
Neural Mini-Apps as a Tool for Neuromorphic Computing Insight
Craig M. Vineyard

Sandia National Laboratories
Albuquerque, NM, United States

cmviney@sandia.gov

Suma Cardwell
Sandia National Laboratories

Albuquerque, NM, United States
sgcardw@sandia.gov

Frances Chance
Sandia National Laboratories

Albuquerque, NM, United States
fschanc@sandia.gov

Srideep Musuvathy
Sandia National Laboratories

Albuquerque, NM, United States
smusuva@sandia.gov

Fred Rothganger
Sandia National Laboratories

Albuquerque, NM, United States
frothga@sandia.gov

William M. Severa
Sandia National Laboratories

Albuquerque, NM, United States
wmsever@sandia.gov

J. Darby Smith
Sandia National Laboratories

Albuquerque, NM, United States
jsmit16@sandia.gov

Corinne Teeter
Sandia National Laboratories

Albuquerque, NM, United States
cmteete@sandia.gov

Felix Wang
Sandia National Laboratories

Albuquerque, NM, United States
felwang@sandia.gov

J. Brad Aimone
Sandia National Laboratories

Albuquerque, NM, United States
jbaimon@sandia.gov

ABSTRACT
Neuromorphic computing (NMC) is an exciting paradigm seeking
to incorporate principles from biological brains to enable advanced
computing capabilities. Not only does this encompass algorithms,
such as neural networks, but also the consideration of how to
structure the enabling computational architectures for executing
such workloads. Assessing the merits of NMC is more nuanced
than simply comparing singular, historical performance metrics
from traditional approaches versus that of NMC. The novel com-
putational architectures require new algorithms to make use of
their differing computational approaches. And neural algorithms
themselves are emerging across increasing application domains.
Accordingly, we propose following the example high performance
computing has employed using context capturing mini-apps and
abstraction tools to explore the merits of computational architec-
tures. Here we present Neural Mini-Apps in a neural circuit tool
called Fugu as a means of NMC insight.

ACM Reference Format:
Craig M. Vineyard, Suma Cardwell, Frances Chance, Srideep Musuvathy,
Fred Rothganger, William M. Severa, J. Darby Smith, Corinne Teeter, Felix
Wang, and J. Brad Aimone. 2021. Neural Mini-Apps as a Tool for Neuro-
morphic Computing Insight. In Proceedings of Neuro-Inspired Computa-
tional Elements Workshop (NICE2022). ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Neuromorphic computing (NMC) is an actively evolving field with
considerable uncertainty in how it may evolve over the next few
years. While the primary focus on NMC has been on edge comput-
ing and real-time processing of artificial intelligence (AI) algorithms,

NICE2022, March 28 – April 1, 2022, San Antonio, TX, USA
2021. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

there are increasing reasons to believe that neural approaches may
be broadly useful for scientific computation [1]. NMC is somewhat
unique among current computing technologies in that it is a novel
computing paradigm. While the pursuit of algorithms and architec-
tures inspired by the brain is not a new aspiration, the ‘End of the
Line’ for conventional approaches has motivated the investigation
of many Beyond Moore’s Law technologies [10; 15]. Accordingly,
NMC offers several exciting paths forwards as new enabling de-
vices and technologies are developed, but also investigating how to
change the computational paradigms to make use of this novel para-
digm of computation. As such, the potential of NMC is not simply as
an acceleration alternative, improving upon canonical approaches,
but it also stimulates novel solutions. However, understanding the
tradeoffs of these approaches is a complex challenge.

One complicating aspect of forecasting the long-term value and
suitability of NMC in HPC domains is the uneven maturity across
the different levels of the technology stack. That is, the compilers to
NMC, the programming layer, and the neural algorithms themselves
are simultaneously evolving at varying timescales. This presents a
challenge to assessing the potential of a NMC solution to a problem:
if a scoping study fails to deliver a promising result, is that due to a
fundamental limitation of a hardware system?, of the architecture?,
of the mapping of the algorithm to the hardware?, or is it a failure of
the algorithm design itself? Alternatively, how do we attribute the
benefits of an observed performance advantage across the different
types of implementation?

To address this, we take inspiration from the example of high-
performance computing (HPC) mini-apps which compactly encom-
pass a computational workload [16]. This concept includes relevant
context and details and enables cross platform compatibility inves-
tigations. Accordingly, here we introduce ‘Neural Mini-Apps’ as
a mechanism for assessing NMC advantages. While benchmark-
ing offers performance insight into specific algorithm-architecture

SAND2022-2007CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

NICE2022, March 28 – April 1, 2022, San Antonio, TX, USA Aimone, Cardwell, Chance, Musuvathy, Rothganger, Severa, Teeter, Vineyard, Wang

combinations, mini-apps offer a broader understanding. The con-
text of the surrogate application can identify broader insights such
as whether communication or I/O limit the acceleration of a key
kernel. And in prescribing tune-able parameters pertinent to the
application, neural mini-apps can offer understanding of the archi-
tectures themselves. We motivate this paradigm for neural algo-
rithm and architecture understanding by presenting three diverse
neural mini-apps using the Fugu neural circuit composition tool
[4]. Fugu serves as an intermediary between neural algorithms,
computational workloads such as mini-apps, and NMC hardware,
and it facilitates performing studies to assist in the evaluation of
emerging NMC technologies.

As follows, first we introduce the Fugu tool, then after a brief
background on other NMC benchmarking considerations we ex-
pand upon how mini-apps offer insight into the interplay of algo-
rithms and emerging computer architectures, we introduce three
neural mini-apps which vary in numerical complexity and applica-
tion, present results of how these neural mini-apps can characterize
NMC architectures, and conclude with how this approach enables
NMC computing insight.

