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The dimple stepped-lip (DSL) piston
hypotheses (1/2)
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: : . Busch et al., SAE 03-13-02-0016.
* Experimental comparison of two piston
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The dimple stepped-lip (DSL) piston
hypotheses (2/2)
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Stronger squish-region vortices found in DSL
piston at near-TDC injection timings, while they
are weaker in the SL piston.

« CFD simulation study of engine operating
and combustion system design

parameters shows: Toroidal vorticity, 14.9° CA ASOlpgin

« Changes in spray opening angle or intake (ATSERE T e
pressure do not enhance vortex formation [ate maiigiection [y [rad/°CA]
at near-TDC injection timings Gt s | [

* Increasing squish region space by region L5
introducing dimples enhances vortex | Counter-
formation at near-TDC injection timings R |, oo

* Hypothesis 2: A dimple stepped-lip (DSL) injection otcarotom | |
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Obijectives

* Analyze if DSL piston helps to enhance vortex formation in a medium-
duty diesel engine at near-TDC injection timings using CFD
simulations

» Study how dimple parameters affect vortex formation using CFD
simulations

» Perform an experimental campaign with DSL piston to test if vortex
formation helps to enhance thermal efficiency and reduce soot
emissions at near-TDC injection timings




Simulation Setup — FRESCOT
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Operating conditions Computational domain Intake region

Intake temperature

90°C Exhaust region

Engine speed 1600 rpm

Intake pressure 137 kPa

(controlled)

Intake [O2] 17.963%

Intake [CO2] 2.596% .
Injection

Exhaust back pressure 146 kPa Measured

- injection profile

Rail pressure 1615 bar fromHDA

Injection strategy 2 pilots, 1 main l

Mesh Body-fitted, unstructured hexahedral, ~ 1 million cells at BDC

Hybrid 1st-order implicit (diffusion, momentum)/ explicit .-Cylinder

Time accuracy

(advection)
Spatial accuracy 1st-order (advection), 2"-order (diffusion) « Cycle 0: starts at EVO (106 CAD
Turbulence model GRNG k-epsilon aTDCc)

Spray model

Tuned to ECN data (Spray A) « Cycle 1: motored cycle to establish

Wali inocel

ERC law of the wall, Han and Reitz heal transicr AE Congress, Detroit, M, 2018.
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Q-criteria and vorticity to identify
squish-region vortices with clockwise

rotation

Toroidal vorticity shows how rotational flow

SL early injection timing R

structures are formed
du, OJuy) . (au du S
— sinf — X z) cosB . wg (1/CAD)
. (ay 0z ) 0z Ox \:}\\ 2.0 gm CCW
9 = " | 1.0
M = 0.0
ey 4/ . -1.0
=7 2.0 " oW
Q-criteria helps us visualize vortices :'i
1 2 N === T ILI:
Q=500 =I5 >0 a ,:,:
LT p=1

vorticit Strain rate
Thréshold: Q > 5e6 1/s2



Baseline DSL piston helps to
enhance vortex formation at near-
TDC injection timings
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Quantifying strength and longevity of
squish-region vortices with negative
(CW) vorticity

Data filtered to focus on squish-region vortices with negative vorticity

Rotational energy about the rotation center (r., z,.)

of the vortices with max Q /
2y — (1= 1)

Z Zma (ZL
Erot = 2 W] 2 -2z )2+ (r; — 1.)?

Volume of squish-region vortices

Vol = Z Vol;




Baseline DSL bowl enhances size and rotational
energy of squish-region vortices with near-TDC
injection timing — supports 2" hypothesis
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Experimental Setup

Sandia’s Off-Road Diesel Research
i ! I lll :

Combustion system Ford 6.7L Scorpion

\ /

Bore 99 mm
Stroke 108 mm

Compression ratio 16.3:1

Valves/cylinder 4

Injector 8-hole piezo

SL piston Baseline DSL piston

Areal 2.4%
Vol equal




Part-Load Operating Point
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Coolant temperature 90°C
Intake temperature 44°C
Engine speed 1600 rpm
IMEPN 8.55 bar
Intake flow rate 14.9 g/s
Intake pressure (not 137 kPa
controlled)

Simulated EGR rate 20%
Intake [O2] 17.963%
Intake [CO2] 2.596%
Exhaust back pressure 146 kPa
Exhaust diluent flow rate 10 g/s
Rail pressure 1615 bar

Injection strategy 2 pilots, 1 main

Fuel Cert diesel (CN 46)

dm/dt (g/s)

60 ' . : 40
50
40 Pilot 1 Pilot 2 130

30 r
120
20 ¢
10 - 110
0
-10 ' : ' 0
-20 -10 0 10 20

Start of Energizing CAD aTDCc

SOl i, sweep 5.1: 2:15.1 CAD
duration__. is load-adjusted

main

m (mg)



The DSL piston reduces burn duration and improves
thermal efficiency with early-injection timing, which is
correlated with the stronger squish-region vortices

44 ¢ A5 | 11
—o—DsL 1.4% relative gain —e—DsL
42 | [—9—SL —o—SL
40+ Burn duration ~ 40 T
— X . 10.9
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< 38/ caD % . n
Q 36 o dCVC well correlated with ngp, :';
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B c 30 it S O
O ~ 29~
6 32| — IR S B
30+ | - g 25 | Q,y is lower (area reduced) "o 107
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Despite improvements in thermal efficiency,
soot emissions increased

NOx is almost equal |——DSL Enhanced squish-region vortices tend to
Seo 5| improve air utilization, therefore, soot should
Tes reduce.

®.

One possibility: change in fuel splitting in DSL
Soot increased by 69% ? piston, with more fuel directed upwards than

1 Sl nist d not e idj
ngLnSis?gn not enough OZEB%EXp"ljs'lZoenthe

WW

| | SL piston spray targeting is lower in the bowl,
4 6 g 10 12 14 16 while in DSL piston, it's more evenly
SOImain (CAD aTDCc) distributed.




Can we design a better DSL bowl using

CFD? Dimple parameter design sensitivity i
study WCX
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To produce stronger and larger vortices at near-TDC
Injection timing, dimples should be shallower, with
sharper features, and placed closer to the liner
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Design sensitivity study reveals a DSL bowl that
maximizes rotational energy at near-TDC
Injection timings

1 ‘ 4 ‘ | '
—=—SL early —=—SL early 27% »%
——8L interm ——8L interm !
0.8 /|-« DSL baseline 4| DSL baseline
——DSL improved ——DSL improved

= 06 Lo ,
£ 5, |
o —_
n- 0.4 g
N S
1 L
0.2 :

1.4% reduction in
area vs. SL piston
Bowl volume
constant

o 5 10 15 20 0 5 10 15 20
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Conclusions

« CFD simulations predict that spray-wall interactions in the DSL piston generate
larger, more energetic vortices in the squish region than those predicted with the
production SL piston

* Experiments with the baseline DSL piston show improvements in thermal efficiency,
shorter burn duration, and enhanced degree of constant volume combustion, but
increased soot levels and no penalty in NOx emissions compared to the SL piston

* CFD design sensitivity study shows that, to produce stronger and larger vortices at
near-TDC injection timings, DSL pistons should have shallower dimples, steeper
curvatures, and dimples further into the squish region

* The sensitivity study led to the design of an improved bowl with 44% increased
rotational energy and 27% larger squish-region vortices compared to the baseline
DSL bowl
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