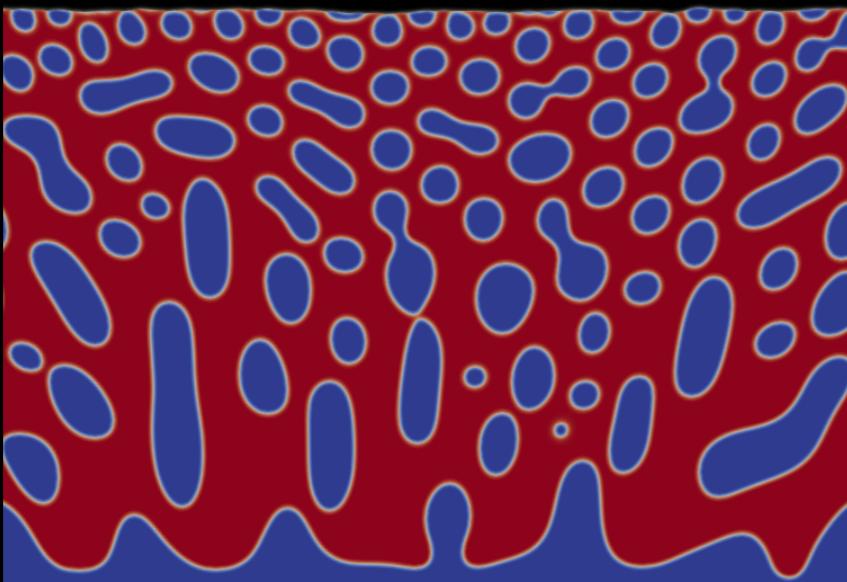


ACCELERATING PHASE-FIELD PREDICTIONS VIA SURROGATE MODELS TRAINED BY MACHINE LEARNING METHODS

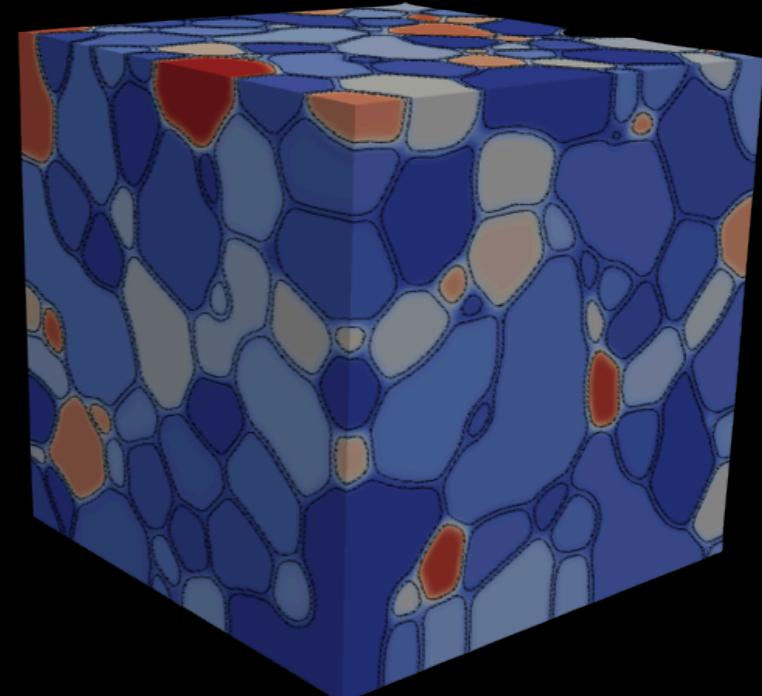
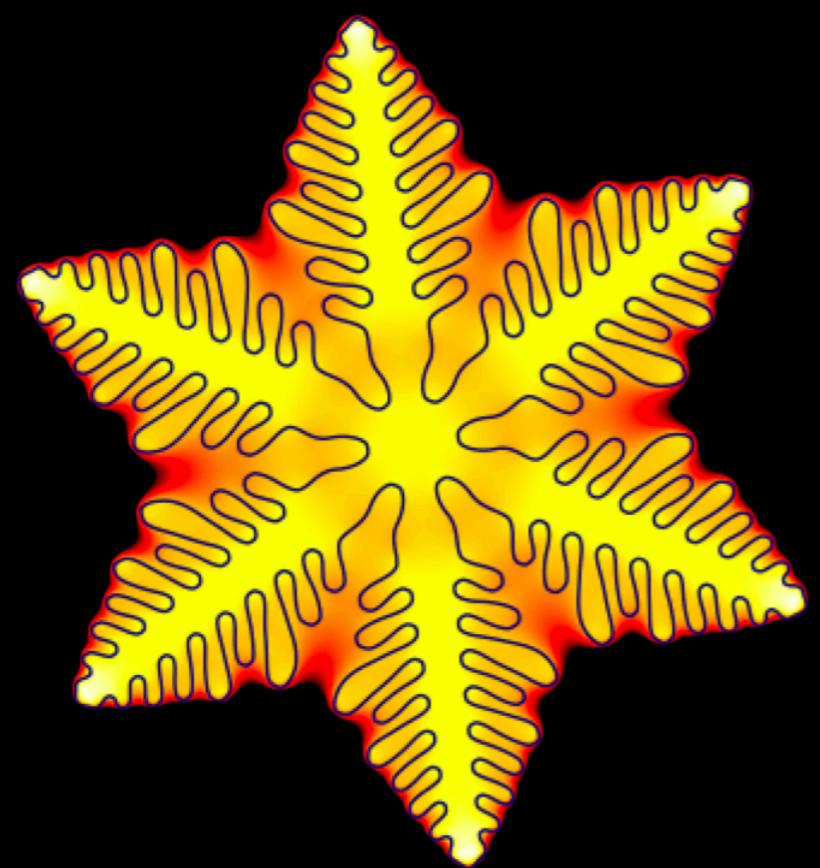
DAVID MONTES DE OCA ZAPIAIN, CHONGZE HU, SHAWN MARTIN, JAMES STEWART,
RÉMI DINGREVILLE