2 BACKGROUND
2.1 Fugu
To help address the challenges in algorithm design and implementa-
tion, our Fugu tool aims to facilitate programming NMC hardware
by combining two ideas: 1) component-based assembly of large
solutions from small solutions, and 2) cross-platform portability [4].
Fugu attains cross-platform portability by establishing a minimalist
neuron model which is generally supported by most neuromor-
phic devices. The minimalist approach is somewhat different from
a least-common-denominator approach. The Fugu neuron model
does support some features which are not always present. However,
these are carefully selected based on their computational necessity,
and there is often a way to substitute functionality on platforms
that lack a given feature. Roughly speaking, Fugu is capable of de-
scribing any of the features used in threshold gates (fan-in, fan-out,
threshold, synapse weights) and most features of spiking neurons
(synapse delays, decay, noise). Learning is not currently specifi-
cally implemented within Fugu, but the framework for Fugu is
compatible with having learning as an attribute of synapses.

Fugu attains component-based hierarchical assembly using the
concept of a “brick”. A brick is essentially a section of network with
well-defined inputs and outputs. Bricks with compatible pins can
be connected together into larger bricks or into a final application.
Fugu is primarily realized as a Python package. This includes a
set of basic bricks, a brick assembly system called the “scaffold”,
and backends. Bricks are implemented as Python classes which
follow a defined interface in order to work within the scaffold.
Their primary job is to generate sections of the network using
Fugu neurons. Fugu is also realized with a graphical user interface
using the N2A modeling system. N2A (“Neurons to Algorithms”) is
an object-oriented language for creating large-scale neuroscience
models. It includes equivalent representations of each Fugu brick,
along with the ability to export Python code.

To support its minimalist neuron model, the Fugu software suite
provides a “backend” for NMC hardware either translating a net-
work into functioning code on a supported NMC platform or em-
ulating the computation on a traditional computational platform.
A Fugu backend is a Python class which handles both the task of
compiling the network definition for a specific execution environ-
ment and the task of actually running the program and collecting
results. Currently, backends exist for PyTorch (for conventional
CPU), PyNN (compatible with SpiNNaker), and Intel Loihi.

Each backend takes as input the built scaffold and a dictionary of
compiler options. Most of the work of a backend is to examine the
generated neural network and translate it to the target. Fugu uses
the NetworkX library to represent the network as a graph object.
The nodes represent neurons and the edges represent synapses.
Both are decorated with appropriate parameters.

For the purposes of algorithm prototyping as well as having a ref-
erence simulation, we provide Fugu with two CPU-based backends,
SNN and DS. As reference simulators, they emphasize correctness
and precision with less of a focus on optimal performance. Accord-
ingly, these baselines offer single core, single threaded, commodity
class baseline execution.

While Fugu speaks to the challenge of how to represent a com-
putational abstraction for NMC, we next consider how to assess
the performance of algorithms and architectures.

2.2 Machine Learning Benchmarks
To assess performance characteristics of neural networks and their
execution, many measures have been considered. This ranges from
application specific measures such as the accuracy of a neural net-
work classifier to device or architectural properties like thermal
design power and operation counts. Effectively, various approaches
have been proposed by academic as well as industry efforts. Of the
various approaches, a prominent recent effort MLCommons has
garnered broad community support [21; 25]. This effort establishes
various categories of assessment, defining a few neural network
workloads and the required performance quality. For example, a
training task must meet a minimum accuracy threshold for the
particular model on the specified dataset. The benchmark also es-
tablishes closed and open divisions. The former requires the same
model be used across the different systems, whereas the latter al-
lows novel solutions suited for the computational architecture to
most efficiently perform the task.

Despite the commonality of neural network computation, the
precedence of MLCommons and related benchmark considerations
(which are well posed for neural network accelerators, GPUs, etc.)
does not directly translate to the alternative computing paradigm
NMC pursues. In response, prior efforts have motivated the need
for new considerations in benchmarking NMC [8; 23; 34–36]. This
includes introducing new metrics and spiking datasets as well as
explorations into how to characterize specific NMC architectures.
Each of these efforts (as well as many others not highlighted here)
have been valuable in advancing the understanding of the NMC
field. However, a general limitation of the efforts to date has been a
broadly applicable and well adopted NMC benchmarking paradigm.
Accordingly, we are proposing to follow the lead of best practices

Neuromorphic Mini-Apps NICE2022, March 28 – April 1, 2022, San Antonio, TX, USA

established by traditional computing and next introduce the mini-
app concept followed by our neural extension.

2.3 Mini-Apps
The concept of mini-applications was created in the context of
understanding emerging computing architectures for high perfor-
mance computing. Taken from Heroux 2009 [16], “there is a middle
ground for small, self-contained programs that, like benchmarks,
contain the performance-intensive computations of a large-scale ap-
plication, but are large enough to also contain the context of those
computations.” We expect that understanding the value of neuro-
morphic hardware for various applications will similarly benefit
from the development of quantifiable surrogate applications that
sit between benchmarks evaluating single kernels (like FLOPS or
matrix operations) and full scale applications that are infeasible on
emerging hardware prototypes.

Heroux et al. further lists as potential values of mini-apps as
helping to enable:

• Interaction with external research communities
• Development of simulators
• Early node architecture studies
• Network scaling studies
• New language and programming models
• Compiler tuning

The 2009 work introduced mini-apps for finite element solving
as well as contact analysis, molecular dynamics, parallel circuit
simulation, and a collection of computational kernels. From the
initial release, the concept has continued to grow with now over a
dozen mini-apps available.1

Further enabling the mini-app construct to assess the merits of
diverse computational architectures are capabilities such as Kokkos
[11; 32] and RAJA [6]. These tools offer software abstractions en-
abling program portability for HPC codes. Figure 1 illustrates how
mini-apps in conjunction with computational workload representa-
tion tools can engage with emerging computational platforms. The
left half of the figure corresponds to the Mantevo Mini-Apps which
through abstractions such as Kokkos/RAJA can then be assessed on
emerging systems. Analogously, the Neural Mini-Apps construct
presented here, in conjunction with Fugu, can bring this capability
to NMC.

