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Abstract

Traditional deep learning (DL) models are power-
ful predictors in both regression and classification
problems, but many approaches do not provide un-
certainties for their predictions or estimates. Uncer-
tainty quantification (UQ) methods for DL models
have received increased attention in the literature
due to their usefulness in decision making, partic-
ularly for high-consequence decisions. However,
there has been little research done on how to eval-
uate the quality of such methods. We use statisti-
cal methods of Frequentist interval coverage and
interval width to evaluate the quality of credible
intervals, and expected calibration error to evaluate
classification predicted confidence. These metrics
are evaluated on Bayesian neural networks (BNN)
fit using Markov Chain Monte Carlo (MCMC) and
variational inference (VI), bootstrapped neural net-
works (NN), Deep Ensembles (DE), and Gaussian
Processes for comparison. Because a true proba-
bilistic data generating mechanism is needed for
this assessment, we create two simulated data sets
with full probability distributions, one regression
and one classification. None of the methods appear
to be uniformly best, but they do suggest ordering
within like methods. BNN-MCMC performs bet-
ter than BNN-VI and bootstrap NN perform better
than DE. The main contribution of this paper is a
direct comparison of UQ quality for DL models.
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1 INTRODUCTION

Traditional deep learning (DL) models are powerful predic-
tors in both regression and classification problems (LeCun
et al. [2015]), but many do not provide uncertainties for
their predictions or estimates. By uncertainty, we refer to
both aleatoric and epistemic uncertainty. The usefulness of
uncertainty quantification (UQ) in deep learning (DL) mod-
els is being recognized, especially for applications that are
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high-consequence, including nuclear stockpile stewardship
and safety (Trucano [2004], Stracuzzi et al. [2018]), nuclear
energy (Stevens et al. [2016]), national security problems
(Ries et al. [2022], Gray et al. [2022]), and medical di-
agnoses (Begoli et al. [2019], Kompa et al. [2021b]). For
example, Kompa et al. [2021b] explains the benefit of using
UQ in medical decision making, including models that can
report “I don’t know” to ensure human experts will further
evaluate results.

This increased demand for UQ has led to the development of
several methods of providing UQ for DL models including
Bayesian neural networks (BNN) (Neal [1996]), ensemble
methods (Lakshminarayanan et al. [2017b]), Dirichlet-based
(Malinin and Gales [2018]), and dropout (Gal and Ghahra-
mani [2016]). Kabir et al. [2018] and Moloud et al. [2021]
give reviews of UQ methods in DL.

Although this broadening of UQ in DL methods is encour-
aging, there is a lack of understanding for how well some
of these approaches measure the uncertainty they are set
out to quantify. Unlike evaluating a DL model’s predictive
performance using metrics like mean squared error (MSE)
or accuracy, a commonly accepted UQ quality metric does
not exist. A desired metric verifies the uncertainty existing
(aleatoric and epistemic) is equal to the uncertainty mea-
sured. Because of the large scope of UQ methods for DL,
this paper focuses on the popular Bayesian and ensemble
approaches. This focus of uncertainty is in a probability
framework, so credible intervals (CIs), and predictions of
confidence for classification, provide the UQ. The main con-
tribution of this paper is a direct comparison of UQ quality
for DL models.

This paper is organized as follows: the remainder of Section
1 reviews previous work in the field. Section 2 introduces
UQ from the Bayesian perspective in both regression and
classification problems. Section 3 introduces interval cov-
erage, interval width and ECE, the UQ metrics used in this
paper to assess UQ quality. Section 4 applies the metrics
in Section 3 on DL models to two simulated data sets, one
regression and one classification. Finally, Sections 5 and
6 discuss the results and provide conclusions and future
research directions, respectively.

1.1 REVIEW OF ASSESSING QUALITY OF UQ IN
DL

There has been some previous work assessing the quality
of UQ using these metrics. Kabir et al. [2018] reviews the
ideas of Frequentist coverage and interval width as tools for
UQ evaluation and cites several examples. Yao et al. [2019]
evaluates the predictive uncertainty for several BNN train-
ing methods and ensembles. The authors found ensembles
do not provide the UQ that users believe it provides, and
emphasize calibration metrics are not good indicators of pos-