PREDICTING MICROSTRUCTURE EVOLUTION VIA PHASE-FIELD

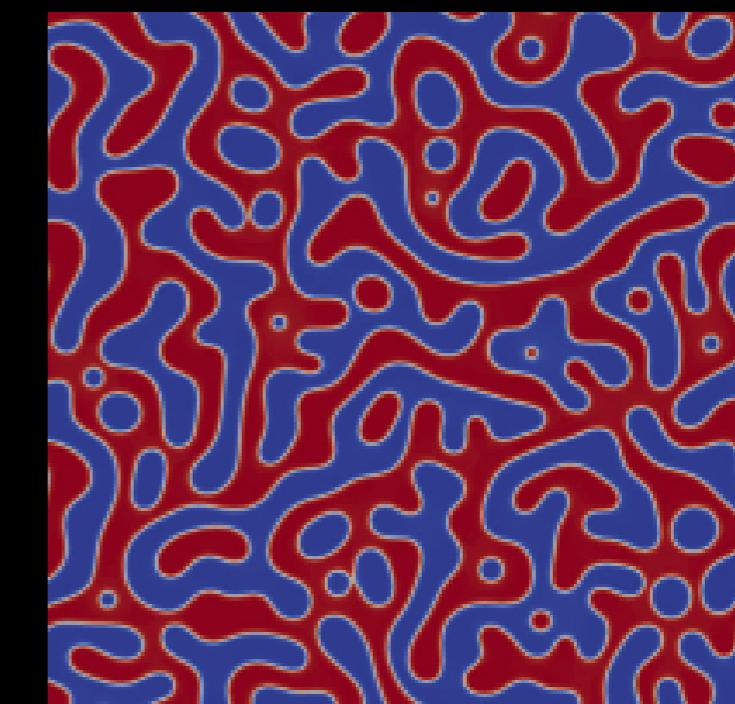
PHYSICAL VAPOR DEPOSITION



GRAIN GROWTH

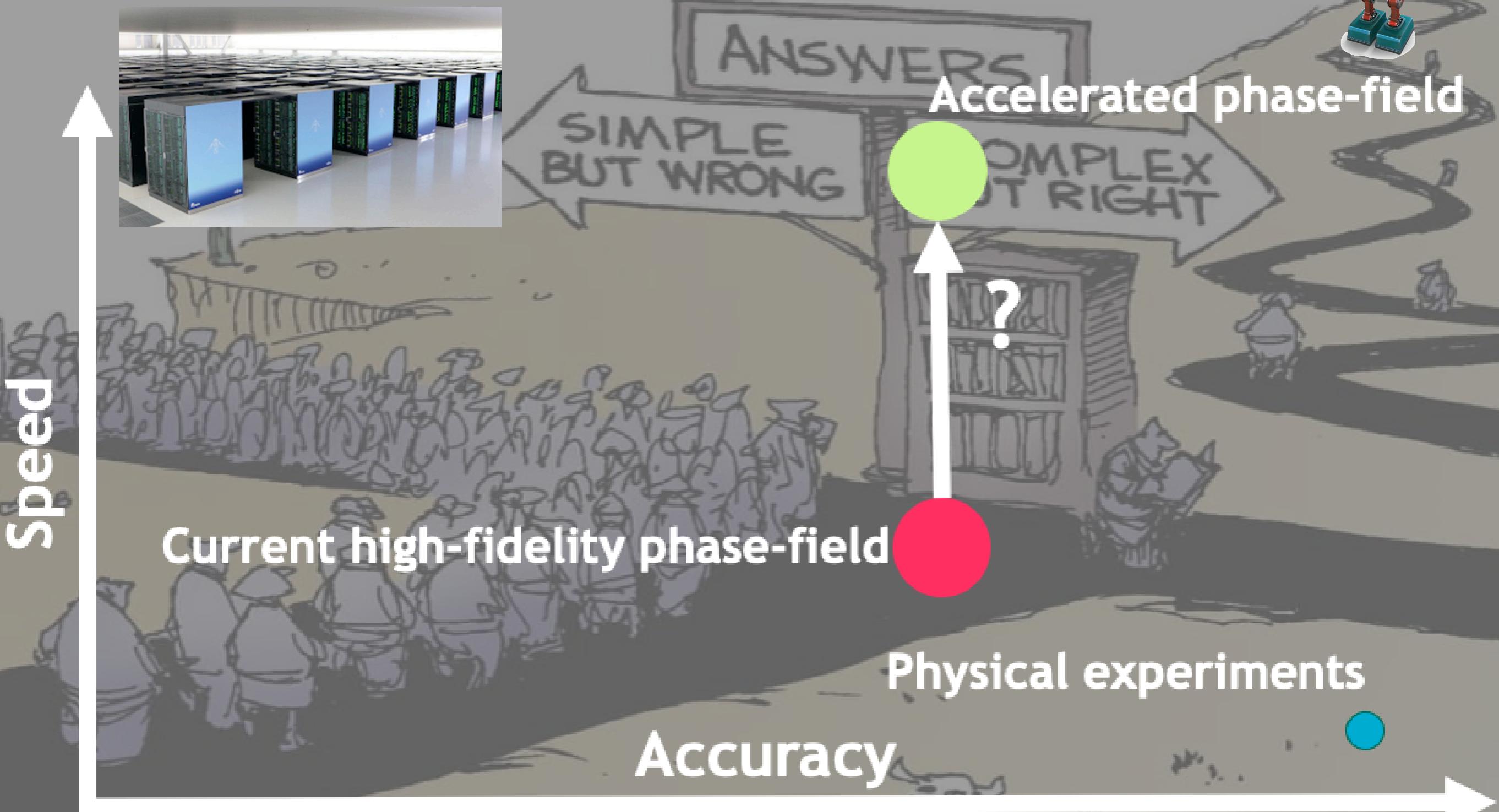


SOLIDIFICATION



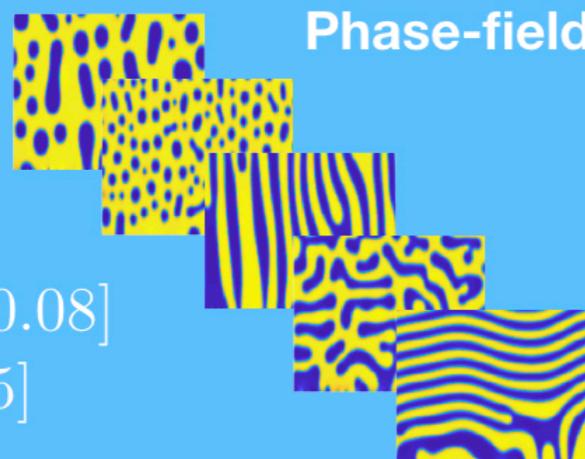
PHASE SEPARATION

LEARN HOW TO TRIGGER MICROSTRUCTURE FORMATION MECHANISMS ON DEMAND

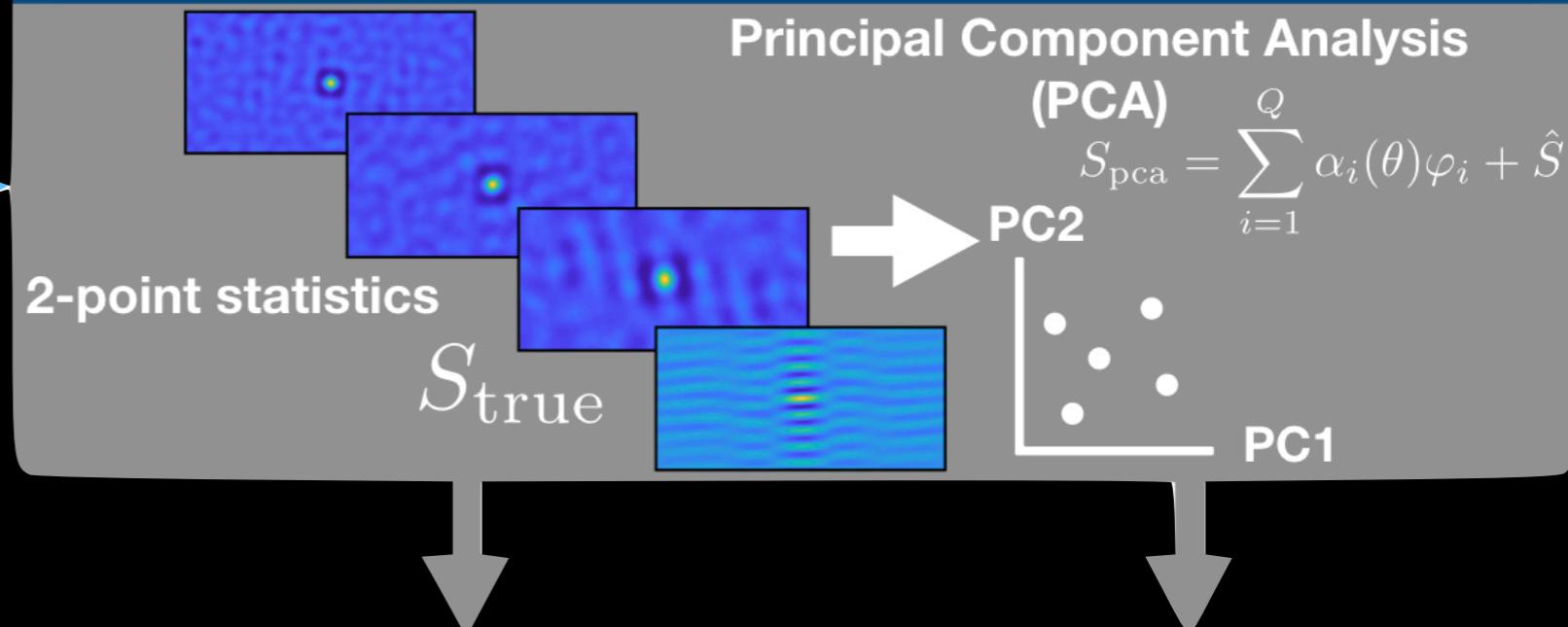


WE CAN MAP PROCESS TO STRUCTURE USING DIMENSIONALITY REDUCTION AND POLYNOMIAL CHAOS EXPANSION

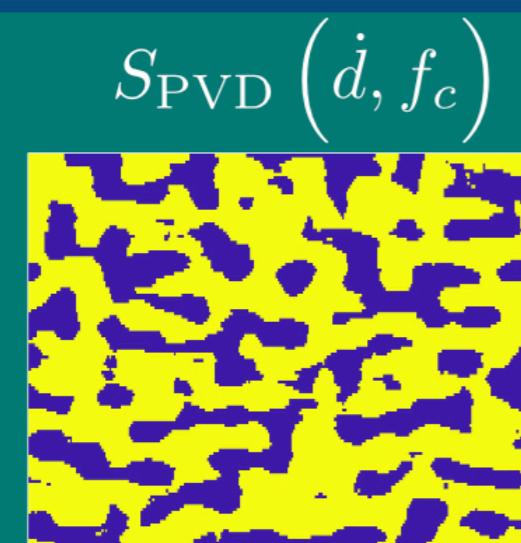
1. Simulation by phase-field



2. Reduction of microstructural space



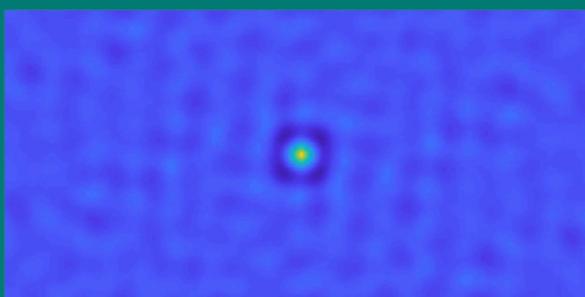
3. Construction of surrogate-based model for PVD



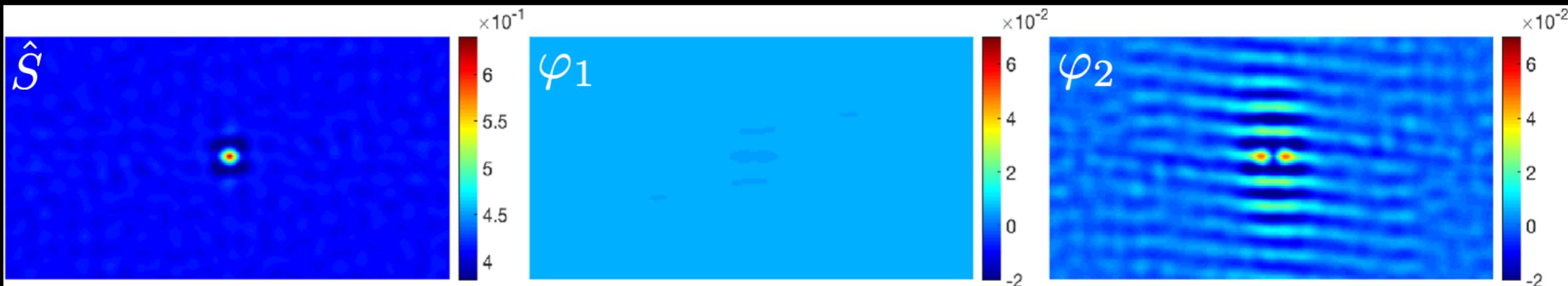
Microstructure reconstruction

$$\alpha_i(\theta) \approx \sum_{j=1}^{L_i} p_j^i \Psi_j(\theta) \leftarrow \theta = \begin{cases} \dot{d} \\ f_c \end{cases}$$