Combined, these benefits of mini-apps are well-suited to help
assess novel technologies such as NMC. Accordingly, we see addi-
tional advantages such as:

• Influence future platforms
• Analyze testbed systems
• Tailor algorithms to emerging platforms

It is important to emphasize the relative maturity of emerging
conventional technologies that may be considered for traditional
computational platforms, such as FPGAs or ARM processors, is
considerably higher than neuromorphic hardware. While emerging
neuromorphic platforms are architecturally very sophisticated and
advanced, they lack much of the software and algorithms infrastruc-
ture that benefit conventional systems. As a result, the last item in
the list above—tailor algorithms to emerging platforms—is perhaps

1https://mantevo.github.io/packages.html

a greater part of why the Neural Mini-Apps effort that are described
here than would be expected from those that target conventional
platforms.

3 NEURAL MINI-APPS
The Neural Mini-Apps we have targeted here are designed to pro-
vide some structure in assessing both hardware and software tools
for NMC. The mini-apps themselves vary in numerical complexity
and application, but their purpose is to fix the concrete numerical
task so as to allow the different facets of the technology stack to be
evaluated and improved.

Here, we introduce an initial set of three mini-apps that are
intended to span the overall range over which NMC computing
may contribute to computation. These initial mini-apps capture
a diversity of computing applications that NMC researchers have
identified as being ‘wins’ for the field, and there exist explicit claims
(based on theory or lightweight scaling studies) for each of these
applications that they can outperform conventional computing. The
first mini-app, focused on random walk methods for solving partial
differential equations, represents an NMC approach to a classic
scientific computing challenge that is reformulated to use neuron-
based computation. The exploration of NMC approaches to this
computation includes [7; 17; 29; 30]. The second mini-app, focused
on the sparse coding algorithm for image processing, represents an
NMC approach to solvingmachine learning tasks for which neurons
are typically used as logic elements [9; 13; 26; 28]. Finally, our third
mini-app, focused on shortest path search on graphs, represents
a class of graph analytics algorithms that are natively suited for
NMC architectures. Explorations of various graph algorithms on
NMC architectures includes [9; 14; 18; 27].

As shown in Fig. 2, the general workflow of a Neural Mini-
App starts with the user identifying which backend should be run,
and parameterizing the simulation according to domain specific
parameters.

3.1 Neuromorphic RandomWalk
Random walks are a powerful tool for utilization in large scale
modeling and simulation as well as in randomized algorithms. Ad-
vantages of using randomwalks include that theymay often be com-
puted independently in parallel, and are computationally simple.
However, their use in Monte Carlo methods may be less preferred in
some instances due to their slow convergence. NMC hardware com-
bats these reservations by providing a platform for cost-effective
and efficient simulation of random walks. More efficient simulation
means gaining more random walks or samples for the same cost.
While this does not change the convergence rate of Monte Carlo
methods, it does imply that better results can be achieved for the
same cost as conventional random walk computation. Our neural
random walk Mini-App may describe simple diffusion or be used
to describe a discrete time Markov chain (DTMC). These Markov
chains can be used in conjunction with Feynman-Kac style formu-
las to solve particular partial differential equations with non-local
terms.

For our Random Walk Mini-App, we specifically consider a Par-
ticle Angular Fluence computation as the exemplar task. Particle
angular fluence is the time-integrated flux of particles traveling

NICE2022, March 28 – April 1, 2022, San Antonio, TX, USA Aimone, Cardwell, Chance, Musuvathy, Rothganger, Severa, Teeter, Vineyard, Wang

Figure 1: Overview of how mini-apps in conjunction with tools like Kokkos have enabled investigations into conventional
computational platforms (left) and how the proposed development of Neural Mini-Apps in Fugu can bring similar insight into
emerging neuromorphic computing platforms (right).

Figure 2: Neural Mini-App Conceptual Flow.

through media given as a function of position and velocity. Our
particular task considers the case where particles travel at a con-
stant speed and experience relative velocity scattering over a small
region of space, ultimately exiting the area of interest at some angle.
For this Mini-App, we can leverage the algorithm described in [29]
and [30].

Mini-App Paramaterization
This Mini-App has several parameters that can be explored that

relate to both potential physics considerations (particle absorption,
velocities, etc), but our use-case of theMini-App prioritizes an initial
exploration on controlling the scale of the simulation as follows:

• Number of total walkers to use.
• Size of direction/relative velocity/angular discretization: this
parameter controls the number of relative velocities available
to particles in the DTMC simulation.

• Time discretization size: the time step size of simulation (To
be probabilistically sound, this choice should be made so

that it is reasonable that no more than a single scattering
event could occur within the time step).

• Domain of interest: controls the size of the state space.
• Size of positional discretization: this parameter, d𝑠 , must be
chosen so that minimal error arises from the DTMC approx-
imation.

Note, the scale of the simulation can also be controlled through
parallelization. If multiple copies of the mesh could be made, then
parallel runs of walkers could occur for each of the state space loca-
tions within the sensor. Furthermore, additional parameters exist,
but do not greatly affect the scaling of the Mini-Apps which is an
emphasis here to explore the impact of enabling NMC architectures.

Mini-App Scaling
The primary dimension of scaling of relevance to DTMC simula-

tions is the number of random walkers.

• General problem size scaling can be tested by adding more
and more walkers𝑀 .

• A scaling related to conventional weak scaling can also be
tested by increasing the mesh size with growing number of
walkers𝑀 .

Mini-App Metrics
The radiation transport problem discussed for this mini-app does

not typically have an analytically tractable solution. Therefore,
comparison in output can be compared in aggregate to a large-
scale simulation of the equivalent problem solved via the canonical
method.

The performance of neuromorphic at the task is a far more
interesting measure of success. Some ways we can measure success
are:

Neuromorphic Mini-Apps NICE2022, March 28 – April 1, 2022, San Antonio, TX, USA

• Cost of walkers: compare the energy efficiency of doubling
the number of walkers on neuromorphic compared to dou-
bling the number of walkers in the canonical method on
conventional.