terior approximation. The authors concluded a new metric
for assessing predictive uncertainty is needed. Ovadia et al.
[2019] gives a large-scale benchmark of current UQ for DL
methods using metrics such as negative log likelihood, Brier
score, and expected calibration error (ECE). The authors
find many methods have trouble in out of distribution (OOD)
situations or with dataset shift. Ståhl et al. [2020] evalu-
ated several UQ for DL methods, including BNN and Deep
Ensembles (DE) and found they captured the uncertainty
differently and correlations between the methods’ quantifi-
cations were low. Kopetzki et al. [2021] evaluates the UQ
from Dirichlet based models and finds these models’ UQ
has trouble with OOD data and dataset shift. Kompa et al.
[2021a] checked empirical Frequentist coverage and interval
widths for several DL methods. The authors found dropout
and ensembling to have low interval coverages and high
variability in results on a regression example. In compari-
son, BNN and Gaussian Process (GP) provided the expected
coverages and low variability in the results. For classifica-
tion, all methods gave adequate coverages for independent
and identically distributed (i.i.d.) data, but methods gener-
ally performed poorly in terms of coverage when dataset
shift was added. Wenzel et al. [2020] explore the effect of
temperature scaling, known as weighted likelihood in sta-
tistical literature, on the quality of the estimated posterior
distribution. Naeini et al. [2015] developed the Expected
Calibration Error (ECE) metric for classification models
which assesses the agreement of predicted confidences and
model accuracy.

1.2 REVIEW OF BAYESIAN AND
ENSEMBLE-BASED UNCERTAINTY
QUANTIFICATION

Bayesian neural networks were first popularized by David
MacKay (MacKay [1992, 1995]) and his student Radford
Neal (Neal [1996]). Neal’s dissertation introduced Hamilto-
nian Monte Carlo (HMC) as a way to sample the posterior
distribution of a BNN, providing a practical way of train-
ing. To this day, HMC is considered the gold standard for
BNN training due to its theoretical backing and lack of
approximations.

Variational inference is the most popular method of
Bayesian inference for neural networks (NN) (Graves
[2011]). Blei et al. [2017] gives an extensive review of VI
methods. Blundell et al. [2015] introduced Bayes by Back-
prop which is a practical stochastic VI algorithm to train
a BNN. A common criticism of standard implementations
of VI is the mean-field assumption, or assuming posterior
independence of all parameters, although alternative exist
(Louizos and Welling [2016], Zhang et al. [2018]).

The bootstrap is a simulation-based method that treats the
training data as the population and samples with replace-
ment new data sets from the original training set. Uncer-



tainty is measured by creating a large number of these new
data sets and then using the distribution of estimates or pre-
dictions to quantify uncertainty (Gray et al. [2022]). Deep
Ensembles (Lakshminarayanan et al. [2017a]) follow a sim-
ilar idea to the bootstrap except no resampling is done; the
only difference for each model in the ensemble is the set of
starting values for the model optimizer.

1.3 EPISTEMIC AND ALEATORIC
UNCERTAINTY

Uncertainty can be separated into aleatoric and epsistemic
components. A comprehensive introduction to the two types
of uncertainties in the context of machine learning is given
by Hüllemeier and Waegeman [2021]. In brief, aleatoric
uncertainty is the variability due to randomness or noise
in the process or measurement. This type of uncertainty is
always present and can only be reduced by an improvement
in the process of measurement, not by increasing the sample
size. Epistemic uncertainty is the uncertainty resulting from
imperfect knowledge of the model. Examples of this include
uncertainty during model selection and parameter uncer-
tainty during training. Increasing sample sizes will help
reduce epistemic uncertainty by either further understand-
ing the mechanism and creating better model architectures,
estimating model parameters more precisely, or both.

2 BAYESIAN APPROACH TO
UNCERTAINTY

2.1 BAYESIAN PROBABILITY

The Bayesian interpretation of probability relies on the de-
gree of belief of an event rather the traditional relative fre-
quency of the event. This allows Bayesian models to be
used and easily interpreted in a wider variety of problems,
especially rare event problems. The relative ease of the inter-
pretation is also beneficial to non-experts who do not need
specialized training to understand the output of Bayesian
models. The degrees of belief are initialized through a prior
distribution, and these beliefs are updated by observing new
data, resulting in a posterior distribution, containing infor-
mation on beliefs after taking into account new data.

Let D = {(xi, yi)}ni=1, be a training data set where y =
(y1, ...yn)

′ and X = (x1, ...,xn)
′. Let yi ∈ R for regression

or yi ∈ N for classification and xi ∈ Rp be a p-dimensional
vector of features corresponding to response yi. For sim-
plicity, we assume each element of xi is a scalar, although
in general this need not hold. For example, some features
can be scalars and some could be more rich information,
e.g., functions or surfaces. The posterior distribution for the
model parameters θ, given data D is:

p(θ|D) = p(y|X, θ)p(θ)
p(y)

, (1)

where p(θ) represents the prior beliefs of θ, p(y|X, θ) rep-
resents the new data available, and p(y) is the marginal
likelihood, or normalizing constant. Equation 1 shows the
mechanism behind updating degrees of belief. The posterior
distribution, p(θ|D) contains all the information necessary
to make inference and predict, including UQ.

