Thislpaperldescribesfobijectivejtechnicallresultslandlanalysis .JAnylsubiective views or opinions that might be expressed in SAND2022-2078C
h fitheU.S f

helpaperfdojnotlnecessarilyfrepresentfthejviewsjofftheju.S | of Energy or the United States Government.

Sandia
National
Laboratories

Exceptional service in the national interest

Target Detection on Hyperspectral
Images Using MCMC and VI Trained
Bayesian Neural Networks

Daniel Ries, Jason Adams, Joshua Zollweg

3/10/2022
|EEE Aerospace 2022

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and

Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S.

SandialNationalfLaboratoriesfislafmultimission laboratory managed and operated by National- Technologyi&-EngineeringrSolutions, of Sandia,,LLC,+a, whollyiowned, i _
International,Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. ation under contract DE-NA0003525.




/

v
Z

Deep learning (DL) has become popular tool for finding
trends in hyperspectral imagery (HSI)

Motivation

Traditional DL does not quantify uncertainty of
predictions
« Thisis problematic for high consequence problems

Without UQ With uQ

Bayesian neural networks (BNN) provides uncertainties *
for powerful DL predictions S
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Target Detection Example
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Do these pixels contain target? (y; = 1 means target)
« Pixel 1:P(y; = 1]x,,6) = 0.99

How confident are we in estimates of P(y; = 1|x;,6)?
Pixel 1: We are very confident there’s a target

. We are pretty sure there's no target
Qur “best” estimate is 0.7,
but who knows?

Ply=21x) Ply=3x)

Denaky

0a 05 10 15//20 25 30
| | | |
[y
0a0 08 10 5 20 25 30
L 1 1




/ Bayesian Neural Network

'/ Output model prediction ~~— Y

/ for pixel 1 P(y; = 11x1,0) oo
o weights:
(with distribution)
Posterior distribution hidden layer:
—<
p(@ly, x)
weights:
(with distribution)

input:

Input spectrum from pixel / - X

Goal: estimate posterior distribution of @, , SO We can

estimate , With uncertainty

"Image credit: A Batched Scalable Multi-Objective Bayesian Optimization Algorithm https://arxiv.org/pdf/1811.01323.pdf



P Operationalizing Decisions using Uncertainty

We can use high confidence (HC) sets to help make decisions about our target detection
models’ predictions

HC set contains all pixels such that:
* P(P(y; =1|x,0),<Lly)>1—a OR PPy;=1[x;,0),>Uly)>1—-«a

(1 — a) is the confidence you want in your prediction
L,U are your decision thresholds for not-target and target, respectively

Choosing «, L, U according to your application, we can:

« Reduce false alarm rates

» Reduce burden on analysts
« E.g. Automate predictions/decisions on HC pixels, send remaining to analysts for further review




P HC Set Example

Example with:
e Locations 1,2,6,7,8 are in

. —_ 0 I
a = 0.2 (80% confidence) the HC set
« L=0.2  Locations 3,4,5 are not in
the HC set Pixel in HC set since
- U=0.38 lower bound of

80% credible interval > 0.8

L v/

8 mm
o (1- a) credible interval L
c . 6 [—
E High_Confidence_Set
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5 W FALSE
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o
° 3 e——
o
Pixel NOT in HC set since %-
upper bound of 1 —
80% credible interval > 0.2 0.0 0.9 0.4 06 08 10

P(y;=1|x9)




P/ How do we train a BNN?
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* Markov Chain Monte Carlo (MCMC)

* Very accurate
* Relatively slow
«  MCMC’s approximation improves as the number of MC samples increases

« Variational Inference (VI)
*  Very fast

*  Mean-field assumption can affect accuracy of results
* VI's approximation improves as the sample size n increases

density

VIl is constrained in its ability to approximate the

posterior by data size and MCMC is constrained by
computation time.

Image credit: Adaptive MCMC for multimodal distributions. The Annals of Statistics. 2020.
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Megascene

4 Simulate 9 HSI scenes “Megascene” from DIRSIG

Three MODTRAN-based atmospheres
Mid-latitude summer (MLS)

Sub-artic summer (SAS)
Tropical (TROP)

Three times of day
12:00

14:30
15:45

At every pixel, we have a full spectrum response across 211
spectral bands using AVIRIS-like sensor

0.4t02.5um

Elevation 4km

Pixel size 1m?