• Time to run: compare the additional time it takes to run
double the number of walkers on neuromorphic versus the
amount of time it takes to double the walkers in the canonical
method on conventional.

• Space to run: compare the number of neuromorphic re-
sources required to implement larger increased DTMC sim-
ulation meshes.

3.2 Neural Sparse Coding
Sparse coding or sparse dictionary learning is a way of modeling
data by decomposing it into sparse linear combinations of elements
of a given overcomplete basis set [22]. That is, a data vector 𝑦 ∈ R𝑚
may be approximated as multiplying a dictionary matrix𝐷 ∈ R𝑚×𝑘

with a sparse vector 𝑥 ∈ R𝑘 :𝑦 ≈ 𝐷𝑥 . When a dictionary or basis set
has already been learned, the process of finding the sparse vector 𝑥
for a given data vector𝑦 is called sparse coding. This is traditionally
found through regression analysis by formulating the problem as
the 𝐿1-regularized optimization,

𝑙 (𝑦, 𝐷) = min
𝑥 ∈R𝑘

1
2
| |𝑦 − 𝐷𝑥 | |22 + 𝜆 | |𝑥 | |1

where the cost may be understood as the contributions of the recon-
struction error 1

2 | |𝑦 − 𝐷𝑥 | |22 and a sparsity penalty 𝜆 | |𝑥 | |1, where
𝜆 is a regularization parameter determining the degree of sparsity
imposed. This particular formulation is known as the LASSO (least
absolute shrinkage and selection operator) [31].

On neuromorphic, the LASSO computation for sparse coding
can be approximated with the spike-based locally competitive al-
gorithms (LCA). These are a class of algorithms where a shallow
network (i.e. single layer) of spiking neurons are laterally connected
such that their dynamics are mutually inhibitory [26]. This gives
the resulting competitive behavior where higher activation in a
given neuron will suppress the activation of its connected neigh-
bors. In approximating LASSO, the spiking neurons correspond
to dictionary elements, and the amount of inhibition depends on
the overlap between dictionary elements, as computed by their dot
product. For the input, the overlap between the data vector and the
dictionary element applies a current to the neuron, resulting in a
“baseline” spike rate in the absence of inhibition. As the network ac-
tivity approaches equilibrium between these two factors, the spike
rates of the neurons can be read out as the sparse coding vector of
the input with respect to the corresponding dictionary.

Our Sparse Coding Mini-App focuses upon the LASSO prob-
lem as it is solved through LCA in the data domain of natural
images. Due to scaling limitations on the size of dictionaries that
may be learned with respect to the size of the inputs, an image to
be reconstructed through LASSO will be split up into smaller, mul-
tiple overlapping image patches, where each patch shares the same
dictionary. For the full reconstruction, each image patch is first re-
constructed individually and then weighted with their overlapping
neighbors.

Mini-App Paramaterization

There are several ways to parameterize a given LASSO recon-
struction for images:

• Size of the image: height and width in pixels of the image to
be reconstructed.

• Size of the image patch: height and width in pixels of the
image patch. This also provides the size of the input layer.

• Size of the dictionary: how many dictionary elements to be
used to reconstruct a given image patch. This also provides
the size of the output layer.

• Stride of the image patch (or overlap): this defines the tiling
of the image patch over the image and along with the size of
the image patch, provides the number of image patches in
the image. For parallelization, this also provides the number
of copies of the network needed.

• Desired sparsity: this is the sparsity (e.g. percentage of active
neurons) of the resulting coding vector, and influences the
inhibitory weights, spiking thresholds, and overall activity
of the network.

Mini-App Scaling
We can scale the LASSO reconstruction problem for images along

multiple dimensions:

• Primarily, we can increase the problem size by simply in-
creasing the number of image patches to be reconstructed.
Due to the independently computed image patches, this is
an embarrassingly parallel form of weak scaling.

• Alternatively, we may increase parameters such as the input
or dictionary sizes.

Mini-App Metrics
Solving the reconstruction through LCA on NMC can be mea-

sured in a number of ways (and with respect to both methods of
scaling):

• Time for setup: while we can assume that a dictionary is
already known beforehand, there will also be a number of
“one-time” setup steps to initialize/load this to neuromorphic
platform.

• Time to reconstruction: this can be an overall application
metric (similar to inferences/second) that simply measures
the total time needed to solve the LASSO reconstruction
problem.

• Reconstruction performance: similar to accuracy in most
classification problems, the reconstruction error is a measure
of how well the LCA algorithm performed for solving the
reconstruction problem.

• Reconstruction sparsity: this is the other term in the loss
function, where we also care about the sparsity of the result-
ing sparse coding vector with respect to our desired sparsity.

• Compute resource usage: this should be a measure of how
much we saturate the computing resources of the neuromor-
phic platform.

• Energy resource usage: similar to the above, this canmeasure
how much energy the neuromorphic platform uses for its
compute (potentially related to the number of spikes).

Because the reconstruction occurs over time, there are some
other interesting ways we can break down the problem:

NICE2022, March 28 – April 1, 2022, San Antonio, TX, USA Aimone, Cardwell, Chance, Musuvathy, Rothganger, Severa, Teeter, Vineyard, Wang

• Reconstruction performance curve: instead of simplywaiting
for the network to reach equilibrium, we can compute the
reconstruction error along the way as if the intermediate
spiking rates were the sparse coding vector. Knowing the
rate at which the reconstruction problem is solved allows
potentially early stopping of the algorithm by tuning for the
reconstruction error to fall below some acceptable threshold.

• Sparsity performance curve: similar to the above, but for
the sparsity (i.e. percentage of active output neurons) of the
sparse coding vector.