For classification BNNs, the uncertainty of interest is on the
estimation of the class probabilities, π∗c = P (y∗ = c|x∗, θ),
where y∗ and x∗ denotes new data. The estimated probabil-
ity, π̂∗, is typically modeled as some parameterized function
gθ(x

∗) (e.g. gθ(x∗) could represent a DL model). Therefore
uncertainty of π̂∗ can be obtained in the form of (1−α)% CI
for gθ(x∗), denoted by Bgθ(x∗)(α). In this paper we do not
distinguish between credible and prediction intervals. These
intervals can be constructed in several different ways, the
simplest being by computing α/2th and (1− α/2)th quan-
tiles of the posterior distribution p(gθ(x∗)|D). The aleatoric
uncertainty comes through the predicted probability itself,
π̂∗ = gθ̂(x

∗), meaning it must be calibrated for accurate
assessment.

In regression problems, predictions are on the response
space and often need to consider epistemic and aleatoric
uncertainties. To do this, the posterior predictive distribution
is needed:

p(y∗|D,x∗) =
∫
p(θ|D)p(y∗|x∗, θ)dθ, (2)

The posterior predictive distribution represents the degree
of belief for future observations, given what we have have
already seen. Practically, the right side of Equation (2) is
marginalizing the data model p(y∗|x∗, θ) over the updated
posterior distribution p(θ|D), representing the degree of be-
lief for the model parameters. Uncertainty for a future value
y∗ can then be obtained in the form of (1− α) CI, denoted
by By(α) and computed in a similar way as Bgθ(x∗)(α).

2.2 BNN FOR REGRESSION

Letting yi ∈ R, a fully connected, L-layer feed-forward
regression BNN can be represented in statistical notation
by:

yi|xi,θ, σ2 iid∼ N(µ(xi;θ), σ
2) (3)

µ(xi;θ) = fθo(fθL(· · · fθ1(xi))) (4)
θ ∼ F(a, b) (5)

σ2 ∼ F(c, d), (6)



where fθo(·) is the output function with parameters θo, and
fθ`(·) is a nonlinear activation depending on parameters,
θ`, for ` = 1, 2, . . . , L. The model’s parameters are the NN
weights θ = (θo, {θ}L`=1) and the data noise, σ2, which in
a Bayesian framework require prior distributions specified
by the generic distribution F with specified hyperparame-
ters a, b, c, d. The distributions do not need to be from the
same family. The mean function for observation i, which is
often used for point prediction, is represented by µ(xi;θ),
showing its dependence only on the features for observa-
tion i and the NN weights, θ. Aleatoric uncertainty is mea-
sured through σ2 and epistemic uncertainty is measured in
part through the posterior distribution of model parameters,
p(Θ|D), where Θ = (θ, σ2). A CI for a new observation
y∗ is created from computing the posterior predictive distri-
bution of y∗, as in Equation (2).

2.3 BNN FOR CLASSIFICATION

Let yi ∈ {0, 1}, be a binary response. Note this is for sim-
plicity, the model is easily extended to K classes.

yi|xi,θ
iid∼ Bernoulli(π(xi;θ)) (7)

π(xi;θ) = fθo(fθL(· · · fθ1(xi))) (8)
θ ∼ F(a, b), (9)

where all the terms mean the same as in the regression case,
except the output activation function fθo : R → (0, 1).
Point predictions of probability that observation i is class
1 are given by π(xi;θ). Because the data space is {0, 1},
CIs on the data space do not have practical use (the only
possible intervals are [0,0], [0,1], and [1,1]), so intervals
can instead be constructed and interpreted on the probability
space of the output activation. The full posterior distribution
is p(Θ|D) = p(θ|D) since there is no σ2 term. A CI for
a new observation y∗ is created from the function of the
posterior, π(x∗;θ), given by p(π(x∗;θ)|D,x∗).

2.4 TRAINING METHODS FOR BNN

Two popular approaches to training BNN, and Bayesian
models in general, are MCMC and VI. A review of MCMC
methods is given by Gelman et al. [2013] and of VI methods
by Blei et al. [2017]. Generic overviews of VI and MCMC
algorithms are given in the supplemental material.

Put simply, VI is an approximation to the posterior distribu-
tion p(θ|D) using optimization that improves as the sample
size increases, compared to MCMC which is an approxima-
tion to p(θ|D) using sampling that improves as the number
of Monte Carlo samples increases. Therefore, VI is con-
strained in its ability to approximation p(θ|D) by data, and
MCMC is constrained by computation time.

