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‘ Tungsten proposed for use in divertor
region in fusion reactors High DBTT, and embrittled

under irradiation
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‘ Tungsten alloys can reduce the grain size,

increase ductility
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Dispersion strengthening: introducing second
phase carbide or oxide to pin grains
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Dispersion strengthening reduces grain size,
increases interface concentrations
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Alloying W with TiC (left) and ZrC (right) can
improve bulk mechanical properties




Tungsten alloys typically pressed or sintered

Arc melting
processing of W
produces large-
grained
microstructures
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techniques for
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For fusion:

W-Cu gradients,
flow channels,
curved geometries




Additive manufacturing of W has challenges: o
Alloying with ZrC has

reduced cracks

cracking, anisotropic microstructures
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Alloying with Cr, Fe
can mimic a WHA
microstructure
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ideal melt pool

Laser Power (W)

350

300

250

200

passable

|
—
(3]
—
[=2]

23 29 35

l.__.l

:cmelt pool
0

|
28 143
|

I
39 40 45

cracked

100 200 300 400 500
Scan Speed (mm/sec)

1
600

melt pool

Relative Density (%)

100

99
98
97
96
95
94
93

o0
o
o o
000
o0 ®
200 400 600

Laser Energy Density (J/mm?3)

800

Relative Density (%)

Directed Energy Deposition used to
abricate W and W alloys

100

98

96

94

92

90

200

400

Laser Energy Density (J/mm?3)

600




BCC W fabricated with FCC secondary phases

Intensity (arb.)

WNIiFeZrC

110

2theta (degrees)

Nominal XRD Composition
Composition

100% W 100% W
W+ZrC 99.95% W 99.95% W
0.05% ZrC 0.01% Cubic Zr
0.03% ZrC
WNiFe 95% W 96.23% W
3.5% Ni 3.71% Ni
1.5% Fe 0.06%Fe
WNiFe+ZrC 94.5% W 99.00% W
3.5% Ni 0.92% Ni
1.5% Fe 0.001% Fe I
0.05% ZrC 0.009% Cubic Zr
0.08% ZrC



Grain refiners and lower melting point alloying additions were the

most effective in reducing crack density

Zr

WNiFe+ZrC

Ni

Fe.




FCC NiFe-rich phases within BCC-W matrix

FCC precipitates
within BCCW
matrix

Ni and Fe

segregate to
boundaries,
precipitates

W+ZrC shows zirconia formation, twining’
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‘ Kitchen sink sample shows elongated W !
within NiFe sea, Zr homogenously |

distributed

a0

300 nm




n-situ TEM irradiation and heating allows

for viewing of transient processes
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Proposed Capabilities

= 200 kV LaB; TEM

= lon beams considered:
= Range of Sputtered lons
s 10 keV D%*
= 10 keV He*

m All beams hit same location

= Nanosecond time resolution (DTEM)
= Procession scanning (EBSD in TEM)
m In situ PL, CL, and IBIL

= In situ vapor phase stage
= In situ liquid mixing stage
= In situ heating

= Tomography stage (2x)
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n-situ TEM irradiation and heating allows
for viewing of transient processes
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In-situ annealing up to 900 C shows
dispersoid evolution at ~700 C

* ZrO,-W interface delaminates at
~700 C

* Maintains crystalline ZrO,

. . . 600 C 900 C
* NiFe precipitate melts at ~800 C .. |




In-situ annealing up to 900 C shows
dispersoid evolution at ~700 C

* ZrO,-W interface delaminates at
~700 C

* Maintains crystalline ZrO,

. . . 600 C 900 C
* NiFe precipitate melts at ~800 C
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In-situ
accumu

WNiFeZrC at 650 C Pre- W2ZrC at 650 C Pre- WNiFe at 650 C Pre-

Irradiation

Post-Irradiation

e irradiation at 650 C shows no
ation of He bubbles
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Conclusions and impact

* Alloyed tungsten may improve the irradiation performance in a
fusion reactor

* Additive manufacturing represents a new design space for
interrogating refractory alloy synthesis

* Dense W alloys with Ni, Fe, and ZrC fabricated via DED
* Thermal stability a current issue

* Design space preliminarily investigated, these materials show
some promise



‘ Future work

* Ex-situ irradiations and characterization to implant He at high
fluence reactor-relevant conditions

* Thermal treatments
e DSC characterization for impact of alloying on thermal conductivity
e Recrystallization inhibition of alloyed materials




Precession Electron Diffraction (PED) Microscopy

Collaborators: K.J. Ganesh, S. Rajasekhara, & P.J. Ferreira
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Advantages
* <10 nm spatial resolution
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diffraction
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