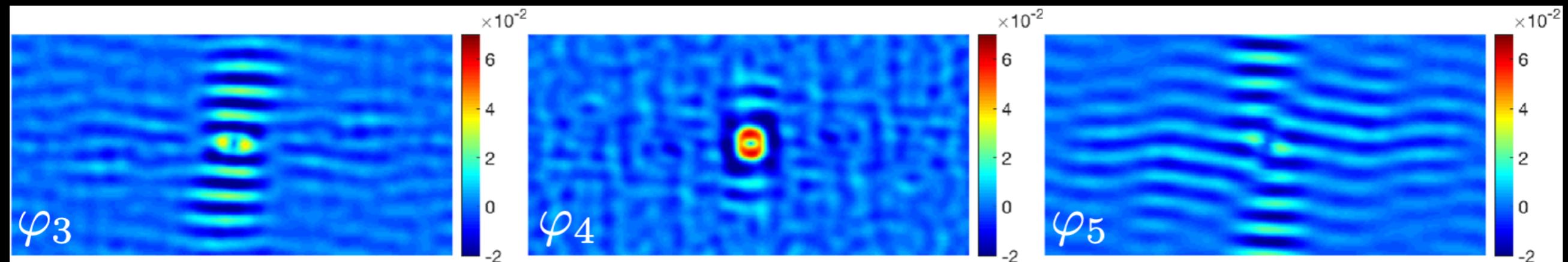
Polynomial chaos



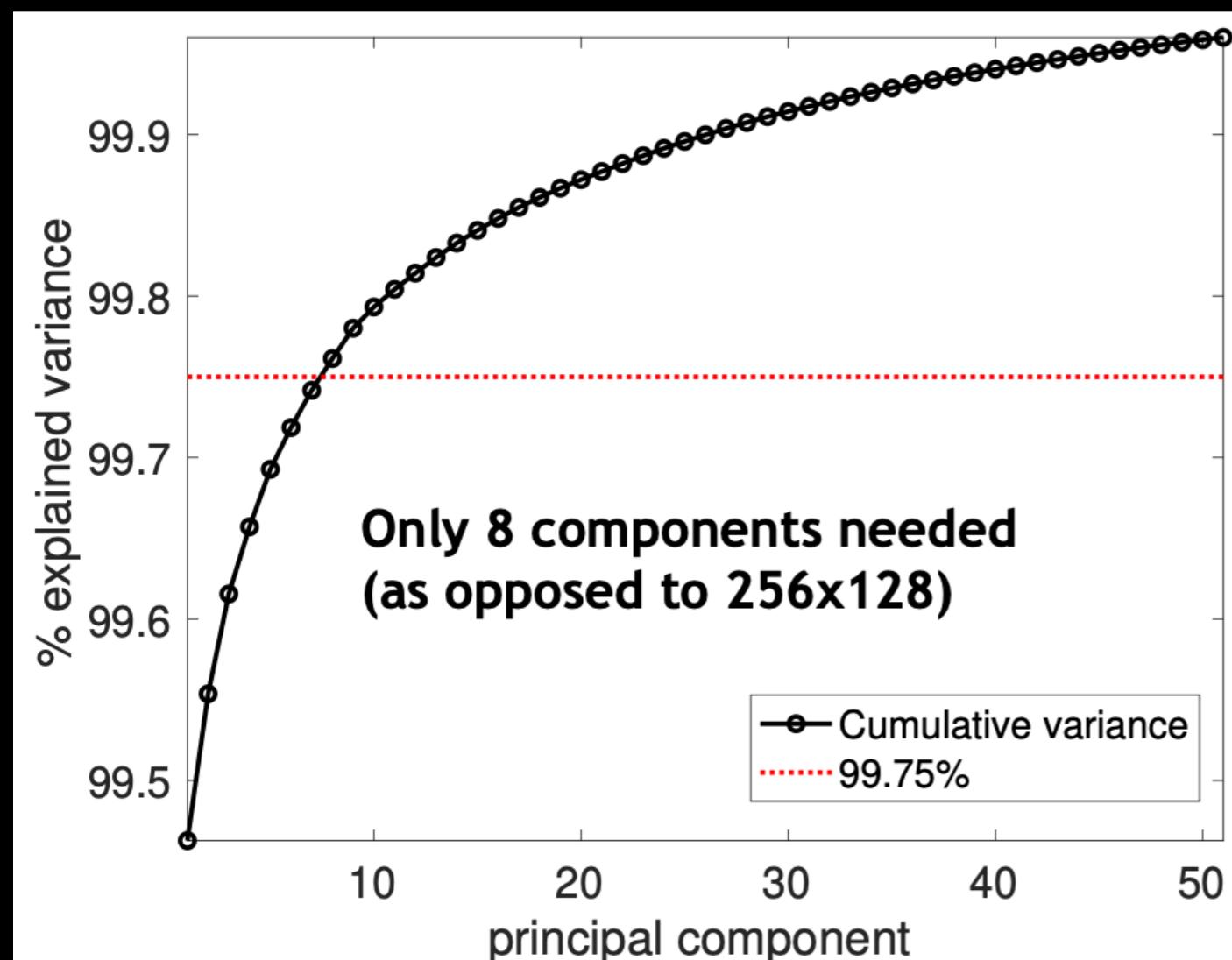
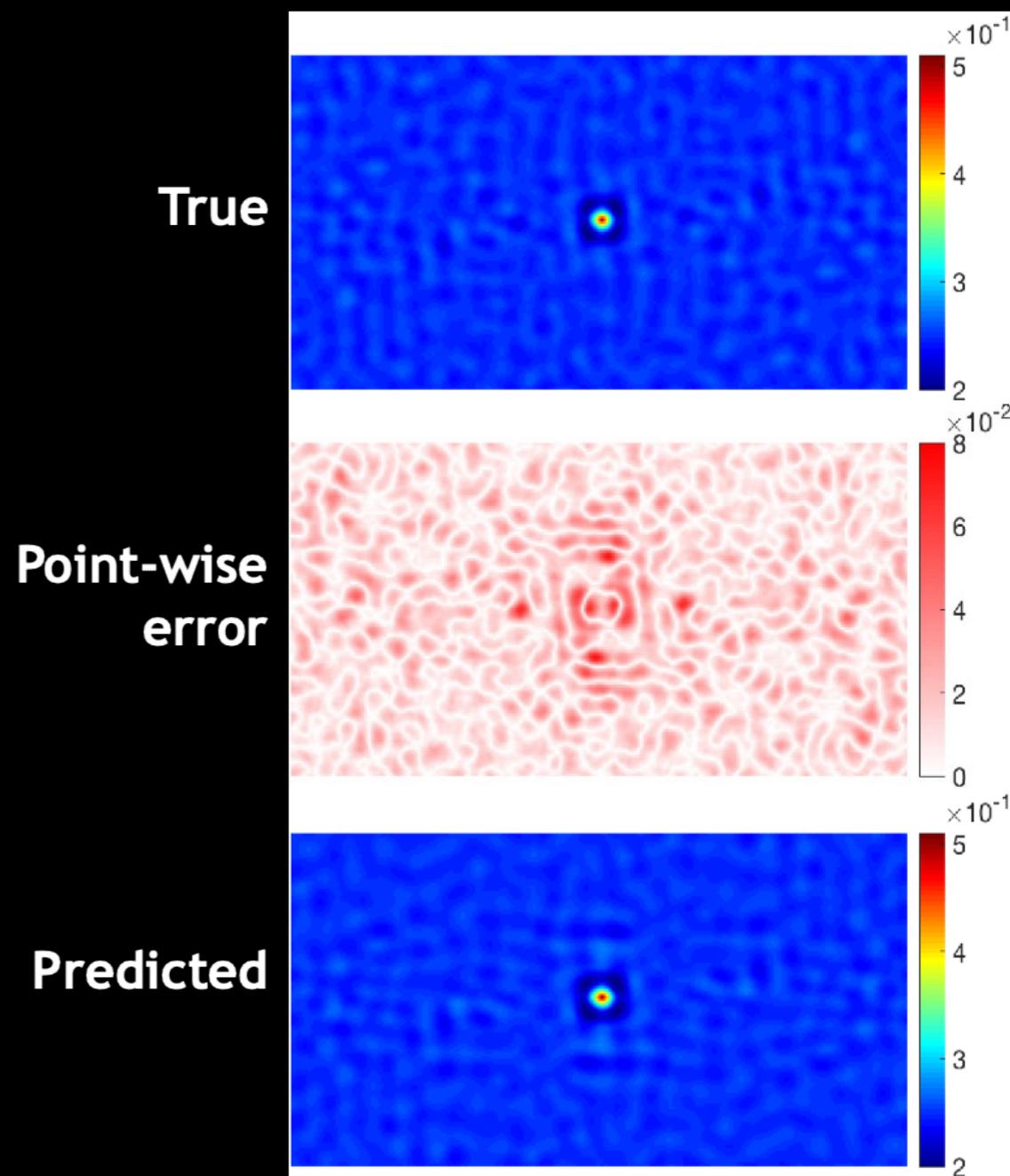
FINGERPRINTING OF THE MICROSTRUCTURE: CAPTURING SHORT AND LONG RANGE SALIENT FEATURES



$$S_{pca}(\theta) = \sum_{I=1}^Q \alpha_i(\theta) \varphi_i + \hat{S}$$



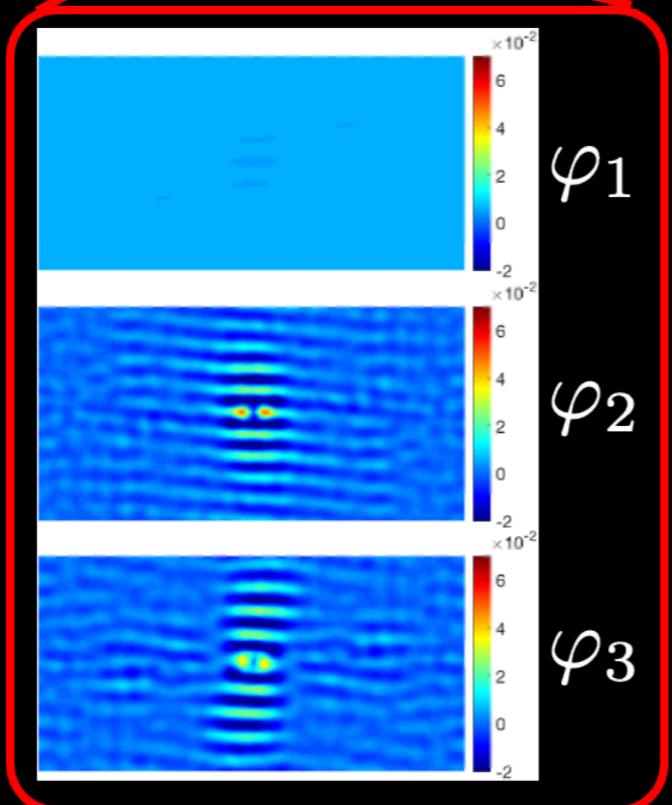
FINGERPRINTING OF THE MICROSTRUCTURE: CAPTURING SHORT AND LONG RANGE SALIENT FEATURES



SOURCES OF ERRORS COME FROM BOTH STEPS

PCA reduces the dimensionality

$$S_{\text{pca}} = \sum_{i=1}^Q \alpha_i(\theta) \varphi_i + \hat{S}$$



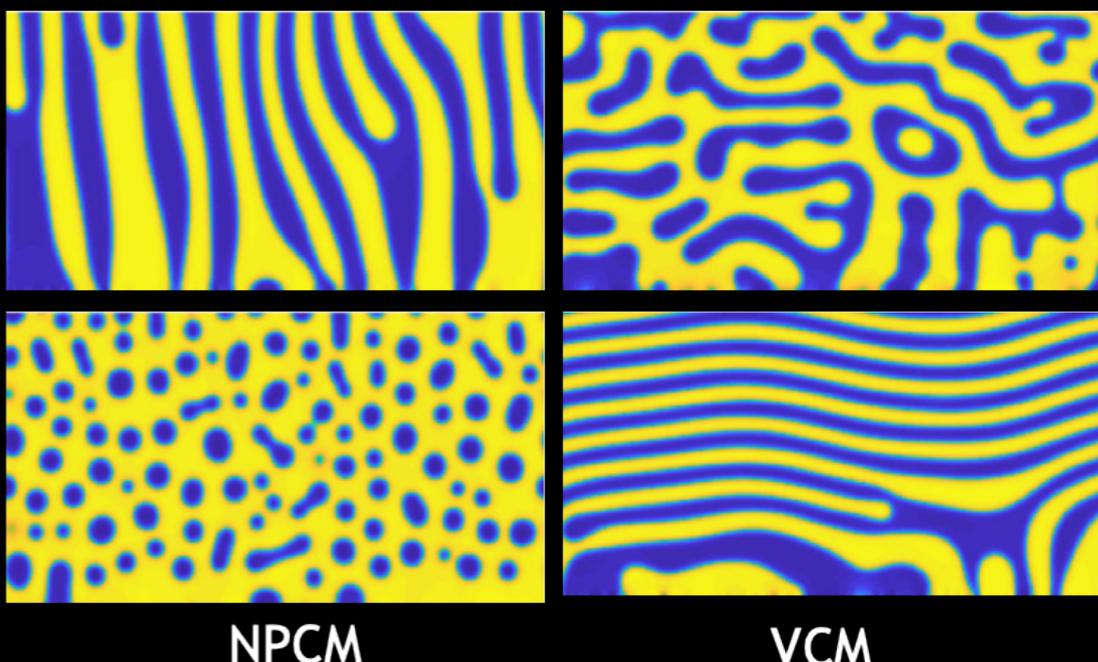
Basis elements capture complexity of morphology and long-range correlations

Error	min	max	mean	standard deviation
$\text{err}_1(\theta_{\text{train}})$	0.0030	0.0690	0.0146	0.0123
$\text{err}_1(\theta_{\text{test}})$	0.0030	0.0441	0.0123	0.0091

err₁: Error on 2pt-stats: true vs. predicted

PCE maps back to processing parameters

$$S_{\text{predicted}} = \sum_{i=1}^Q \sum_{j=1}^{Li} p_j^i \Psi(\theta) \varphi_i + \hat{S}_{\text{RCM}}$$



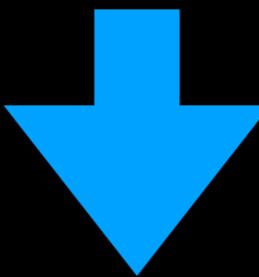
Small changes in processing input space results in drastic changes in morphology: but...Legendre polynomial in PCE are continuous polynomials

Error	min	max	mean	standard deviation
err ₂ (θ_{train})	0.0920	5.7683	0.8109	1.0067
err ₂ (θ_{test})	0.1106	2.8706	0.5296	0.5065
err ₃ (θ_{train})	0.0032	0.1197	0.0206	0.0223
err ₃ (θ_{test})	0.0032	0.0771	0.0154	0.0139