3 UNCERTAINTY QUANTIFICATION
QUALITY METRICS

3.1 FREQUENTIST INTERVAL COVERAGE

Credible intervals are contain a set of plausible predictions
(for regression) or estimates (for classification), where plau-
sible is defined by the nominal rate of the interval itself, typ-
ically denoted as (1− α)%. A (1− α)% CI for an estimate
should contain the true population parameter about (1−α)%
of the time if the experiment was redone. A (1−α)% CI for
a prediction should contain the true value of the observation
with (1 − α)% probability. Frequentist coverage (cover-
age from hereon) is the actual rate at which the population
parameter is contained in the interval or true value of the
observation is contained in the interval, averaged over all
observations.

CI Coverage (Regression) =
1

n

n∑
i=1

I
(
yi ∈ Byi(α)

)
(10)

CI Coverage (Classification) =
1

n

n∑
i=1

I
(
ηi ∈ Bηi(α)

)
(11)

This empirical value should be as close as possible to the
nominal rate of (1− α)%. Going under or over this value
is an indication of poor UQ quality, e.g. a 90% CI with
70% coverage indicates the interval is overly optimistic and
not accounting for enough uncertainty, conversely a 90%
interval with 99% coverage is overly conservative. Note that
Equations (10)-(11) require knowing the true value of an
observation or model parameter.

3.2 INTERVAL WIDTH

Intervals contain values that are plausible estimates or pre-
dictions for a quantity of interest, therefore it would make
sense that there is less variability in the data generating
mechanism if the interval is smaller. However, it is not quite
this simple. The highest UQ quality is given to models that
minimize interval width and match coverage with nominal
rate. The width of intervals is given in equation by

Interval Width =
1

n

n∑
i=1

(Byi(α)UB − Byi(α)LB). (12)

The lower bound and upper bound of the (1− α)% interval
for y are given by By(α)LB and By(α)UB , respectively.
The equation for a classification CI width is the same except
replacing observation y for model parameter η.



3.3 EXPECTED CALIBRATION ERROR

Naeini et al. [2015] proposed ECE as a metric to check
whether a machine learning classifier’s confidence scores
are calibrated to true probabilities of correctness. Here
we use the broader term predicted confidence defined as
π̂i ≡ π(xi, θ̂) ∈ [0, 1]. However, we make no claim that all
models are expected to estimate the true probability.

Consider a binary decision rule, τ(·), that generates pre-
dictions τ(π̂i) = ŷi ∈ {0, 1}. Provided a set of true and
predicted responses, the accuracy is computed as:

acc(y, ŷ) =
1

n

n∑
i=1

I(ŷi = yi). (13)

The average confidence of the set is

conf(π̂) =
1

n

n∑
i=1

π̂i. (14)

ECE discretizes the interval [0, 1] under equally spaced
bins and assigns each predicted confidence to the bin that
encompasses it. The calibration error of a bin is the differ-
ence between the accuracy and average confidence of the
samples assigned to that bin. In other words, calibration
error treats predicted confidences as estimated probabilities
and measures the disagreement between estimated and true
probability of correctness. ECE is a weighted average across
all bins:

ECE(y, π̂) =

B∑
b=1

nb
n

∣∣∣acc(yb, τ(π̂b))− conf(π̂b)∣∣∣.
(15)

where B is the number of bins, (yb, π̂b) is the subset of
(y, π̂) in the bth bin, and nb is the number of predictions in
bin b, i.e. the rank of π̂b.

From a UQ view, this metric assesses the quality of aleatoric
uncertainty given by a classification model since the vari-
ance of multinomial distributions are determined by class
probabilities. Interval coverage and width in regression
problems provide an assessment jointly of epistemic and
aleatoric uncertainty, while in classification they provide an
assessment of only epistemic uncertainty.

4 SIMULATION STUDIES

In this section we evaluate UQ metrics of Section 3 on a
simulated regression problem and two class classification
(TCC) problem to compare different UQ in DL methods,
including BNN trained via MCMC, BNN trained via VI,
bootstrapped NN, DE, GP, and in the regression case, an

oracle model that knows the true functional form. By having
the true underlying data generating mechanism, we are able
to assess the quality of the UQ given by these models.

4.1 SIMPLE 1-D REGRESSION

For the regression problem, data is simulated from the fol-
lowing non-linear function:

f(x) = .5x− 8x2 − x3 + 2x4 + ε

ε ∼ N(0, 1).
(16)

Figure 1 shows an example of the training and testing data.
We opted to create a block testing set in order to understand
small and large interpolation behavior. This provides a way
to evaluate how a model provides uncertainties in data rich
and data poor environments.

Figure 1: One simulated dataset with mean function overlaid,
training/testing split shown.