3.3 Neural Graph Analysis
Graph analytics represents a wide range of algorithms and ap-
proaches used to analyze, process, and predict features of graphs.
Recent research momentum suggests that graph algorithms may
be well-suited for highly parallel neuromorphic platforms [2; 3; 14].
We concern ourselves with a standard graph algorithm–Single
source shortest path (SSSP). That is, between a source and tar-
get node, what is the shortest path (and path length) that con-
nects the two. More formally, if you have a vertex set 𝑉 and a
weighted edge set 𝐸 ⊂ {(𝑣,𝑢,𝑤) : (𝑣,𝑢) ∈ 𝑉 2,𝑤 ∈ Z+}, then a
path from a source 𝑠 ∈ 𝑉 to a target 𝑡 ∈ 𝑉 is a finite list of edges
(𝑣0, 𝑢0,𝑤0), . . . (𝑣𝑘 , 𝑢𝑘 ,𝑤𝑘) satisfying 𝑢0 = 𝑠 , 𝑣𝑘 = 𝑡 , 𝑢𝑖 = 𝑣𝑖+1, for
0 ≤ 𝑖 < 𝑘 . The length of a path is defined as

Í𝑘
𝑖=0𝑤𝑖 , and the short-

est path is one with a minimum length. In general, the shortest
path may not be unique.

A spiking neural network algorithm to solve the length of the
SSSP is straightforward and well-known. Each vertex in the source
graph is instantiated as neuron, and each edge is a synapse between
the corresponding neurons. The weights of the source graph are
converted to delays on the neural network. Each neuron is defined
so that it spikes with any input. At run time, the source neuron
is driven to fire by external input and the shortest path length
is determined by the first spike time of the target neuron. This
produces the shortest path length in an obviousway—the spikes that
arrive first are those that took less time and therefore underwent
the least aggregate delay.

For our Graph Analysis Mini-App, we used two extensions from
this base algorithm. First, each neuron has a self-inhibition loop.
This prevented neurons from firing more than once and increases
the sparsity of spike activity. Second, we also have additional neu-
rons essentially monitoring each of the edges. This allows a recon-
struction of the path itself and not just the path length.

Mini-App Paramaterization

• Graph generator: the graph can be generated either as a uni-
formly random tree or using a small world graph generator.

• N: in the case of a tree, 𝑁 represents the number of nodes.
In the case of a small world graph 𝑁 is the side length of a
square lattice.

• Weight range: weights are assigned randomly to the edges
of the graph. The weights are sampled uniformly from the
weight range.

• Max runtime: amount of time to run the simulator or neuro-
morphic hardware.

• Source: source node on the graph for the shortest path.
• Target: target node on the graph for the shortest path.

Mini-App Scaling
The SSSP Mini-App can be scaled in multiple ways:

• Particularly relevant is the scale of the underlying graph. For
example, we can scale 𝑁 as noted above, altering the size of
the graph in terms of nodes or connectivity depending upon
the graph type.

• Relatedly, we can also adjust the weight range as it has a
direct impact on the range of delay values of the network.

Mini-App Metrics

• Total time: measuring the total time includes the setup time
and the execution time of the algorithm.

• Time for setup: mapping graph nodes to neurons with the
appropriate connectivity and temporal delays.

4 RESULTS
The core contribution of this paper is the presentation of Neural
Mini-Apps as a tool for neuromorphic computing insight, rather
than any particular application and architectural analysis itself.
Nevertheless, to demonstrate the utility of this NMC assessment
capability as follows we show example insights for how these ini-
tial Neural Mini-Apps are able to articulate differences in NMC
computation.

4.1 Neuromorphic RandomWalk
We have previously identified that NMC platforms, such as Loihi
and TrueNorth, can be shown to be advantageous on DTMC ran-
dom walks in the abstract, especially when required energy and
time are both considered [29]. The specific nature by which this
NMC approach parallelizes random walks is complex and beyond
the scope of this paper, but a simple description is that the NMC
model distributes the random walk state space over the available
physical hardware (each NMC chip is responsible for a number
of mesh points), while random walkers themselves travel across
the hardware. Because the movement of a walker from one state
to another can be represented as a discrete event, its walkers can
very cheaply traverse over the available NMC state space. Thus,
adding more walkers into this paradigm (classically the biggest cost
in Monte Carlo simulations) is essentially free, but we have to pay
directly for the state space that we simulate over.

For this advantage to be impactful for real-world applications, it
is important to understand how the NMC implementation will scale
with larger model sizes (which the algorithm to span across multiple
hardware chips). While current test platforms are still relatively
limited in size, we can begin to use this Mini-App to understand
how increasing the state space impacts the overall computation
time of Monte Carlo updates (the walkers themselves can move
in a nearly embarrassingly parallel manner, but they still must be
communicated between neurons across chips).

To illustrate one such preliminary result, we show in Fig. 3 that
Loihi and SpiNNaker show promising scaling with larger model
sizes. While our 48-chip SpiNNaker implementation was relatively
limited in the overall model size that could be implemented, there
did not appear to be any significant penalty for using an increased
number of chips. Largely, this is due to the slow underlying system
clock speed of SpiNNaker (≈ 1 kHz) that ensures that all within chip

Neuromorphic Mini-Apps NICE2022, March 28 – April 1, 2022, San Antonio, TX, USA

computation and all chip-to-chip communication can be accom-
plished. Due partly to its more modern CMOS technology, Loihi
has a faster underlying clock speed and can fit considerably more
neurons on each chip, allowing much larger model sizes to be im-
plemented. Because of Loihi’s barrier synchronization, each system
clock cycle updates when all other cores are ready, providing a
slight penalty for increasing the number of chips being used, but
this paradigm also permits the algorithm to update very rapidly,
especially if there are no probes being used for continual I/O.

Figure 3: Scaling of random walk Mini-App on different
neuromorphic platforms. Top: Timesteps are constant time
despite increase state space size on SpiNNaker platform,
whereas CPU simulation of neural algorithm shows polyno-
mial scaling. Bottom: Scaling state space over an increased
number of Loihi chips yields linear time scaling of random
walk updates

4.2 Neural Sparse Coding
To illustrate architectural tradeoffs highlighted by weak scaling of
the Sparse Coding Mini-App, we increased the problem size with
an equivalent increase of compute resources. This was done by
increasing the number of image patches to be reconstructed while
keeping other algorithmic parameters (e.g. dictionary size) and
compute parameters (e.g. resource saturation) fixed. Because image
patches were reconstructed individually, the workload for LCA is
considered embarrassingly parallel, which means that ideal scaling
should be constant.