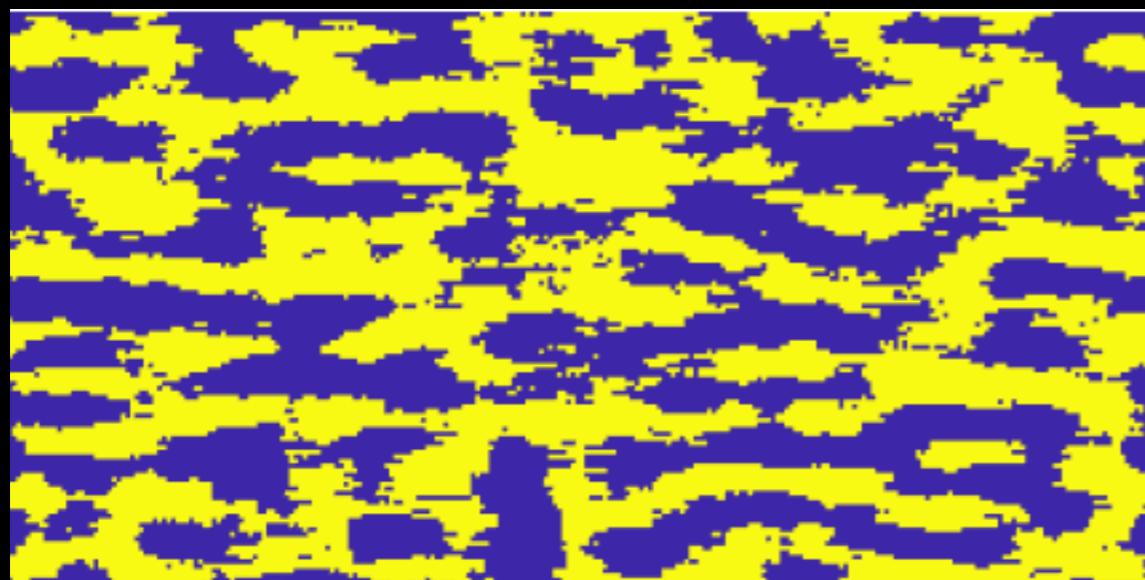
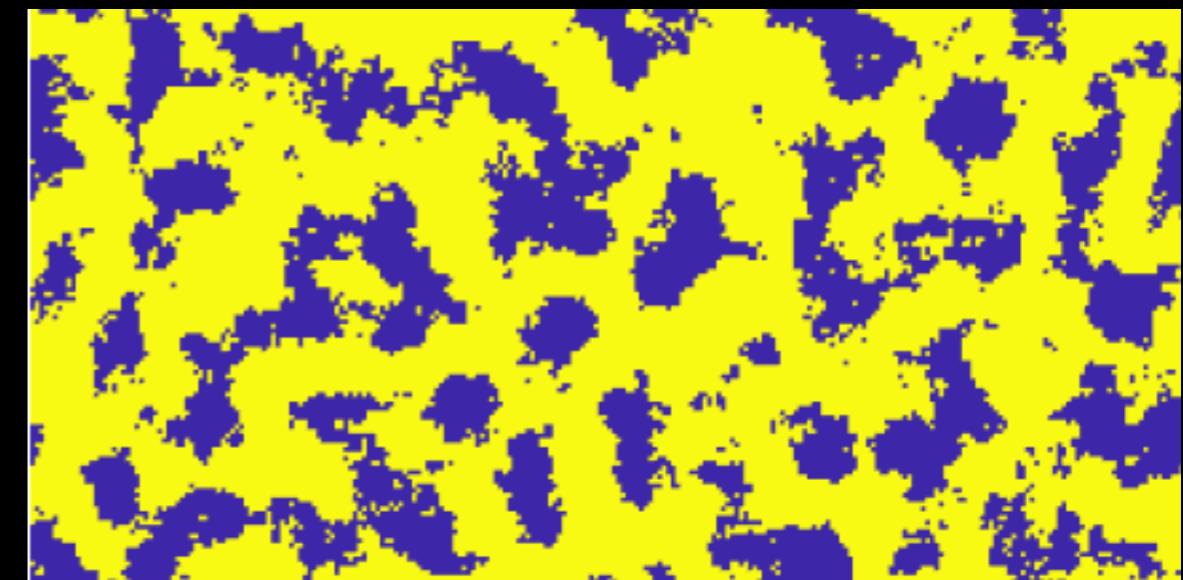
err₂: Error on PC scores

err₃: Error on 2pt-stats: true vs. predicted

COMPARISON BETWEEN TRUE AND PREDICTED MICROSTRUCTURES...SOME INFORMATION IS LOST



Reconstruction from surrogate model

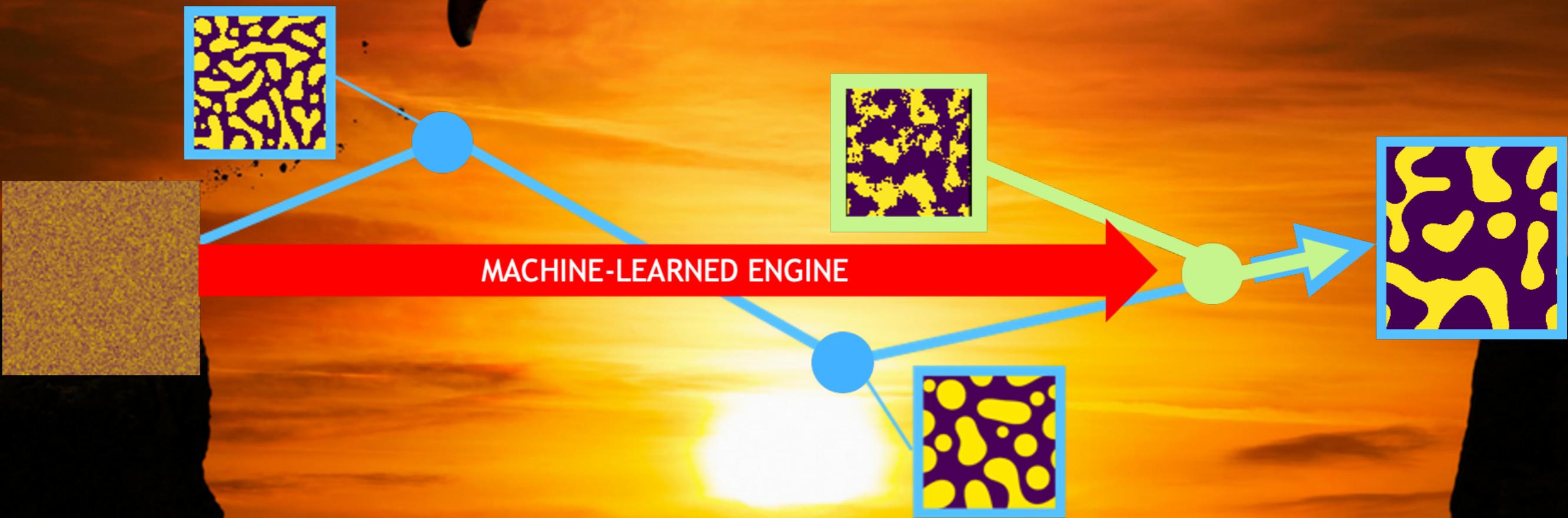


CAN WE LEAP IN TIME INSTEAD?

REFRAMING MICROSTRUCTURE EVOLUTION AS A MULTIVARIATE TIME SERIES

High-fidelity phase field trajectory

Accelerated trajectory



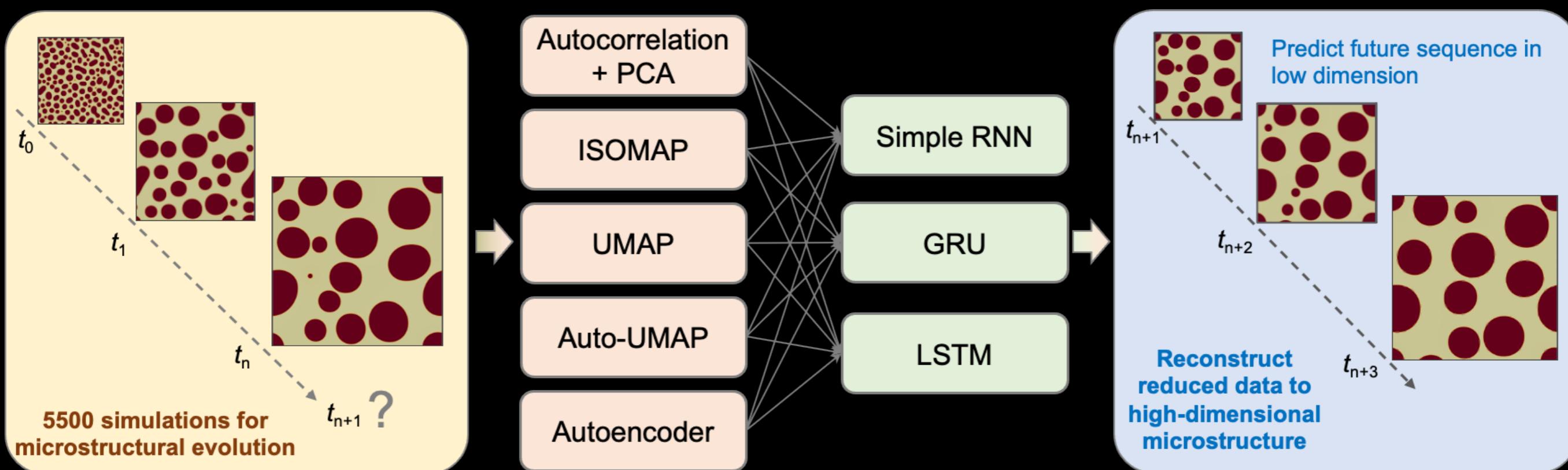
WE NEED EFFICIENT WAYS TO: (I) REPRESENT THE MICROSTRUCTURE EVOLUTION IN REDUCED SPACE AND (II) LEARN THE TIME EVOLUTION VIA HISTORY-DEPENDENT ALGORITHMS