The BNNs (MCMC and VI), bootstrap NN, and DE
had architectures with one hidden layer and each of
(2, 5, 10, 20, 40) nodes, to compare UQ across different
model complexities. The MCMC model was fit using
numpyro, and the VI model was fit using pyro, however,
we could not get the model to properly converge for 40
nodes. The two ensemble methods, bootstrap NN and DE,
were both fit in pytorch with 100 ensembles each. The GP
was fit using Stan with an exponential covariance function
with half-Normal(0,1) priors on the nugget and partial sill,
and an InverseGamma(1,1) on the partial range. For com-
parison, an oracle model which knows the true model form
from Equation (16) is also fit using ordinary least squares.

We evaluate mean interval coverage and mean interval width
for small interpolation (training data) and large interpolation
(testing data) over 100 simulated data sets. Figures 2 and 3
show coverages on the testing and training sets, respectively.
Figures 4 and 5 show the widths for testing and training data,
respectively. We include metrics on the training data in order
to compare in-sample vs out-of-sample UQ performance
directly. Note the oracle and GP results are constant with
respect to nodes.



The oracle model has coverages right at the nominal level
for both testing and training as expected. Additionally, its
interval widths are the narrowest, except compared to DE
and bootstrap NN, whose intervals vastly undercover the
nominal level. The orcale model sees few changes between
training and testing sets, due to a known model form. The
bootstrap NN and DE do not accurately capture the uncer-
tainty with their CI as evidenced by their extremely low
coverage. As expected, the bootstrap NN does have slightly
wider intervals than the DE. The GP and BNN-MCMC both
tend to over cover for the training data and for testing data,
when the BNN has at least 10 nodes. Both the BNN-MCMC
and GP have interval widths similar to the oracle for the
training data. Their widths increase dramatically on the test
data, with the BNN-MCMC’s widths very high beyond a
10-node model. This shows how a BNN’s UQ in regions
without data will be affected by increasing its flexibility.

Plots of MSE for training and test is provided in the supple-
mental material. Overall, the oracle, GP, and BNN-MCMC
are similar and the best in terms of predictive performance.
Figures with model estimates and UQ for a single simulated
data set are also included in the supplemental material.

Figure 2: Mean Frequentist coverage of 90% credible inter-
vals on test set of regression simulation.

Figure 3: Mean Frequentist coverage of 90% credible inter-
vals on train set of regression simulation.

Figure 4: Mean width of 90% credible intervals on test set
of regression simulation. Limits of y-axis are bounded for
easier comparisons. BNN-MCMC width at 40 nodes is 27.4.

Figure 5: Mean width of 90% credible intervals on train set
of regression simulation.

4.2 TWO CLASS CLASSIFICATION

The TCC dataset is a fully parameterized generative model
with a joint probability that allows direct evaluation of CI
coverage. A full probability distribution is needed in clas-
sification problems to check CI coverage. The underlying
model is a 2-D Gaussian Mixture Model (GMM) with two
equally proportioned clusters that undergo a series of trans-
formations and scalings. The result is a data model that can
easily generate a large variety of data classification scenarios
that arise in quantifying UQ. Figure 6 shows one simulated
TCC data set and densities. For more details about how this
data was simulated, see the supplemental material.

The architecture for the DL models was a three layer fully
connected NN. To further check how the number of nodes
per layer affects model UQ, we fit each model type with each
of (2,5,10,20,40) nodes per layer. The MCMC-BNN was
fit using numpyro, the DE and bootstrap NN used pytorch,
and the BNN-VI and GP used Stan. We attempted to train
the BNN-VI using pyro, but were unable to get acceptable
convergence.

Figures 7 shows mean coverages for 90% CIs. The BNN-



Figure 6: TCC transformed space with 10% contours for
P (Y = y|x1, x2).

MCMC is right at the nominal value for nodes per layer
greater than two, and the bootstrap NN has nominal cov-
erage for 5 nodes, but then decreases as nodes increase.
Both DE and BNN-VI undercover significantly. The GP’s
coverage is about 0.75.

Figure 8 shows the interval width as a function of number
of nodes. BNN-MCMC’s widths increase as the nodes per
layer increase, to a point where the CI would not be practi-
cally useful. Conversely, the bootstrap NN’s widths aren’t
majorly affected by the model complexity. DE’s width are
also not affected by model complexity, but its coverages are
too low. The width of BNN-VI increases dramatically as
model complexity grows. The GP’s widths are wider than
the bootstrap, but typically narrower than the BNN-MCMC.

Figure 9 shows the ECE as a function of nodes. The boot-
strap has the best overall ECE at five nodes per layer, which
is also where its coverage reached the nominal level. BNN-
MCMC, DE, and GP have similar ECE, and the bootstrap
NN’s ECE tracks with them at higher model complexity.
BNN-VI again sees much worse results compared to other
models. Figures with model estimates and UQ for a single
simulated data set are also included in the supplemental
material. These plots clearly differentiate the DL models
which find a decision boundary compared to the GP which
models the underlying class distributions.