In addition to the neuromorphic implementations, we also consid-
ered conventional CPU-based solvers from the SPAMS optimization
toolbox [20], namely the spams.lasso and spams.fistaFlat solvers:
spams.lasso is a fast implementation of the LARS (least-angle re-
gression) algorithm for LASSO, and is well adapted to small and
medium-scale sparse decomposition problems; spams.fistaFlat is
part of the proximal toolbox that implements FISTA (fast iterative
shrinkage-thresholding algorithm), and is in a class of more general
solvers adapted for a wide range of possibly large-scale learning
problems. These approaches offer a reference of comparison with
leading conventional algorithms [5; 12].

Due to the differences in resources available for the different
platforms, the number of image patches per-platform were adjusted
accordingly. The dictionary size was kept at 112 elements across all
platforms. The default resource utilization parameters were used
on Loihi and SpiNNaker, and for the CPU algorithms, the number
of available threads was increased.

Individual timing results for each platform are shown in Figure 4.
Error bars correspond to one standard deviation. On Loihi (without
probes) and SpiNNaker, timings demonstrated ideal near-constant
scaling of computation time with respect to the number of patches,
up until resource limitations. However, a linear scaling trend was
seen on Loihi when activity probes were turned on for Loihi, in-
dicative of an I/O bottleneck. The CPU-based methods also showed
poorer scaling, with FISTA showing near linear scaling (which
meant quadratic scaling in compute requirements). However, this
may likely have been due to the way threads are utilized by these
methods as opposed to being weak scaling in the embarrassingly
parallel sense.

4.3 Neural Graph Analysis
The initial graph type examined in the Mini-App are random trees,
such as those shown in Figure 5. These are very sparse un-directed
graphs for which we assign random weights to the tree’s edges.
Additionally, small world networks were explored as a different
class of graph structure. These graphs are characterized such that
most nodes are not direct neighbors, but due to the connectivity
structure of the network most nodes can be reached from other
nodes via a small number of edge traversals. Figure 6 illustrates
examples with increasing side length of square small world lattice.

Using the SSSP Graph Analysis Mini-App to explore how scaling
impacts computational architectures, we ran the same experiment
on on both Loihi and CPU simulation (DS). Measuring the time
for 1000 timesteps while searching for the shortest path between 2
nodes we then scaled by increasing the size of NetworkX random
trees. As shown in the top of Fig. 7, Loihi is much faster than the

NICE2022, March 28 – April 1, 2022, San Antonio, TX, USA Aimone, Cardwell, Chance, Musuvathy, Rothganger, Severa, Teeter, Vineyard, Wang

Figure 4: Weak scaling sparse coding experiments for Loihi,
SpiNNaker, and CPU

Figure 5: Example graphs of NetworkX random trees with
increasing node counts (N).

Fugu CPU simulation for the shortest path task. Further, it is notable
that the Loihi execution time scaling (which ignores setup time) is
effectively independent of the size of the graph. This is largely due
to the fact that the Loihi embedding limits the number of neurons
per core, so the algorithm is mostly operating in an extremely

Figure 6: Example graphs of NetworkX small-world net-
works with increasing square lattice side length (N).

parallel mode. Additionally, we have also explored the impact of
the scale of the weight range as the runtime is dependent upon the
length of the longest path. The bottom of Fig. 7 compares Loihi and
Fugu CPU simulations while increasing the sampling range of the
randomly selected edge weights. As shown, the impact of Loihi is
minimal, whereas the Fugu CPU simulation incurs an increase in
number of timesteps and the time for each timestep.

5 CONCLUSION
In considering the advantages Beyond Moore’s Law technologies
such as NMC may have, we see the inclusion of the ‘context of the
computation’ as incredibly important. Not only does the context
provide a more realistic assessment of the technology, but can
also capture the broader impact where an advantage may come
from more than a minimal core computation. Or even when a key
computation can be performed efficiently, other factors can be
limiting.

Accordingly, Fugu design principles such as compositionality
allow us to explore not only core computations, but also application
context. This includes incorporating rigorous physics simulation
details such as demonstrated in the Neuromorphic Random Walk
(Particle Angular Fluence) Mini-App, as well as exploring scaling
of the application. The latter is not only important to understand
realistically sized scientific computations, but additionally because
prior work has shown a neuromorphic advantage may require
considering problem setup and scale as well as the computation
[24; 33].

Benchmarking is data from an architecture whereas mini-apps
yield data about an architecture. While the former is a subset of
the latter, they offer different insights. For example, running a
ResNet50 neural network (with a specified input size) on an ar-
chitecture provides performance detail about that one network -
how fast an inference may be computed, the associated energy
consumption, etc. A broader mini-app however, can directly en-
able scaling properties of the application such as the size of input,

Neuromorphic Mini-Apps NICE2022, March 28 – April 1, 2022, San Antonio, TX, USA

Figure 7: Scaling of Graph Analytics Mini-App comparing
CPU (DS) and NMC. Top: comparison of run time as a func-
tion of increased tree size. Bottom: comparison of run time
with increased graph edge distances.

depth of the network, or various other meaningful ways a Neural
Mini-App may be adjusted (each of which would be an individual
neural network configuration). Together this data yields broader
insight into the performance of the architecture. Given that NMC
architectures are actively being explored, Neural Mini-Apps for
NMC are an important contribution for understanding the architec-
tures more thoroughly, and not just their performance. For example,
consider the various ways in which a neuromorphic architecture
may progress. Starting from a baseline many-core approach, the
next generation may improve one or many performance factors.
Scaling may be enabled by employing a multi-chip architecture
which connects several of the original many-core chips together,
or by increasing the neural density. Alternatively, increased com-
munication may be the emphasis of architectural advancement. Or
overall, the progression may be a compound change improving
several features or even moving to new material or manufacturing
technologies. Any of the many architectural changes will impact
application performance, and the ability to tune the configuration
of a Neural Mini-App offers a means of understanding the impact.
Alternatively, while benchmarks provide very precise information
about a specific computation, that narrow detail is more pertinent

for established architectures or applications whose precise configu-
ration is important. While this concept has been more intrinsically
understand in domains like scientific computing, where scalability
is a key performance indicator, it is less common for neural net-
works where many metrics pertain to the computation of a specific
neural network on a dataset.

