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What is the useful lifetime of a component in a humid,
2 I chloride environment?

applications, we rely on engineering judgement and inspection strategies to mitigate failures.

The costs associated with corrosion in the US are estimated at 1-2% of our GDP*. Because we can’t monitor corrosion in many I
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models of ductile fracture - can ‘

XCT similarly do so for the field
of atmospheric corrosion?

Atmospheric test rack from https://www.corrosion-

doctors.org/Corrosion-Atmospheric/Corrosion-tests.html * Thompson et al., Corrosion Reviews, 2007
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Glanvill, SUM, et al. J. Electrochem. Soc., 2021

Synchrotron studies: high temporal resolution but challenges when applied

to long-term studies
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“The largest pit propagated in a highly
inhomogeneous manner, with a small fraction of
the surface active at any one time, and the
remainder passive.”
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) ‘ Lab-based XCT: lower temporal resolution but allows
samples to be characterized indefinitely

Pit 1 Pit 2 Pit 3 Pit 4 Pit 5 Pit 6

Initial growth rate (um/h) 194 39 30 172 370 439
240 475 3930
Time growing (h) 12 19 24 46 T2 =65

Secondary growth rate (pm*/h) - _ _

Final volume [pm?‘] 3800 1300 800 13600 30900 69700 I
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Goals

1) does the rate of pit growth exhibits significant nonlinearities unrelated to droplet spreading?

3) what are the operative factors that affect the rate & extent of pit growth and pit morphology?

2) is volume added homogeneously or heterogeneously? I
i

Material and Environment
Material — 1.02 mm diameter Al wire
(99.99% Al)

Printed with NaCl at 200 ug/cm?
Initial Humidity - 84 RH

XCT Characterization Methods
1.25 mm length of wire imaged with
XCT periodically using a 1.25 um
voxel size (15.6 um? spatial resolution)
4 Samples exposed under these
conditions
Each sample scanned every 1.3 hours
for at least the first 85 hrs. after
exposure, then periodically for the next
year

EBSD data (IPF map and Band
Contrast Map) highlight elongated
grains and dislocation structure
within starting microstructure

No impurities observed in material,

though submicron Fe impurities are
typically observed in 4N-Al materials
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. ‘ The rate of pit growth is not uniformly linear

11 pits observed varying in size between ~400 and ~11,000 um?
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Characteristic aspects of pit growth:
1) Sporadic — growth stops/accelerates
2) Sudden transition from 1 rate to another

3) Growth ceases before droplet spreading
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Why is pit growth sporadic? Hypothesis: only a
fraction of the surface of the pit is active at any

Pit Volume (pm
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3D renderings of a typical large pit show that only some parts of the pit grow between t
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Why is pit growth sporadic? The “tendrils” of the oy
pit create multiple anodes, none of which is #
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2D slices of the same pit similarly show that only some surfaces of the pit are active at



9 ‘ 3D data suggest two distinct modes of pit growth
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Mode 1 — pits primarily add volume by some combination of creating new
10 0 tendrils and the lengthening of pre-existing tendrils.
Mode 2 — existing tendrils expand radially, no new tendrils form
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3D renderings of pit that exhibited this behavior show that at ~12 hours after nucleation, this pit

transitions from growing into new material to expanding radially

T T T T
15 20 25 30
Time after Nucleation (hr)

T
35

T
40 45



2D renderings also show that this pit primarily grew by
" ¥ radial expansion of existing tendrils for ~2/3 of its life
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12

For all but two pits, the dominant growth mode for most or

all of its life was mode 1. Why this difference?

Pit Volume (um3)
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Is mode 2 growth dependent on pit morphology?

Plots of final pit sphericity versus final pit aspect
ratio (for pits larger than 600 um3) indicate that
sustained mode 2 growth is associated with

elongated pits

Two distinct trends in the number of tendrils
associated with a pit observed
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| Morphology appears to influence the duration of mode 2 growth! I




. ‘ Local microstructure appears to strongly influence pit
morphology, particularly the formation of elongated tendrils
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15 ‘ Why two different growth modes?
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Cyclical polarization experiments show that pitting in Al (and some
other passive alloys) is associated with three critical potentials:
Epit’ Eptp’ and Eprot

Early work showed that E ; is related to repassivation but it
remains obscure (a) -740 mVce (E i, +50mV) (b) -790 mVce (Epy)

Potentiostatic holds above and below E , in a similar Al material
show that pit morphology above and below E i, resembles those
observed for mode 1 and mode 2 growth

We speculate that the two growth modes result from the
potential within the pit dropping below E



1 Conclusions
6

o Pit growth in 4N-Al is not uniformly linear. Many nonlinearities are related to the repassivation of old
tendrils and initiation of new tendrils during mode 1 growth.

o During mode 1 growth, pits add volume in a heterogenous manner
o During mode 2 growth, most (all?) of the surface of the pit remains active up to pit repassivation

o A clear transition in the rate of pit growth was observed when the pit ceased growing into new material
and instead began to expand roughly uniformly

o These two manners of growth produced pits with very different morphologies

o in-situ data suggests that certain pit morphologies (elongated/tunnel-like) result in sustained/constant
growth

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. DOE’s National Nuclear Security Administration under contract DE-NA-0003525. The views expressed in
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. ‘ Is mode 2 growth dependent on pit morphology?

But which comes first? Does pit morphology
control pit growth kinetics or vice versa?
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Plots of final pit sphericity versus final pit aspect
ratio (for pits larger than 500 um) indicate that
sustained mode 2 growth is associated with

elongated pits
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In-situ date indicates that aspect ratio is roughly constant after the first 5-10
hours of growth. Morphology appears to influence pit growth kinetics!