5 DISCUSSION

There are several results from the simulations that are worth
further discussion. First, DE failed to provide useful UQ
in either simulated example. As already argued, this is not
surprising since DE creates an ensemble by simply using
different starting values for each model in the ensemble.
Practically this means the uncertainty the ensemble is cap-
turing is the optimization uncertainty. Although this may
be of interest in some scenarios, we do not believe this is
the case for most users. However, DE is a simple way to
understand the complexity of the training procedure. In Lak-

Figure 7: Coverage on TCC.

Figure 8: Interval width on TCC.

shminarayanan et al. [2017a], the authors even mention, for
problems with large sample sizes, the fact that DE doesn’t
resample with replacement like a bootstrap, did not make a
difference. However, in cases where we are not data-rich, as
in many high-consequence national security problems, we
do not have the luxury of an abundance of data. Therefore,
for high-consequence problems, we recommend to proceed
with caution when using DE, and urge users to understand
theoretically which types of uncertainty DE will measure,
and which it will not.

Simply resampling data with replacement (bootstrap) for
each model in the ensemble gives a theoretically plausible
solution to the simplicity of DE. Surprisingly, the boot-
strapped NN did not perform as expected on the regression
problem, even though it did give slightly higher uncertainty
than DE. On the classification problem, it performed as
expected providing adequate coverage, reasonable interval
widths, and the best ECE, comparable with BNN-MCMC.

Bayesian neural networks fit using MCMC significantly
outperformed BNN fit using VI. Although MCMC is the
gold standard for Bayesian estimation, we hoped VI would
have given better results given the theoretical guarantees
it has. We do note that BNN fit with VI is still a difficult
process, and we believe it is possible better results could be
obtained using different software or VI algorithms. But in



Figure 9: Expected calibration error on TCC.

light of this, we recommend caution for non-experts using
BNN fit via VI. VI provides a significant speedup that should
not be ignored, therefore future work should continue to
develop VI algorithms and continue to make them more user-
friendly. More research and applications of BNN fit using
VI will help understanding of how to diagnose common
training issues.

There are ample opportunities for future work in the assess-
ment of the quality of UQ for DL models. New metrics
should be created that assess the quality of UQ given by
DL models, preferably ones that are more well suited to the
DL framework. Although the traditional statistical metrics
used in this paper are adequate, there are certainly better
ways. And we argue for metrics beyond simply combin-
ing the two, such as with the coverage width criterion of
Khosravi et al. [2011] or evaluating coverages and a large
number of nominal rates such as with the continuous ranked
probability score from Zamo and Naveau [2018]. We rec-
ognize these metrics are useful in evaluation too, but they
still require knowing the underlying true probability distri-
bution, which for classification problems is only possible
with simulated data. New metrics will be able to be used in
regression and classification on real data to compare which
UQ method to use for that specific data set, much like model
selection is currently done (where it only considers predic-
tive performance of point estimates). Furthermore, more
general methods that can compare models across paradigms,
such as comparing the UQ models considered in this paper
to Dirichlet-based models. A metric analogue to the AIC,
which allows simple comparison of model fits, is desired to
measure the quality of UQ.

6 CONCLUSION

Uncertainty quantification of DL models is an active area
of research since researchers and users of DL models have
realized point predictions are not always enough, especially
in high consequence problems. Many different approaches
to UQ for DL models have been proposed, some of which

have a probabilistic interpretation. However, there has been
little research into the quality of those UQ methods. This pa-
per explores the quality of UQ given by several probabilistic
UQ models, including BNN, DE, and bootstrapped NN, us-
ing traditional statistical metrics of frequentist coverage and
CI width, as well as ECE for classification problems. Two
simulated data sets, one regression and one classification,
for which complete knowledge of the data generating mech-
anism was known, were used to quantitatively assess the
UQ qualities. Although there was not a clear winner, BNN
trained via MCMC tended to give the best overall results,
but this is not without caveats. However, this paper only ex-
plores two specific cases and therefore more research is this
area is needed, and better UQ metrics need to be developed
to definitively compare UQ in DL methods.
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Świątkowski, Linh Tran, Stephan Mandt, Jasper Snoek,
Tim Salimans, Rodolphe Jenatton, and Sebastian
Nowozin. How good is the bayes posterior in deep neu-
ral networks really? Proceedings of the International
Conference on Machine Learning, 2020.

Jiayu Yao, Weiwei Pan, Soumya Ghosh, and Finale Doshi-
Velez. Quality of uncertainty quantification for bayesian
neural network inference. Proceedings of the Interna-
tional Conference on Machine Learning, 2019.