The Neural Mini-Apps introduced here are by nomeans intended
to be exhaustive. They emphasize different computational proper-
ties, applications, and complexity. However, we envision Neural
Mini-Apps to be an evolving and growing tool set to help advance
the understanding of neural algorithms, architectures, and their
intersections. To enable this growth by the NMC community we
are open sourcing the Fugu tool so that others may contribute
Neural Mini-Apps as a growing toolset for researching NMC ad-
vantages. Future integration of Fugu with tools like the Intel Lava
framework [19] will also enable community development of other
NMC libraries as well as hardware backends to further enable NMC
comparisons and assessments. In this regard, we envision Neural
Mini-Apps to be a community driven and evolving tool for explor-
ing neural algorithms and architectures.

ACKNOWLEDGMENT
Sandia National Laboratories is a multimission laboratory managed
and operated by National Technology and Engineering Solutions of
Sandia, LLC, a wholly owned subsidiary of Honeywell International
Inc., for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

REFERENCES
[1] James B Aimone, Kathleen E Hamilton, Susan Mniszewski, Leah Reeder, Cather-

ine D Schuman, and William M Severa. 2018. Non-neural network applications
for spiking neuromorphic hardware. In Proceedings of the Third International
Workshop on Post Moores Era Supercomputing. 24–26.

[2] James B Aimone, Yang Ho, Ojas Parekh, Cynthia A Phillips, Ali Pinar, William
Severa, and YipuWang. 2021. Provable Advantages for Graph Algorithms in Spik-
ing Neural Networks. In Proceedings of the 33rd ACM Symposium on Parallelism
in Algorithms and Architectures. 35–47.

[3] James B. Aimone, Ojas Parekh, Cynthia A. Phillips, Ali Pinar, William Severa,
and Helen Xu. 2019. Dynamic Programming with Spiking Neural Computing. In
Proceedings of the International Conference on Neuromorphic Systems (Knoxville,
TN, USA) (ICONS ’19). Association for Computing Machinery, New York, NY,
USA, Article 20, 9 pages. https://doi.org/10.1145/3354265.3354285

[4] James B Aimone, William Severa, and Craig M Vineyard. 2019. Composing
neural algorithms with Fugu. In Proceedings of the International Conference on
Neuromorphic Systems. 1–8.

[5] Amir Beck and Marc Teboulle. 2009. A fast iterative shrinkage-thresholding
algorithm for linear inverse problems. SIAM journal on imaging sciences 2, 1
(2009), 183–202.

[6] David A Beckingsale, Jason Burmark, Rich Hornung, Holger Jones, William Kil-
lian, Adam J Kunen, Olga Pearce, Peter Robinson, Brian S Ryujin, and Thomas RW
Scogland. 2019. RAJA: Portable performance for large-scale scientific applica-
tions. In 2019 ieee/acm international workshop on performance, portability and
productivity in hpc (p3hpc). IEEE, 71–81.

[7] Bingjie Dang, Keqin Liu, Jiadi Zhu, Liying Xu, Teng Zhang, Caidie Cheng, Hong
Wang, Yuchao Yang, Yue Hao, and Ru Huang. 2019. Stochastic neuron based on
IGZO Schottky diodes for neuromorphic computing. APL Materials 7, 7 (2019),
071114.

[8] Mike Davies. 2019. Benchmarks for progress in neuromorphic computing. Nature
Machine Intelligence 1, 9 (2019), 386–388.

[9] Mike Davies, Andreas Wild, Garrick Orchard, Yulia Sandamirskaya, Gabriel
A Fonseca Guerra, Prasad Joshi, Philipp Plank, and Sumedh R Risbud. 2021.
Advancing neuromorphic computing with Loihi: A survey of results and outlook.
Proc. IEEE 109, 5 (2021), 911–934.

[10] Jeff Dean, David Patterson, and Cliff Young. 2018. A new golden age in computer
architecture: Empowering the machine-learning revolution. IEEE Micro 38, 2
(2018), 21–29.

https://doi.org/10.1145/3354265.3354285

NICE2022, March 28 – April 1, 2022, San Antonio, TX, USA Aimone, Cardwell, Chance, Musuvathy, Rothganger, Severa, Teeter, Vineyard, Wang

[11] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. 2014. Kokkos:
Enablingmanycore performance portability through polymorphicmemory access
patterns. J. Parallel and Distrib. Comput. 74, 12 (2014), 3202 – 3216. https:
//doi.org/10.1016/j.jpdc.2014.07.003 Domain-Specific Languages and High-Level
Frameworks for High-Performance Computing.

[12] Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. 2004. Least
angle regression. The Annals of statistics 32, 2 (2004), 407–499.

[13] Kaitlin L Fair, Daniel R Mendat, Andreas G Andreou, Christopher J Rozell, Justin
Romberg, and David V Anderson. 2019. Sparse coding using the locally competi-
tive algorithm on the TrueNorth neurosynaptic system. Frontiers in neuroscience
13 (2019), 754.

[14] K. E. Hamilton, C. D. Schuman, S. R. Young, N. Imam, and T. S. Humble. 2018.
Neural Networks and Graph Algorithms with Next-Generation Processors. In
2018 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). 1194–1203.

[15] John L Hennessy and David A Patterson. 2019. A new golden age for computer
architecture. Commun. ACM 62, 2 (2019), 48–60.

