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2. Why study cold spray materials?

5. Results: Accelerated Pitting Corrosion Tests (ASTM G48)

6. Results: Electrochemical Testing ASTM G5-14-e1

1. Objectives
• In order to understand application of cold spray (CS) as a potential mitigation and repair 

technique for stress corrosion cracking:
• Explore corrosion susceptibility of CS materials through accelerated testing:

ASTM G-5 anodic polarization and ASTM G-48 accelerated pitting.
• Compare the corrosion resistance for variations in: CS edge morphology, CS 

composition, and material-carrier gas combination.

4. Experimental Matrix

• All CS samples were analyzed using electrochemical 
polarization testing in 0.6 M NaCl (ASTM G5-14-e1) 
and full immersion FeCl3 exposures (ASTM G48).

• All electrochemical tested samples were imaged 
through optical microscopy.

• Pre and post exposure, samples were imaged 
through optical microscopy, scanning electron 
microscopy (SEM), and energy dispersive x-ray 
spectroscopy (EDS).

• Porosity was measured by ImageJ (ASTM E2109-01).

Top surface

• All samples in the as-sprayed 
condition exhibit a roughly 200-350 
mV higher OCP than the base 
material.

• The passive current densities 
displayed in the potentiodynamic 
polarizations are comparable to the 
base material; however, Ni CS 
displays a reduced passive region.
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3. Cold Spray Materials and Processes

• Commercially pure (CP) Ni, Inconel 625, and Super C powders were deposited onto 
stainless steel (SS) 304/304L to create test samples.

• Cold spray coatings were deposited on SS plates using nitrogen and helium carrier gases.

• Two edge morphologies were produced; masked edges (cliff-like interface) and blended 
edges (tapered interface).

Masked Edge

Blended Edge

Single allow cold sprayed plates and samples.1 Test coupons cut from plates with blended and masked edges.1 

 High-pressure cold spray process diagram.1
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8. Future Work

6. Results Continued: Electrochemical Testing

• Investigate an expanded set of CS materials and processing 
conditions. Evaluate under atmospheric conditions.

• Study the mechanisms behind enhanced corrosion attack at 
the interface and connection to underlying microstructure 
through SEM, EBSD, and nanoindentation.

• All samples showed detrimental pitting at the coating/base 
metal interfaces in FeCl3 accelerated pitting testing.

• In blended samples, pitting was enhanced under regions of 
poorly densified (porous) cold spray coating.

• Masked samples showed crevice corrosion at the interface 
between the base material and cold spray, and enhanced 
pitting in the base metal near the interface.

• Porosity accelerates localized 
corrosion and crevicing attack of CS.

• Surface roughness of the cold spray 
material plays a role in susceptibility 
to metastable pitting.

• Comparison of the OCP of the CS and 
the base material suggest galvanic 
corrosion can occur. 

• High-pressure cold spray (HPCS) uses small 
solid particles in the range of 5  to 100 μm.

• Particle velocity ranges from 300 to 1200 
m/s. No melting occurs.6

• Upon impact, the particles undergo 
adiabatic heating and plastic deformation 
at very high shear rates causing them to 
flatten and bond to the underlying 
surface.6

• Cold spray layer can be infinitely thick.6

• Cold spray is being explored for repair and 
mitigation of chloride induced stress 
corrosion cracking (CISCC).1

• Three criteria for CISCC to occur:
• Tensile Stress
• Corrosive Environment
• Susceptible Material

• Cold Spray can potentially remove each of 
these factors by protecting the material 
from the corrosive environment and 
creating compressive residual stress.1Conditions for CISCC.1

Effect of Surface Finish (Inconel, 0.6 M NaCl)
• As-sprayed condition 

displays unstable OCP 
behavior and metastable 
pitting in CPP scans.

• 600 and 1200 grit 
finishes display 
smoother evolution of 
OCP.  

• Grinding removes oxides 
which can contribute to 
an active surface, 
lowering the OCP. 
However, CPP scans 
show smooth currents 
indicative of reduction in 
metastable pitting.

• Similar trends with 
surface finish observed 
for all materials.
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 Example of galvanic corrosion.5  
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• All samples were ground to 1200 grit finish prior to testing in FeCl3 solution.
• Inconel sprayed with Helium and Super Carbon sprayed with Nitrogen 

displayed unstable OCP behavior.
• Inconel sprayed with Nitrogen and Nickel sprayed with Nitrogen displayed 

stable OCP behavior.
• All samples, except Ni, displayed a roughly 450 mV higher OCP than the base 

material. 
• Galvanic effects observed in full immersion testing at the interface can be 

related to the observed OCPs (Ni exhibits slightly lower attack). 
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