High-fidelity
phase field

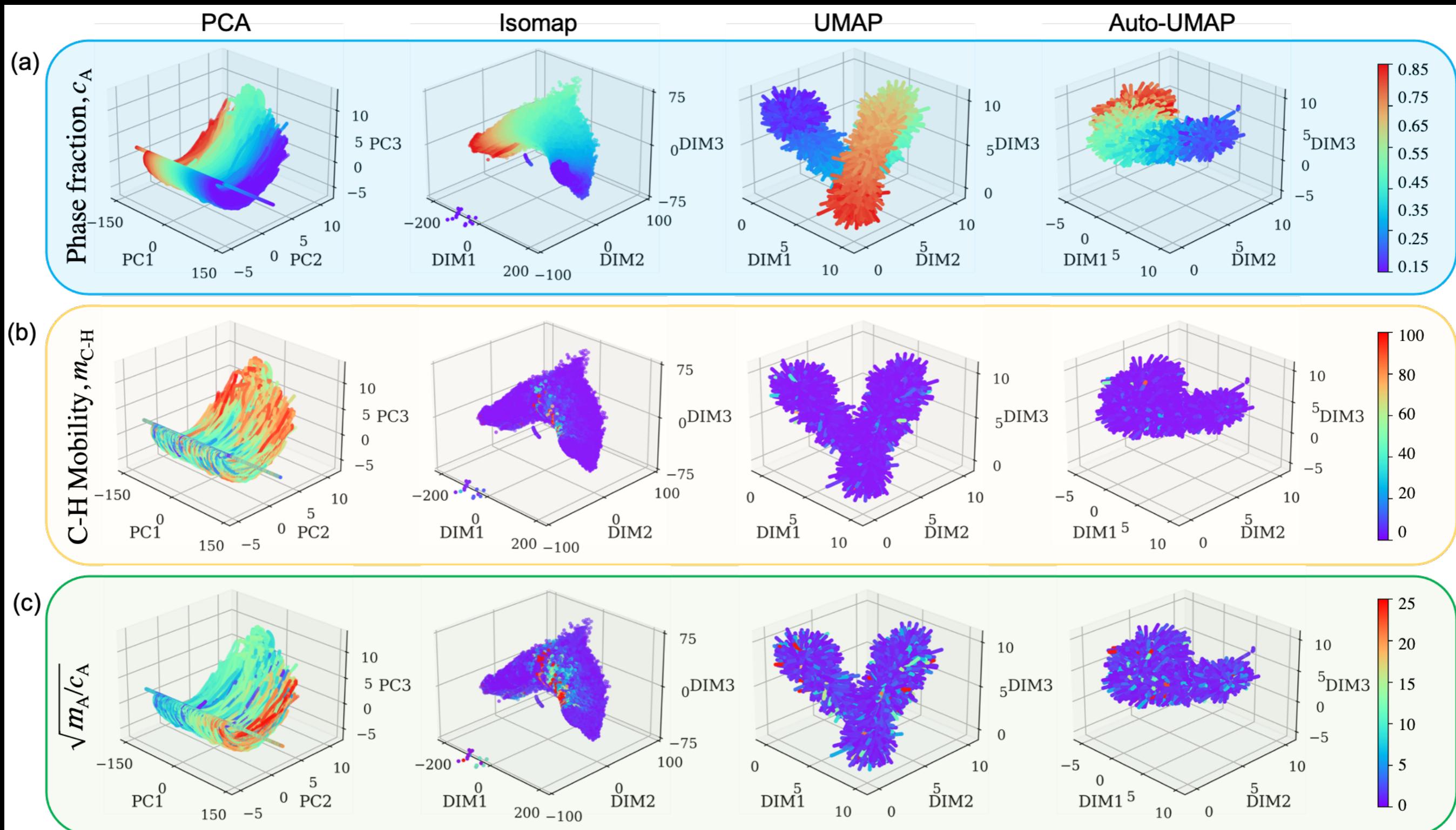
Dimension
reduction

History-
dependent ML

Accelerated
phase field



LINEAR VS. NON-LINEAR EMBEDDING: REPRESENTATION IN LATENT SPACE MATTERS



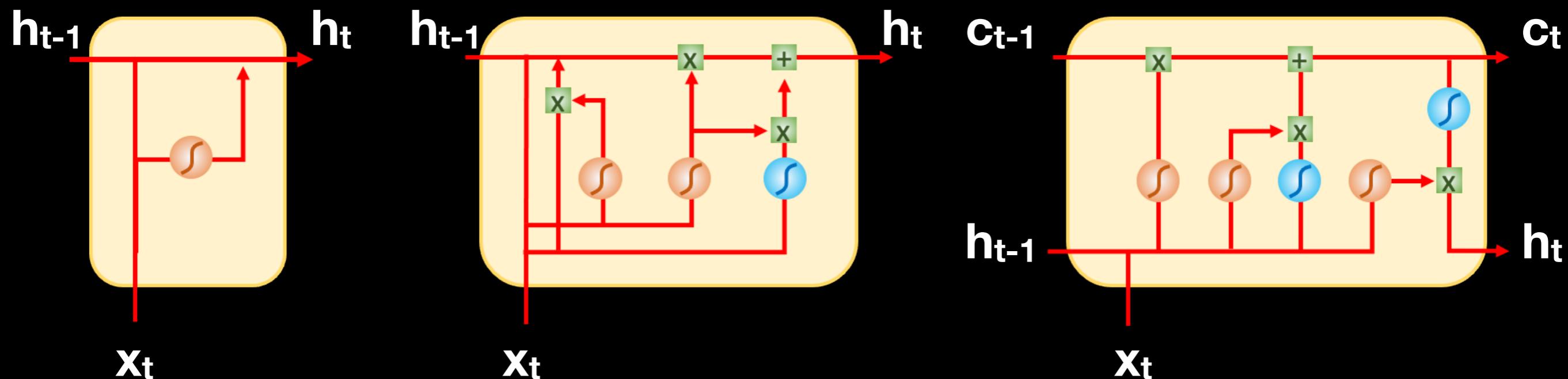
TIME FORECASTING: OUR PROBLEM REDUCES TO LEARNING THE MICROSTRUCTURE EVOLUTION IN THE LATENT SPACE

RECURRENT NEURAL NETWORK (RNN): FLAVORS AND COMPLEXITIES

RNN

GRU

LSTM



x: current state; h: history; c: copy

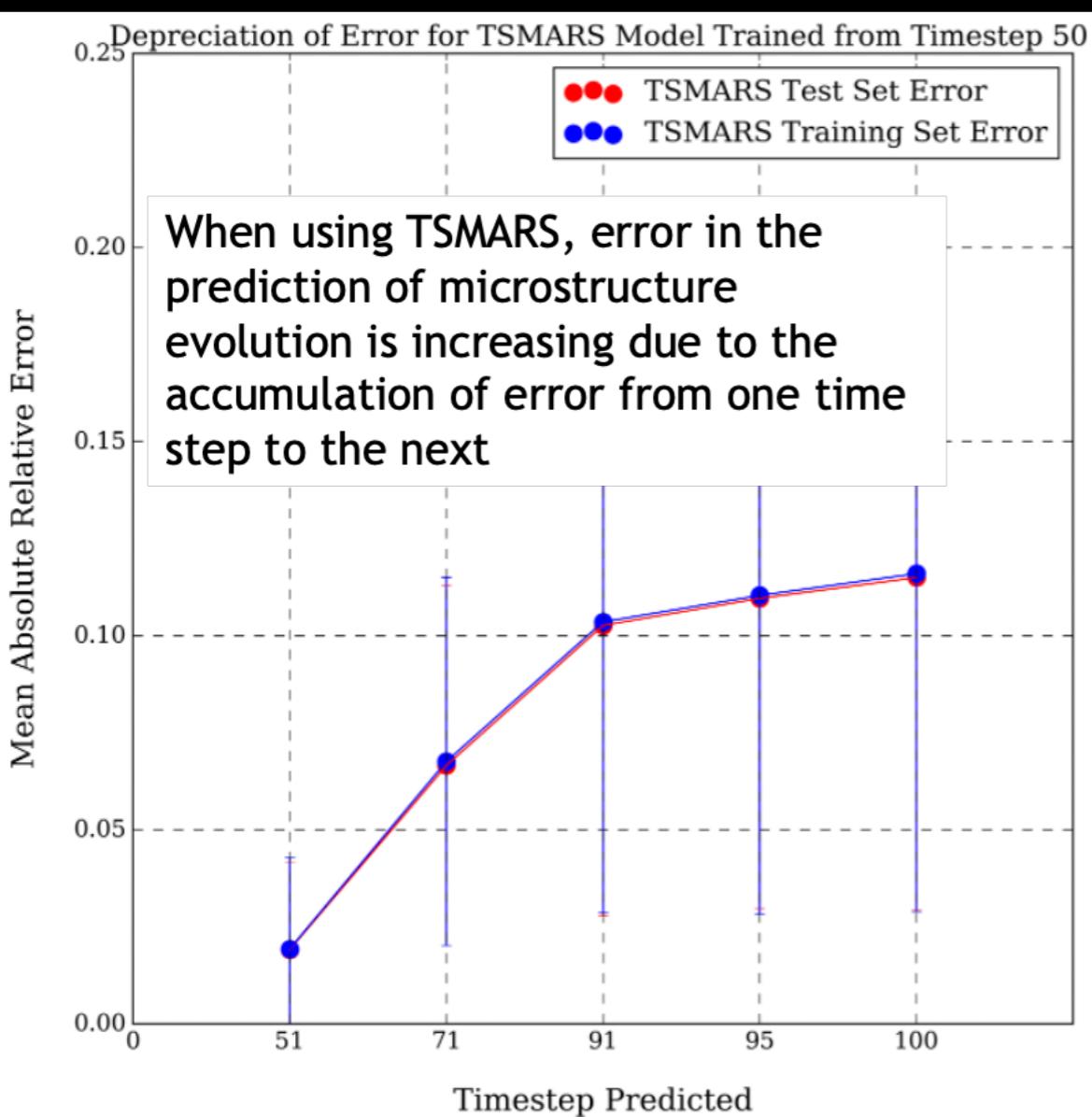
- Simple RNNs have no choice but to eventually forget due to vanishing gradient

- Two gates for GRU
- Output is $h(t)$, depends on $h(t-1)$ and $x(t)$

- Three gates for LSTM
- Output is $h(t)$, depends on $h(t-1)$, $c(t-1)$, and $x(t)$

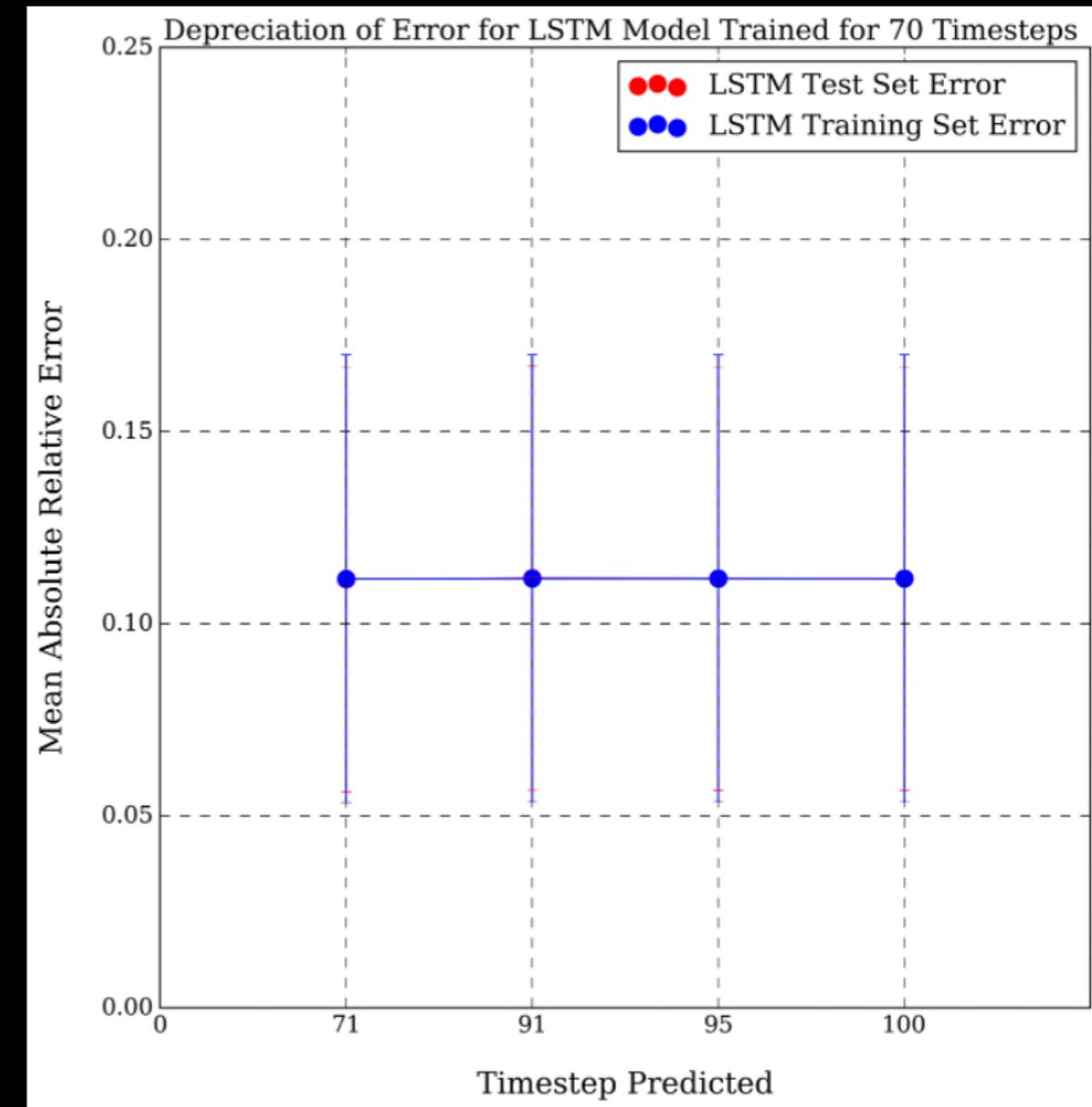
WHY Do WE NEED A RNN STRATEGY?

