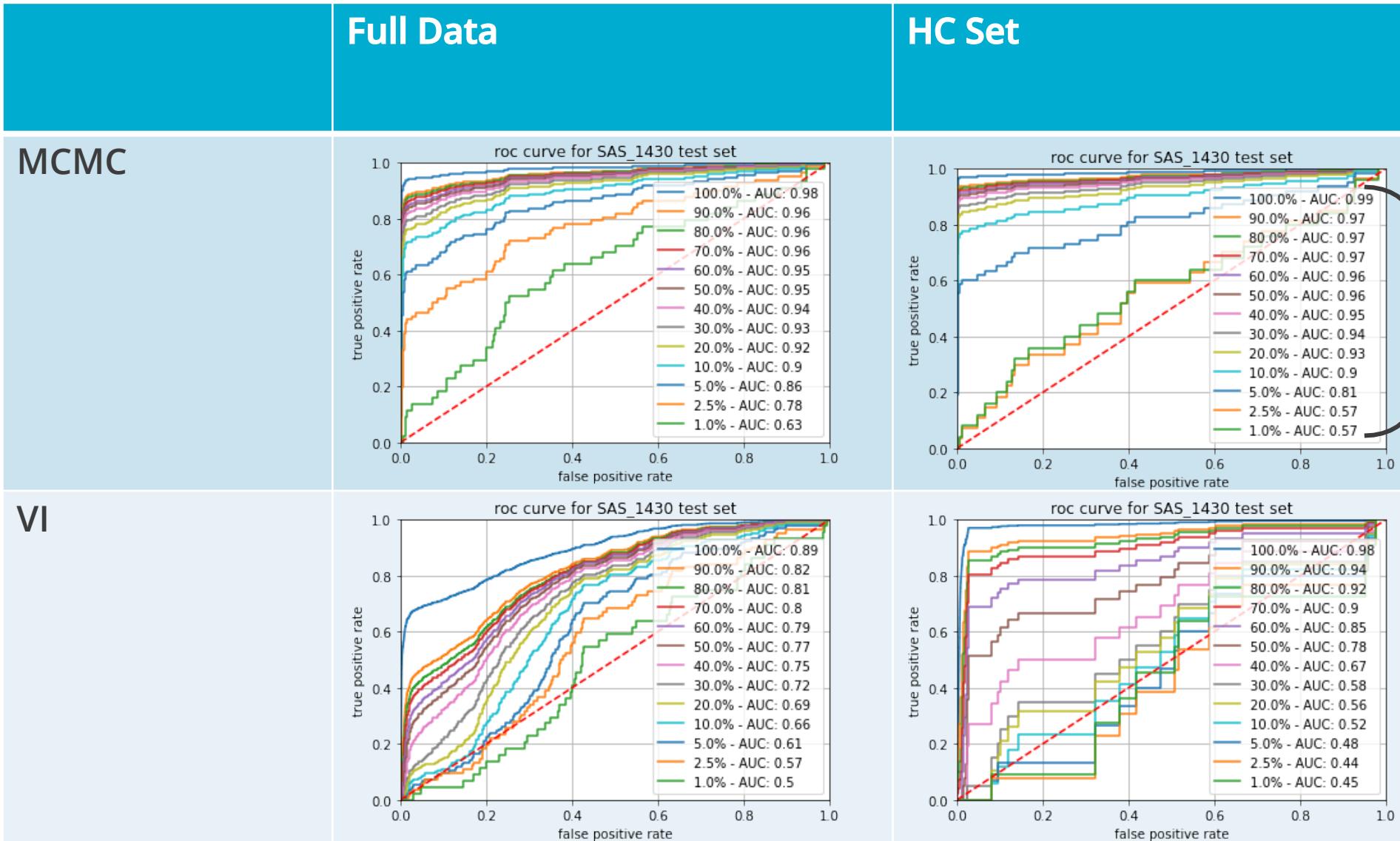
SAS 1545

TROP 1200

TROP 1430

TROP 1545

ROCs and AUCs



Each XX% line is ROC and AUC for pixels containing <XX% target abundance

E.g. 60% line is ROC for all pixels with <60% abundance