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Plasma Material Interactions
• Important to understand mixed materials effects at divertor 
surface
• Material degradation, synergistic effects, implications on 

hydrogen retention, etc.

• Atomistic modeling will play a critical role but there is a lack 
of accurate interatomic potentials (IAPs) for modeling these 
materials especially for multi-component IAPs

• Machine learning  interatomic potentials (MLIAPs) have 
shown to have increased accuracy compared to traditional 
potentials
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Co-Deposit Layer at Divertor Surface

M Mayer et al 2016 Phys. Scr. 2016 014051 

Wirth, et al.  MRS Bulletin 36 (2011) 216-222

Complex Physics at Plasma-Material Interface
Beryllium First Wall

Tungsten Divertor

Plasma: 
~90% H/10% He
With impurities 

(Be,N,etc.)



SNAP Definition and Work Flow
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Model Form

Regression Method

• β vector fully describes a SNAP potential
• Decouples MD speed from training set size

DFT TrainingSet of DescriptorsWeights

Code available: https://github.com/FitSNAP/FitSNAP

M. A. Wood, M.A. Cusentino, B.D. Wirth and A.P. Thompson, Phys. Rev. B 99, 
184305



SNAP Models for Simulating Plasma Material Interactions4

[1] M. A. Wood, et al. 2019 Phys. Rev. B 99, 184305
[2] ] C. Björkas et al 2010 J. Phys.: Condens. Matter 22 352206

W-Be Intermetallic Formation Energies (eV)

Phase Composition DFT1 SNAP1 BOP2

B2 WBe 0.67 0.30 -2.20

C14 WBe2 -0.87 -1.27 -4.20

C15 WBe2 -0.92 -1.15 -4.19

C16 WBe2 -0.90 -1.22 -4.20

D2B WBe12 -0.96 -0.34 -6.69

SNAP Results for W-Be
Training Data

75 eV Be Implantation

Intermetallic Growth

[3] M.A. Cusentino, et al. 2021 Nucl. Fusion 61 046049
[4] M.A. Cusentino, et al. 2020 Nucl. Fusion 60 126018

W-Be SNAP Development SNAP Results for W-Be-He

Blue: He 
Purple: Be  
Gray: W

100 eV He Implantation

Pure W W-Be Mixed 
Layer

W:      1.2 x 10-8  m2/s
W-Be: 1.8 x 10-11 m2/s



Building SNAP Models for Hydrogen and Nitrogen
• 90% of plasma impinging on divertor is hydrogen 

• Concern of hydrogen trapping in divertor

• Nitrogen also present as impurity species
• Experiments indicate formation of tungsten nitride layer that results in increased hydrogen 

retention

•Additional training data required:
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Bulk Configurations Surface Configurations Gaseous Configurations Moving to W-N-H

W: Grey 
H: Green 
N: Pink



Fitted Properties6

H Defects DFT (eV) SNAP (eV)

0.88 2.50

1.26 3.24

4.08 5.38

-4.74 -4.75

Defect Formation Energies

N Defects DFT (eV) SNAP (eV)

1.85 1.89

1.11 1.09

4.72 2.90

-9.79 -9.47

WxNy Formation Energies

N Defects DFT (eV) SNAP (eV)

WN2– P62mmc -1.82 -1.82

WN2– P6m2 -0.91 -1.75

WN - NiAs -0.84 -1.74

WN - WC -0.23 -1.51

W2N -0.03 3.29
Adsorption Energies

H Ads. DFT (eV) SNAP (eV)

(100) Ads. Site Bridge Bridge

(100) Ads. Energy -0.96 -1.57

(100) H2 Ads. Energy -0.80 -0.76

(110) Ads. Site Hollow Hollow

(110) Ads. Energy -0.75 -0.69

(111) Ads. Site Bridge Bridge

(111) Ads. Energy -0.59 -1.42

N Ads. DFT (eV) SNAP (eV)

(100) Ads. Site Hollow Hollow

(100) Ads. Energy -3.52 -4.33

(100) N2 Ads. Energy -2.94 -8.63

(110) Ads. Site Hollow Bridge

(110) Ads. Energy -3.59 -2.58

(111) Ads. Site Bridge Hollow

(111) Ads. Energy -3.08 -3.44

Nitrogen Binding Curves



Post-Fitting Testing7

Bulk Dynamics Surface Dynamics NEB Barriers (Bulk)

W: Grey 
H: Green 
N: Pink

Nitrogen



Expanding Training Data Based on Early Potentials8

Initial “Poorly” Behaving 
Potentials

Introduce Additional Training Data
“By Hand” Active Learning

Testing:
Poor Behavior

Run Vasp

SNAP Refit:
Better Behavior



Production Implantation Simulations9

• 75 eV hydrogen (left) or nitrogen 
(right) into (100) tungsten at 1000 
K

• Atoms implanted every 10 ps
• Hydrogen:

• Diffuses throughout the material
• Forms oriented platelets that were 

similarly observed with other 
potentials at high H concentrations

•Nitrogen
• Remains very close to the surface, 

within first ~2 nm
• Surface becomes disordered and 

the beginning of ordered W-N 
structures emerge that are similar 
to NiAs structure

H Platelet Formation

WxNx Formation



Summary

•  SNAP is a robust ML-IAP that has been applied to a 
variety of materials for extreme conditions with high 
accuracy

• A W-Be-He has been successfully developed to study 
plasma material interactions relevant for fusion energy 
reactors

• The current SNAP potential is being extended for W-H 
and W-N and SNAP can reproduce key material 
properties for gas-metal interactions

• Initial post-fitting testing has assisted in finding poor 
behavior of early potentials so that additional training 
data can be generated

• The W-H and W-N SNAP potentials have been used to 
perform production implantation simulations

• Future work entails further refining of potentials and 
expansion to full W-N-H SNAP potential
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Resources are limited, which is your best choice?

Computational Cost
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SNAP GAP

Qualitative Properties

Near QM Accuracy

Plimpton and Thompson, 
MRS Bulletin (2012).

Twobody (B.C.)
Lennard-Jones, Hard 
Sphere, Coulomb, 
Bonded

Manybody (1980s)
Stillinger-Weber, 
Tersoff, Embedded 
Atom Method

Advanced (90s-
2000s)
REBO, BOP, COMB, 
ReaxFF

Big Data / Deep / 
Machine Learning 
(2010s)
GAP, SNAP, NN,…

MD Approximations Change Over Time11

Gayatri, Moore et al. (2020) https://arxiv.org/abs/2011.12875

https://arxiv.org/abs/2011.12875