TSMARS



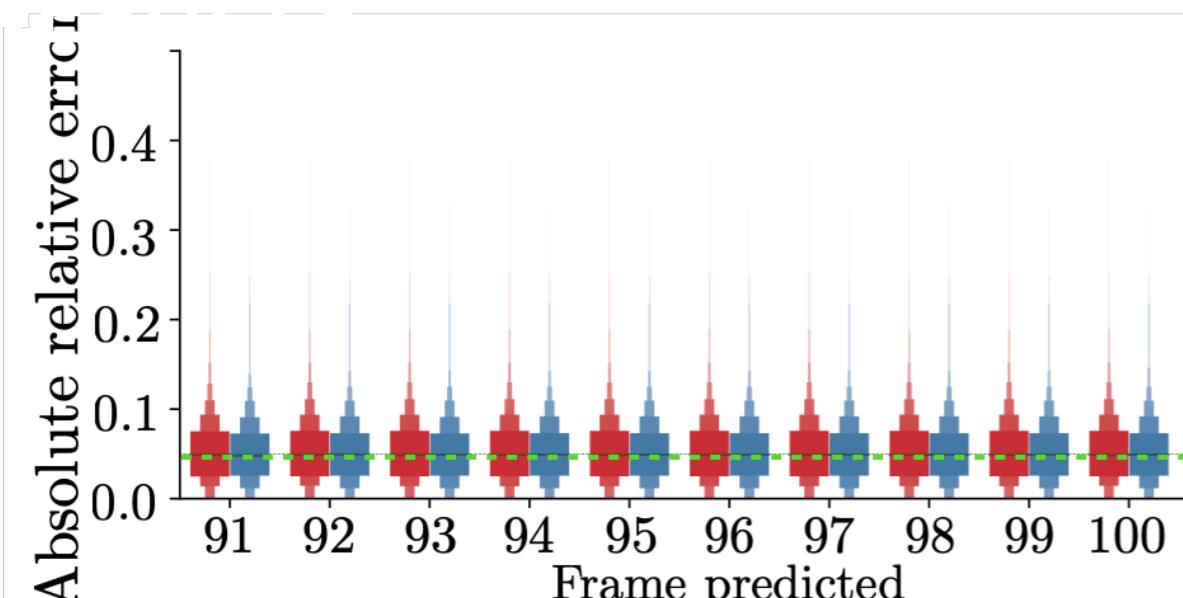
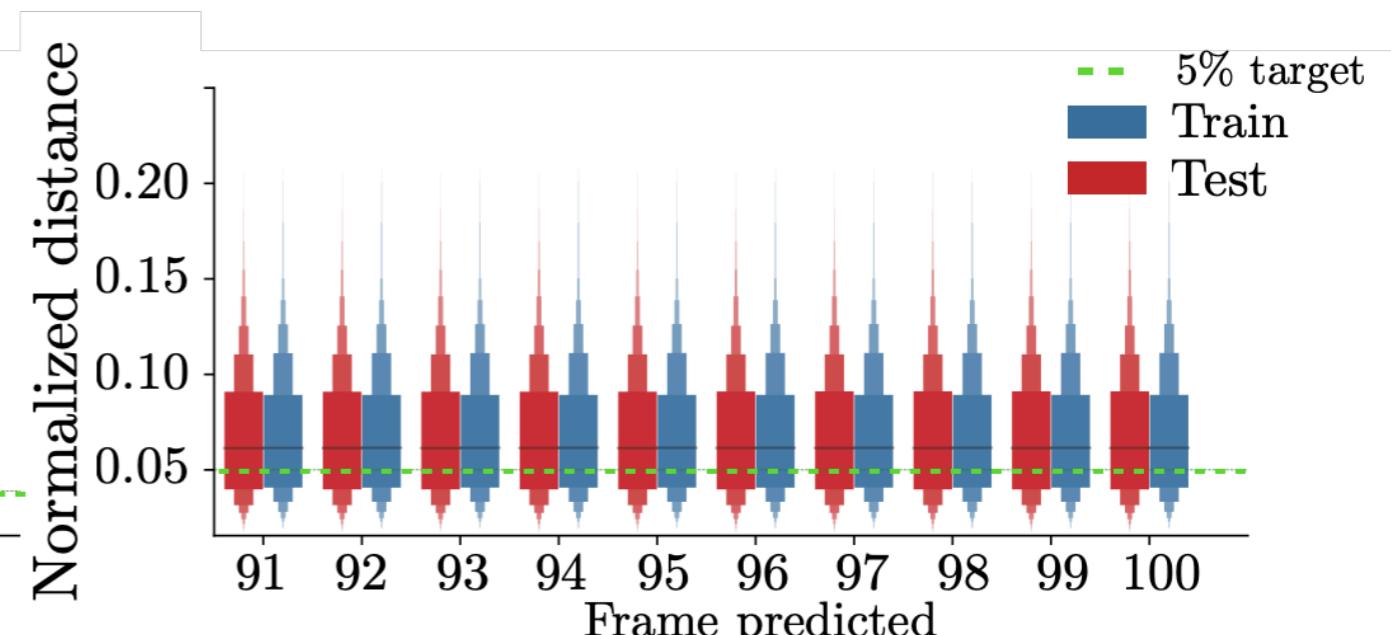
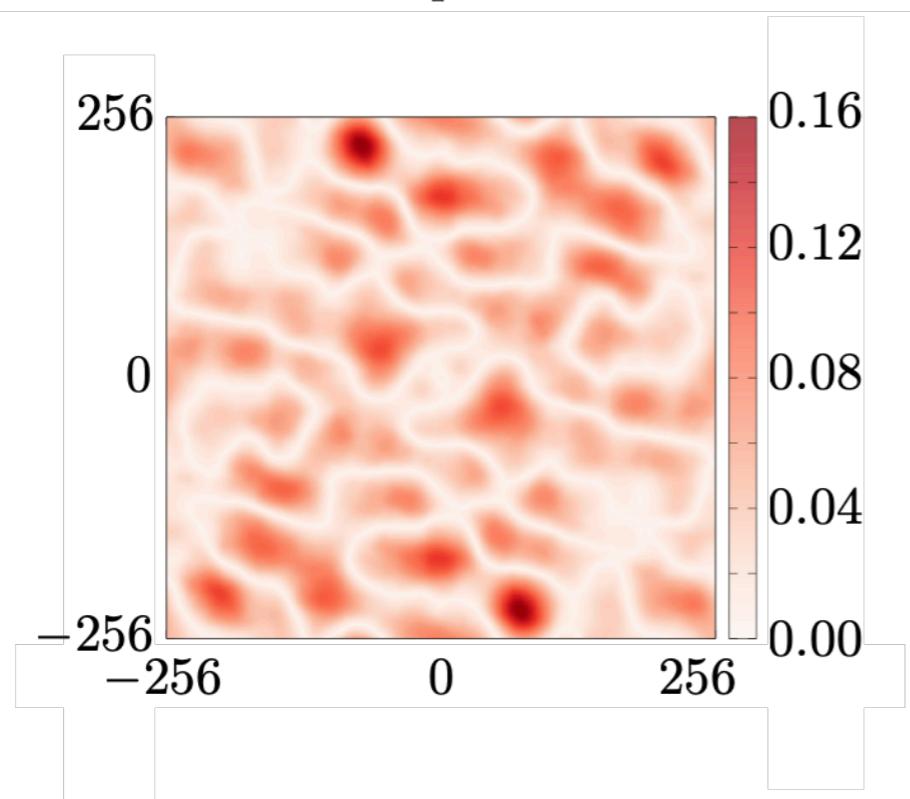
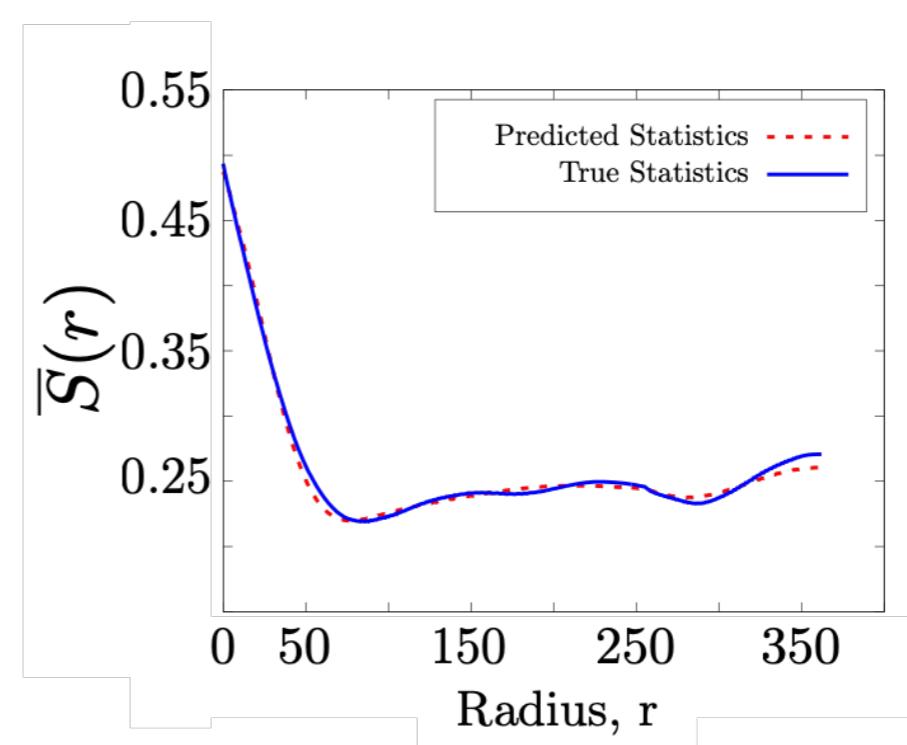
Good for data
augmentation