[16] Michael A Heroux, Douglas W Doerfler, Paul S Crozier, James M Willenbring,
H Carter Edwards, Alan Williams, Mahesh Rajan, Eric R Keiter, Heidi K Thorn-
quist, and RobertWNumrich. 2009. Improving performance viamini-applications.
Sandia National Laboratories, Tech. Rep. SAND2009-5574 3 (2009).

[17] Oleksandr Iaroshenko and Andrew T Sornborger. 2021. Binary Operations on
Neuromorphic Hardware with Application to Linear Algebraic Operations and
Stochastic Equations. arXiv preprint arXiv:2103.09198 (2021).

[18] Bill Kay, Prasanna Date, and Catherine Schuman. 2020. Neuromorphic graph
algorithms: Extracting longest shortest paths and minimum spanning trees. In
Proceedings of the Neuro-inspired Computational Elements Workshop. 1–6.

[19] Lava-Nc. [n. d.]. lava-nc/lava: A Software Framework for Neuromorphic Com-
puting. https://github.com/lava-nc/lava

[20] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. 2010. Online
Learning forMatrix Factorization and Sparse Coding. Journal of Machine Learning
Research 11 (January 2010), 19–60.

[21] PeterMattson, Vijay Janapa Reddi, Christine Cheng, Cody Coleman, Greg Diamos,
David Kanter, Paulius Micikevicius, David Patterson, Guenther Schmuelling,
Hanlin Tang, et al. 2020. MLPerf: An industry standard benchmark suite for
machine learning performance. IEEE Micro 40, 2 (2020), 8–16.

[22] Bruno A. Olshausen and David J. Field. 1997. Sparse coding with an overcomplete
basis set: A strategy employed by V1? Vision Research 37, 23 (1997), 3311 – 3325.
https://doi.org/10.1016/S0042-6989(97)00169-7

[23] Christoph Ostrau, Christian Klarhorst, Michael Thies, and Ulrich Rückert. 2020.
Benchmarking of neuromorphic hardware systems. In Proceedings of the Neuro-
inspired Computational Elements Workshop. 1–4.

[24] Ojas Parekh, Cynthia A Phillips, Conrad D James, and James B Aimone. 2018.
Constant-depth and subcubic-size threshold circuits for matrix multiplication. In
Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architec-
tures. 67–76.

[25] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther
Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark
Charlebois, William Chou, et al. 2020. Mlperf inference benchmark. In 2020
ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 446–459.

[26] Christopher J Rozell, DonH Johnson, RichardGBaraniuk, and BrunoAOlshausen.
2008. Sparse coding via thresholding and local competition in neural circuits.
Neural computation 20, 10 (2008), 2526–2563.

[27] Catherine D Schuman, Kathleen Hamilton, Tiffany Mintz, Md Musabbir Adnan,
Bon Woong Ku, Sung-Kyu Lim, and Garrett S Rose. 2019. Shortest path and
neighborhood subgraph extraction on a spiking memristive neuromorphic im-
plementation. In Proceedings of the 7th Annual Neuro-inspired Computational
Elements Workshop. 1–6.

[28] Samuel Shapero, Christopher Rozell, and Paul Hasler. 2013. Configurable hard-
ware integrate and fire neurons for sparse approximation. Neural Networks 45
(2013), 134–143.

[29] J Darby Smith, Aaron J Hill, Leah Reeder, Brian Franke, Richard B Lehoucq,
Ojas D Parekh, William Severa, and James B Aimone. 2021. Neuromorphic
scaling advantages for energy-efficient random walk computation. Arxiv (2021).

[30] J Darby Smith, William Severa, Aaron J Hill, Leah Reeder, Brian Franke, Richard B
Lehoucq, Ojas D Parekh, and James B Aimone. 2020. Solving a steady-state PDE
using spiking networks and neuromorphic hardware. In International Conference
on Neuromorphic Systems 2020. 1–8.

[31] Robert Tibshirani. 1994. Regression Shrinkage and Selection Via the Lasso.
Journal of the Royal Statistical Society, Series B 58 (1994), 267–288.

[32] Christian Trott, Luc Berger-Vergiat, David Poliakoff, Sivasankaran Rajamanickam,
Damien Lebrun-Grandie, Jonathan Madsen, Nader Al Awar, Milos Gligoric, Galen
Shipman, and Geoff Womeldorff. 2021. The kokkos ecosystem: Comprehensive
performance portability for high performance computing. Computing in Science
& Engineering 23, 5 (2021), 10–18.

[33] Stephen J Verzi, Fredrick Rothganger, Ojas D Parekh, Tu-Thach Quach, Nadine E
Miner, CraigMVineyard, Conrad D James, and James BAimone. 2018. Computing

with spikes: The advantage of fine-grained timing. Neural computation 30, 10
(2018), 2660–2690.

[34] Craig M Vineyard, Sam Green, William M Severa, and Çetin Kaya Koç. 2019.
Benchmarking Event-Driven Neuromorphic Architectures. In Proceedings of the
International Conference on Neuromorphic Systems. 1–5.

[35] Craig M Vineyard, Mark Plagge, and Sam Green. 2020. Comparing Neural
Accelerators & Neuromorphic Architectures The False Idol of Operations. In
Proceedings of the Neuro-inspired Computational Elements Workshop. 1–6.

[36] Qu Yang, Jibin Wu, and Haizhou Li. 2021. Rethinking Benchmarks for Neuro-
morphic Learning Algorithms. In 2021 International Joint Conference on Neural
Networks (IJCNN). IEEE, 1–8.

https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://github.com/lava-nc/lava
https://doi.org/10.1016/S0042-6989(97)00169-7

	Abstract
	1 Introduction
	2 Background
	2.1 Fugu
	2.2 Machine Learning Benchmarks
	2.3 Mini-Apps

	3 Neural Mini-Apps
	3.1 Neuromorphic Random Walk
	3.2 Neural Sparse Coding
	3.3 Neural Graph Analysis

	4 Results
	4.1 Neuromorphic Random Walk
	4.2 Neural Sparse Coding
	4.3 Neural Graph Analysis

	5 Conclusion
	References