Michael Zamo and Philippe Naveau. Estimation of the
continuous ranked probability score with limited infor-
mation and applications to ensemble weather forecasts.
Mathematical Geosciences, 50:209–234, 2018.

Guodong Zhang, Shengyang Sun, David Duvenaud, and
Roger Grosse. Noisy natural gradient as variational in-
ference. Proceedings of the International Conference on
Machine Learning, 2018.

https://cfwebprod.sandia.gov/cfdocs/CompResearch/docs/SAND2004-2411P.pdf
https://cfwebprod.sandia.gov/cfdocs/CompResearch/docs/SAND2004-2411P.pdf


SUPPLEMENTAL MATERIAL

DETAILS ON BAYESIAN COMPUTATION

Markov Chain Monte Carlo is a generic algorithm applied
to Bayesian statistics whose stationary distribution is the
posterior distribution of interest (Equation (1)). The Markov
chain is usually formulated as irreducible and aperiodic,
which will ensure that the stationary distribution exists. Sim-
ulation from this chain gives an approximation to the pos-
terior distribution.Although other approaches are possible,
Hamiltonian Monte Carlo (HMC) was applied specifically
to BNN (Neal [1996]) for efficiency reasons.

HMC augments each parameter (weight) with its own mo-
mentum variable, φ, which evolves as a function of the gra-
dient of the log posterior, ∇θ. From Gelman et al. [2013]:
Draw samples of θ by repeating:

1. Initialize φt, θt (use previous draw for θ for t > 0)

2. For L steps:

(a) φ∗ = φt/∗ for L> 1 + ε∇θ
(b) θ∗ = θt/∗ for L> 1 + εM−1φ∗

3. r = p(θ∗|D)p(φ∗)
p(θt−1|D)p(φt−1)

4. Set θt = θ∗ wp min(r,1), θt−1 otherwise,

and ε, L, and M are hyperparameters used to tune the accep-
tance rate.

VI takes a different approach, and seeks to find an approxi-
mation distribution, qφ(θ), parameterized by φ, that is close
to the posterior distribution p(θ|y). A common measure
of distance between distributions is the Kullback-Leibler
distance, and VI’s approximation to the posterior, qφ(θ), is
obtained by:

argmin
φ

KL(qφ(θ)||p(θ|D) = −Eq log
(
p(θ|D)
qφ(θ)

)
(17)

. . . = −Eq log
(
p(θ,y|X)

qφ(θ)

)
.

(18)

It is a straightforward exercise to show the equivalence in
Equation (18). In practice, q(·) is taken to be a parameter-
ized family, often Normal. Wang and Blei [2019] proved
Frequentist consistency and asymptotic Normality of VI in
different cases, providing an asymptotic theoretical justifi-
cation for taking q(·) to be Normal. After optimizing with
respect to φ, an approximation to the p(θ|D) is available,
and CIs can be computed.

MODEL ESTIMATES AND UQ FOR REGRESSION
SIMULATION

Figures 10, 11, 12, 13, 14, 15 show the fitted models with
90% credible intervals for the oracle, BNN-MCMC, BNN-
VI, DE, bootstrap NN, and GP, respectively. The oracle
model has fairly consistent uncertainty in the training and
testing areas due to the known model form. The BNN-
MCMC and GP have high uncertainty in the area without
training data, reflecting the model’s flexibility. BNN-VI in-
terestingly, has fairly constant uncertainty across regions
with and without training data. This causes concern that the
estimation method will not adapt its uncertainty estimates
based on data availability and proximity. Both the DE and
bootstrap NN are relatively unaffected by the lack of train-
ing data in the middle, and neither produces predictions with
much uncertainty. This is not particularly surprising for the
DE since it is only accounting for optimization uncertainty,
but the bootstrap NN should be able to account for sampling
uncertainty by resampling the data with replacement.

Figure 10: Oracle model predictions and uncertainties to
simulated data in Equation (1).

Figures 16 and 17 show the testing and training MSE, respec-
tively, as functions of number of nodes. Overall, the BNN-
MCMC and GP are most aligned with the oracle model
while bootstrap NN and DE do not perform as well.

Figure 11: BNN model with with MCMC predictions and
uncertainties to simulated data in Equation (1).



Figure 12: BNN model fit with VI predictions and uncer-
tainties to simulated data in Equation (1).

Figure 13: Deep Ensemble model fit with VI predictions
and uncertainties to simulated data in Equation (1).

TCC DATA GENERATION MODEL

As mentioned in Section 4.2, the TCC dataset is generated
from a fully parameterized GMM model that undergoes a
particular set of rotation and scaling transformations. The
end result is a dataset that allows direct coverage and in-
terval length metric calculations on ground truth data. For
the specific parameterization of this paper, we used a GMM
model with 2 clusters in a 50/50 cluster distribution prob-
ability. Figure 18 shows the density of the TCC simulated
data before the transformation shown in Figure 6 of the main
paper.