RNN

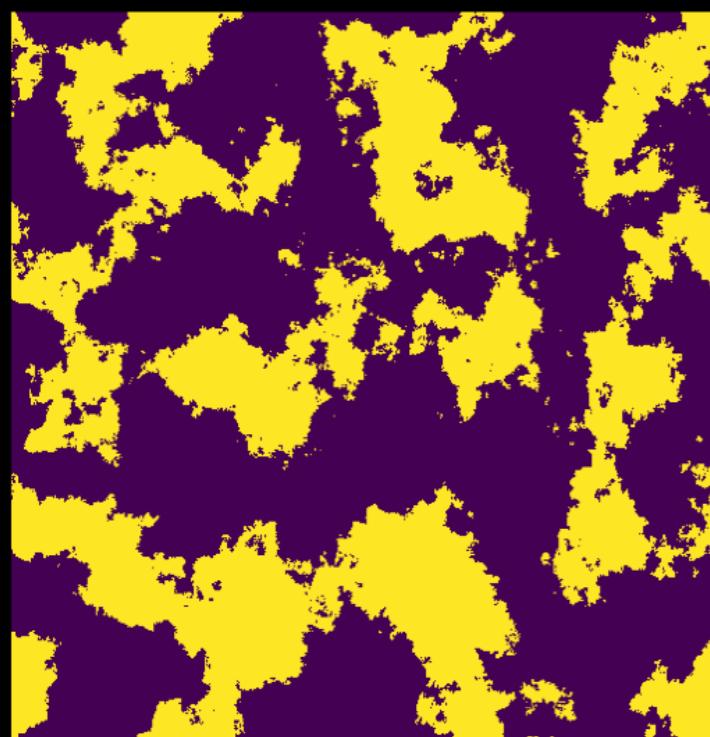


Good for
extrapolation

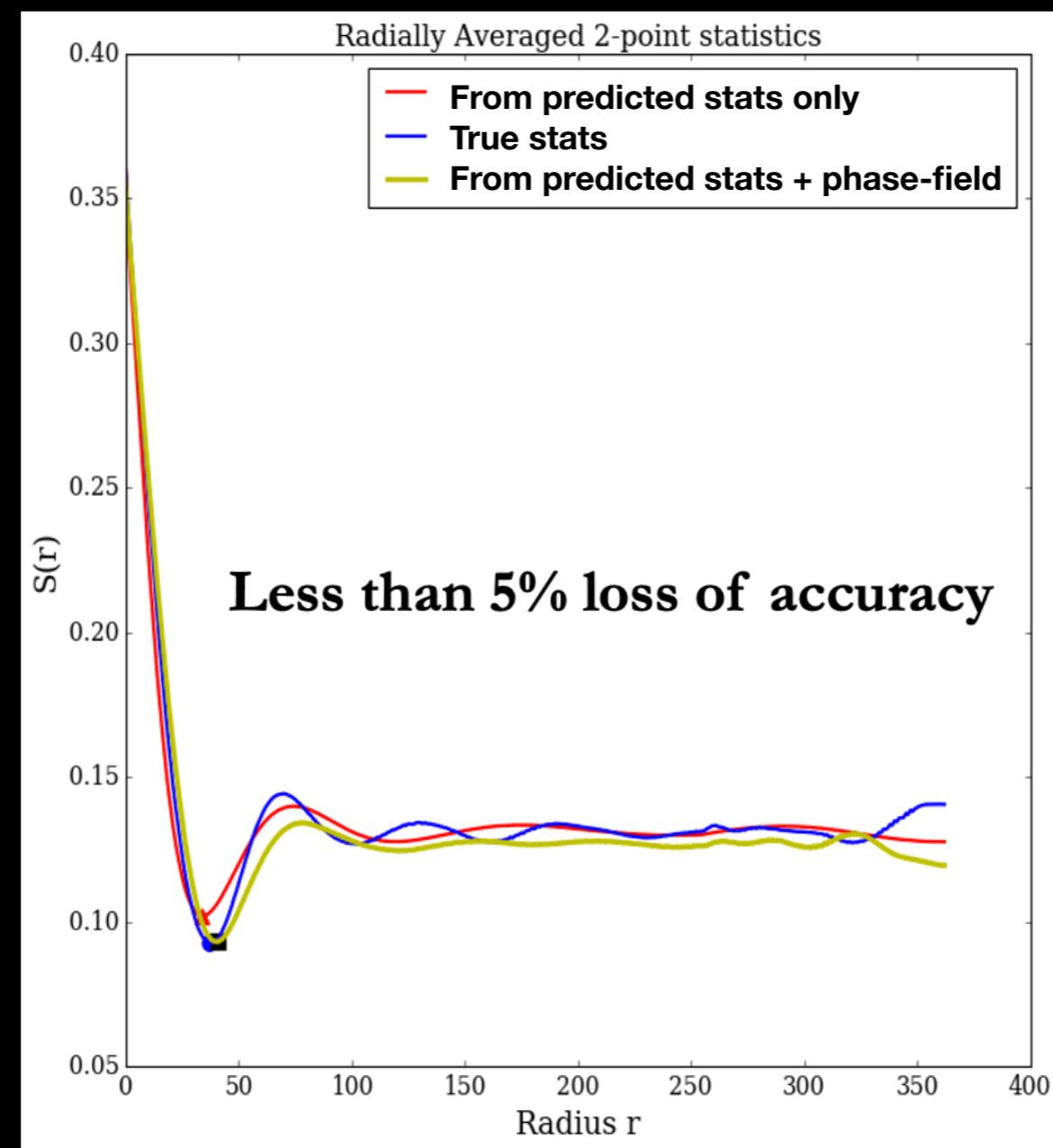
WE CAN ACHIEVE SIMILAR ACCURACY WITH OUR RNN/GRU/LSTM-TRAINED MODELS AS COMPARED TO HIGH-FIDELITY PHASE-FIELD



FEEDING BACK OUR PREDICTIONS INTO PF PROVIDES AN EFFICIENT WAY TO SMOOTH-OUT THE RECONSTRUCTED MICROSTRUCTURE AND COURSE- CORRECT THE PHYSICS



LSTM only



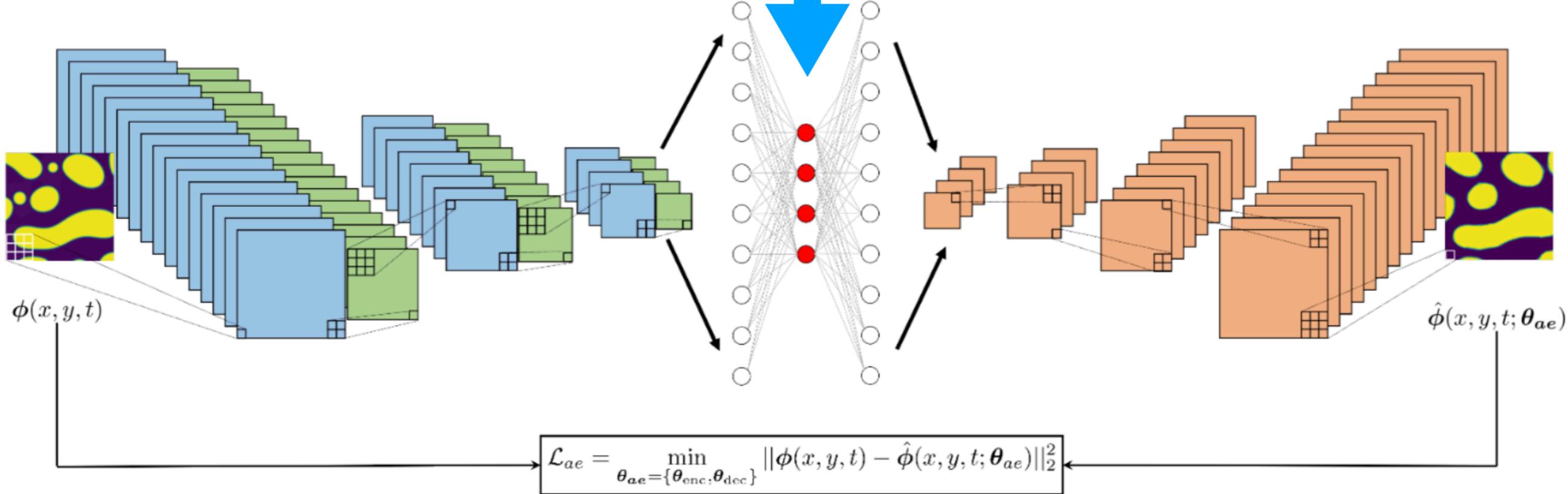
LSTM + phase field

BYPASSING STATISTICAL DESCRIPTION OF MICROSTRUCTURE: ENCODE AND DECODE...

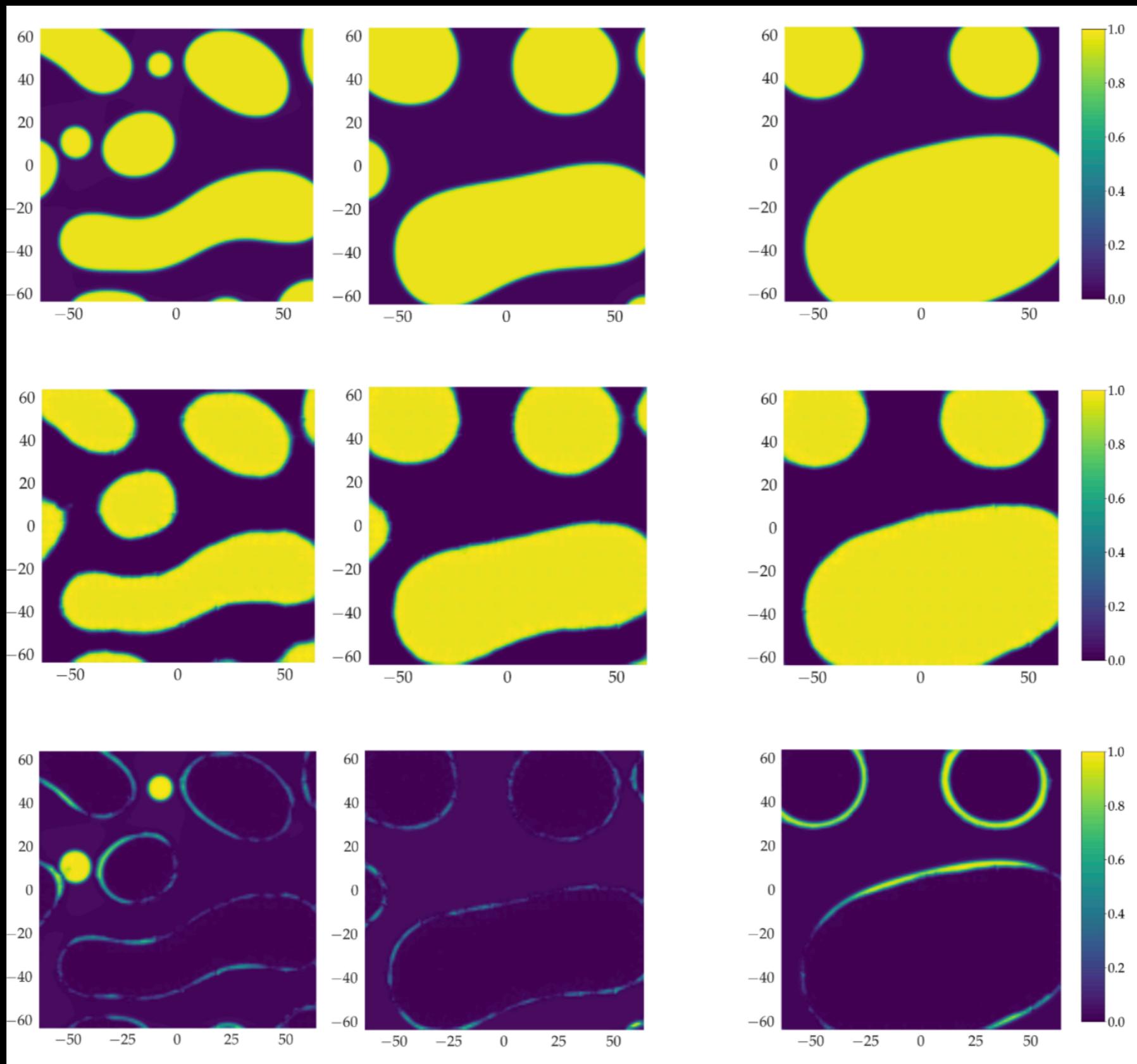
TIME SERIES IN LATENT SPACE

ENCODER

DECODER



BYPASSING STATISTICAL DESCRIPTION OF MICROSTRUCTURE: ENCODE AND DECODE...