P Megascene Targets

We manually add targets (green paint) to the
scene

125 green discs in each of the 9 scenes, in
different locations for each scene

Radii of discs ranges from 0.1 to 4m

Scene contains other green elements with
similar spectral signatures

Reflectance

MLS 1200

—— Target Green Paint
Tennis Court Green

—— Green Vinyl Shutter

= Green Aluminum Siding

05 10 15 20 25
Wavelength




P BNN Architecture Details

3 hidden layers
* 10 nodes per layer
« Sigmoid activation functions
* Priors on all model weights ~ N(0,10)
* Do fPCA on each spectrum, and use first 25 PCs as input features for that pixel




Comparison of MCMC vs VI and Full vs HC
Probability of Detection at CFAR = 0.05

« MCMC vastly outperforms VI at low 10 A [ —— R
target abundance levels L
«  Methods converge at ~35% target
abundance for HC data c 081
«  MCMC outperforms VI for full data E
at all target abundances T 06
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P Doesn’t P(Y=1|X) give my uncertainty?

“If P(y; = 1]x;,60) = 0.95, shouldn't| be 95% 20000
confidentin my predlct|0n7" 35000 -
P(y; = 1|x;,0) is an estimate itself 20000 -

15000 1

L

«  What if your estimate of 0.95 had a confidence
interval of (0.05,0.98)? 5000 §

Distribution of estimates with C|

widths > 0.8 |

This isn't just a thought exercise
There were a significant number of pixels whose
estimated P(Y=1|X) was close to 0 or 1, but whose
Cl width was >0.8 (a width of 1 is a Cl of 0-1!)

Mean predictions for low confidence set - MCMC

10000 1

06

P(Y=1|X)

Mean predictions for low confidence set - VI

0.4 .
P(Y=1|X)
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/d Conclusions

« Quantifying uncertainty in target detection has significant benefits
« Create HC sets for quicker analyses

Reduce false alarms

Don't treat an estimated probability (P(y; = 1|x;,0)) as your only degree of confidence for
target/non-target

« Particularly for high-consequence problems

+  MCMC gave better results than VI
« Although computationally faster, VI took a lot of work to train
« Recommend caution with VI algorithms by non-Bayesian experts
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Thank you for listening!
dries@sandia.gov
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P/ Bayesian Uncertainty for Target Detection

For the HSI target detection problem, we are interestedin:
P(pixel i contains target|spectral measurements) = P(y; = 1|x;,0)

Uncertainty in this estimate can be captured by the posterior distribution, P (9 Iy, x)

p(@ |3h x) Apply posterior P(yl =1 |xl’9)
o duentity ol - P(y; = 11x,0) is
| probably about0.8,
3 B © pretty sure it's >0.6
] [ | ] at least

Density
0.oo 0.10 020
1 2

| ]

?_4 06 0.8 ;_0

PY=1X) —
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/ Bayesian Neural Network

o

A Bayesian neural network (BNN) for target detection can be written mathematically by:

yilx;,8 ~ Bernoulli(u(x;; 8)) Y

u(x;;0) = f, (feL (f@L_l(---fts!1 (x;) ))) output:
8~D(W) weights:

(with distribution)

. . . . . . hidden layer:
y;. binary indicator for whether pixel i contains target or not ’

x;. spectral band (vector of length 211) weights:

(with distribution)

u(x;;0):P(y; = 1|x;,8), or the probability that pixel i contains target
6: model parameters/weights to be estimated (6 = (6,,6,,0-, ...,6.)

input:

W¥: hyperpriors (assumed to be known) X
fe, - output function with parameters 6,

fg,: nonlinear activation function with parameters 6;,,1 =1, ..., L
Goal: estimate posterior distribution of 6, , SO wWe can estimate

With uncertainty
"Image credit: A Batched Scalable Multi-Objective Bayesian Optimization Algorithm https://arxiv.org/pdf/1811.01323.pdf




/"~ Training/Test Splits

,/ Train on pixels in shaded region Test on pixels in shaded region
4 MLS 1200 MLS 1200 MLS 1430 MLS 1545

In order to understand the l l l

generalizability of the models across
SAS 1200  SAS1430  SAS 1545

atmospheres, time, and space:

 Train on left hand side of only
TROP 1200 TROP 1430 TROP 1545

MLS1200
o

« Testonright hand side of all 9
scenes




/ ROCs and AUCs
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roc curve for SAS 1430 test set

roc curve for SAS_ 1430 test set
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