GMM sampling occurs in a 2 step process where a cluster
label y is initially assigned, followed by sampling from the
associated Gaussian distribution. More specifically, a cluster
label y = {0, 1} is sampled under a uniform distribution,
then a 2-d vector z = (z1, z2) is sampled from the associ-
ated Gaussian distribution. For the TCC transformation, the
z vector is passed through an initial scaling transformation
followed by a rotation transformation centered upon the
origin. The entire transformation is defined by a cascade
of equations 22 followed by 23. The effect of the scaling
transformation is designed to simulate a ’black-hole’ effect,
where samples closer to the origin are pulled in faster than
samples with larger ‖z‖2. Similarly, the rotation transforma-

Figure 14: Bootstrap NN model fit with VI predictions and
uncertainties to simulated data in Equation (1).

Figure 15: Gaussian Process model fit with VI predictions
and uncertainties to simulated data in Equation (1).

tion is designed to create a ’spiral’ effect, where samples
further from the origin (i.e. large ‖z‖2) are rotated more
than samples closer to the origin. All together, these two
simple transformations convert the original data and label
space shown in Figure 18 to that of Figure 6. Two important
parameters that define the transformation are λscale and λrot,
for which we use values of 0.2 and 0.4 respectively.

S(z;λscale) = rnew

[
cos(tan−1(z)) 0

0 sin(tan−1(z))

]
(19)

where rnew = ‖z‖2(1− e−λscale∗‖z‖2) (20)

R(z;λrot) =

[
cos(λrot‖z‖2) −sin(λrot‖z‖2)
sin(λrot‖z‖2) cos(λrot‖z‖2)

]
(21)

zscaled = S(z;λscale)z (22)

x = R(zscaled;λrot)zscaled (23)



Figure 16: MSE for test set of regression simulation. Y-
limits exclude BNN-VI for ease of comparison

Figure 17: MSE for train set of regression simulation. Y-
limits exclude BNN-VI for ease of comparison

MODEL ESTIMATES AND UQ FOR TCC
SIMULATION

Figures 19, 21, 23, 25, and 27 show the estimation surfaces,
π(x∗, θ̂), for BNN-MCMC, BNN-VI, DE, bootstrap NN,
and GP, respectively. For the DL models, the results in these
plots are from the 10-node models. Figures 20, 22, 24, 26,
and 28 show the interval widths of 90% CIs on the domain
surface, respectively. These interval widths provide an easy
way to understand the uncertainties for TCC since estimated
class probabilities must lie ∈ [0, 1].

The estimation surfaces for all methods except the GP are
similar. The GP appears to also be measuring the density
of the domain as well as class probabilities, potentially giv-
ing it an OOD measure. The interval widths among all the
methods except GP are also similar. The main difference
is that the DE’s uncertainty doesn’t fan out as quickly as
it departs from training data. This behavior is expected for
the same reasons as described in the regression case; DE
don’t account for sampling variation. Unlike in the regres-
sion simulation, the bootstrap NN appears to capture model
parameter uncertainties better in TCC as it resembles the
uncertainty surface of BNN-MCMC more closely. The GP

Figure 18: TCC untransformed space with 10% contours for
P (Y = y|z1, z2).

uncertainty surface looks similar to its estimation surface in
that it is not estimating a decision boundary, but rather each
class density. Points far from either central density have
high uncertainty. This again could be advantageous for UQ
in OOD problems.

Figure 19: BNN MCMC preditions on TCC.

CALIBRATION PLOTS

Figures 29, 30, 31, 32, 33 show confidence histograms (top)
and reliability diagrams (bottom) for models with 10 nodes
per layer fit to the TCC data. These diagrams mimic those
seen in Guo et al. [2017], from which ECE is directly calcu-
lated.



Figure 20: BNN MCMC UQ on TCC.

Figure 21: BNN VI preditions on TCC.

Figure 22: BNN VI UQ on TCC.

Figure 23: DE preditions on TCC.



Figure 24: DE UQ on TCC.

Figure 25: Bootstrap preditions on TCC.

Figure 26: Bootstrap UQ on TCC.

Figure 27: GP preditions on TCC.



Figure 28: GP UQ on TCC.

Figure 29: Calibration plot for Bootstrapped NN on TCC
with 10 nodes per layer.

Figure 30: Calibration plot for DE on TCC with 10 nodes
per layer.



Figure 31: Calibration plot for BNN-MCMC on TCC with
10 nodes per layer.

Figure 32: Calibration plot for BNN-VI on TCC with 10
nodes per layer.



Figure 33: Calibration plot for GP on TCC with 10 nodes
per layer.
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