TOWARDS AGILITY OF MICROSTRUCTURE PERFORMANCE ASSESSMENT

50000 sims?

9 years

with high-fidelity PF

25-50 mins

with accelerated PF

45,000 faster

CONCLUDING REMARKS: THIS IS WHAT HAPPENS WHEN A MATERIAL SCIENTIST TRIES TO USE ML METHODS

CONCLUDING REMARKS: THIS IS WHAT HAPPENS WHEN A MATERIAL SCIENTIST TRIES TO USE ML METHODS

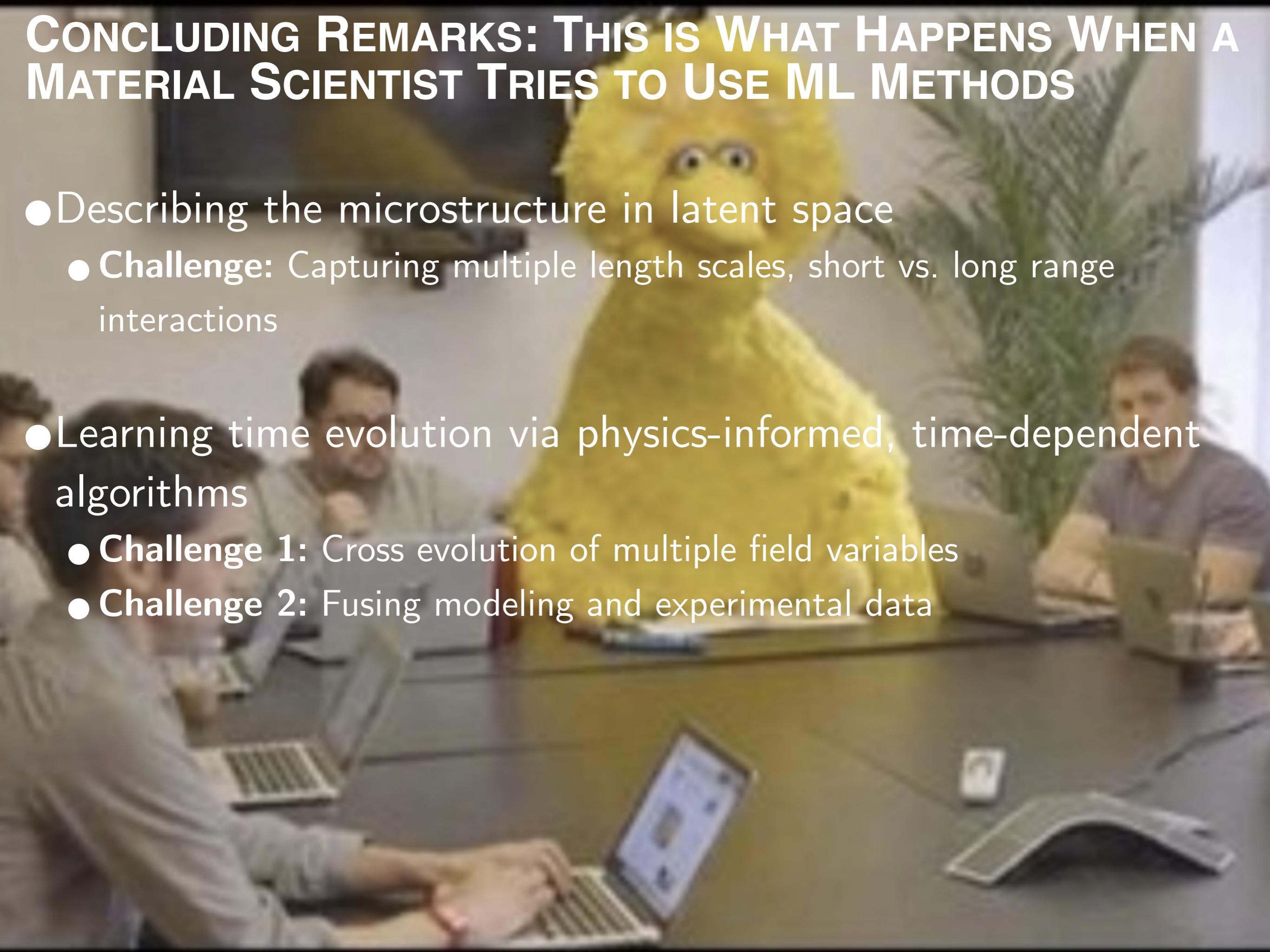
CONCLUDING REMARKS: THIS IS WHAT HAPPENS WHEN A MATERIAL SCIENTIST TRIES TO USE ML METHODS

- Describing the microstructure in latent space
- **Challenge:** Capturing multiple length scales, short vs. long range interactions

CONCLUDING REMARKS: THIS IS WHAT HAPPENS WHEN A MATERIAL SCIENTIST TRIES TO USE ML METHODS

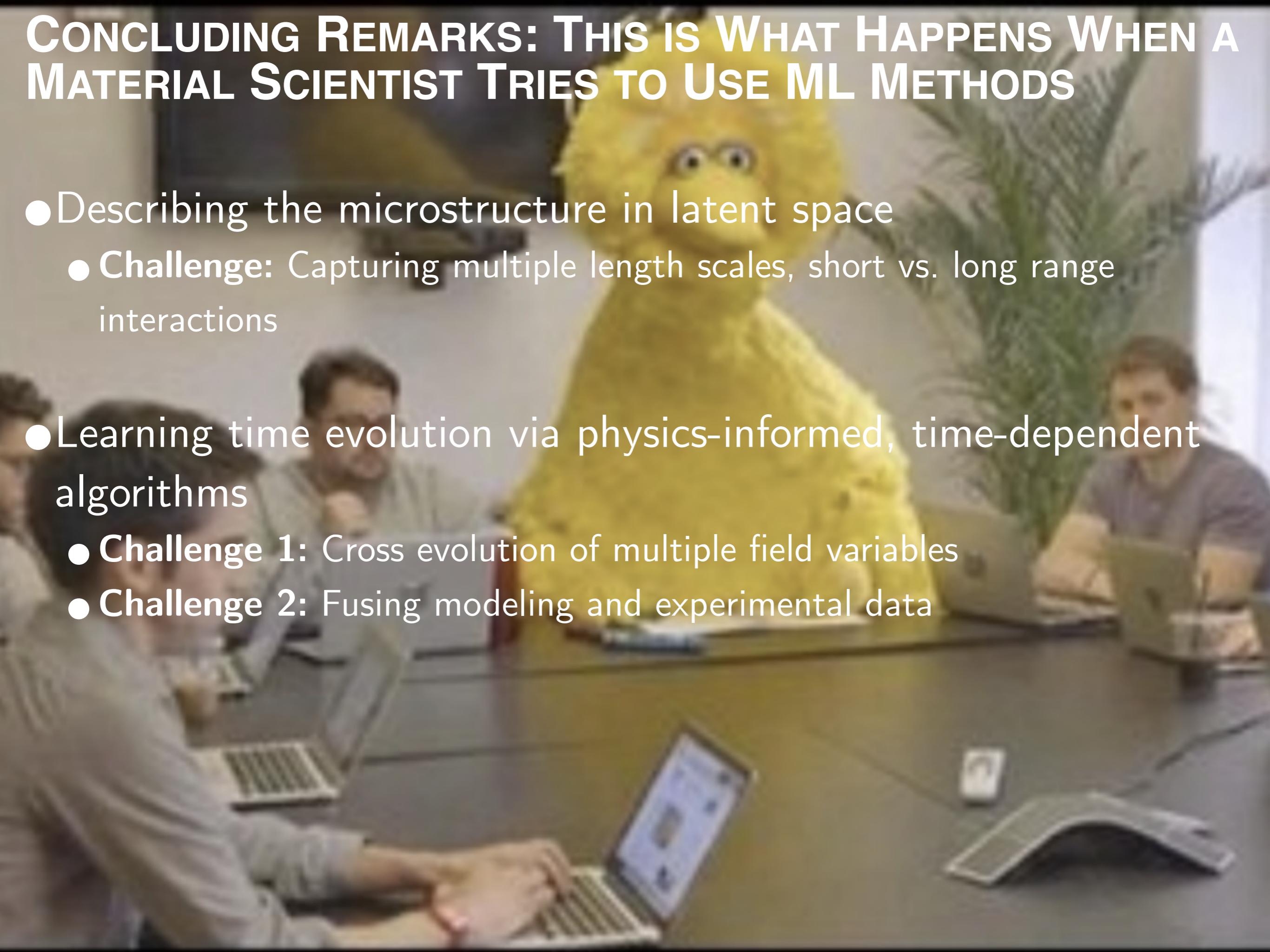
- Describing the microstructure in latent space
- **Challenge:** Capturing multiple length scales, short vs. long range interactions

CONCLUDING REMARKS: THIS IS WHAT HAPPENS WHEN A MATERIAL SCIENTIST TRIES TO USE ML METHODS



- Describing the microstructure in latent space
- **Challenge:** Capturing multiple length scales, short vs. long range interactions
- Learning time evolution via physics-informed, time-dependent algorithms
- **Challenge 1:** Cross evolution of multiple field variables
- **Challenge 2:** Fusing modeling and experimental data

CONCLUDING REMARKS: THIS IS WHAT HAPPENS WHEN A MATERIAL SCIENTIST TRIES TO USE ML METHODS



- Describing the microstructure in latent space
- **Challenge:** Capturing multiple length scales, short vs. long range interactions
- Learning time evolution via physics-informed, time-dependent algorithms
- **Challenge 1:** Cross evolution of multiple field variables
- **Challenge 2:** Fusing modeling and experimental data

CONCLUDING REMARKS: THIS IS WHAT HAPPENS WHEN A MATERIAL SCIENTIST TRIES TO USE ML METHODS

- Describing the microstructure in latent space
- **Challenge:** Capturing multiple length scales, short vs. long range interactions
- Learning time evolution via physics-informed, time-dependent algorithms
- **Challenge 1:** Cross evolution of multiple field variables
- **Challenge 2:** Fusing modeling and experimental data
- Opportunity for collaboration through *BeyondFingerprinting* GC LDRD and CINT user program: rdingre@sandia.gov

BIG SCIENCE AT THE NANOSCALE

CINT is a user facility providing cutting-edge nanoscience and nanotechnology capabilities to the research community.

Access to our facilities and scientific expertise is **FREE** for non-proprietary research.

Research areas:

- Quantum Materials Systems
- Nanophotonics and Optical Nanomaterials
- In-Situ Characterization and Nanomechanics
- Soft, Biological, and Composite Nanomaterials

Center for Integrated Nanotechnologies

– an Office of Science national user facility –

To learn more and apply to use the facilities, visit:
<https://cint.lanl.gov>

rdingre@sandia.gov