

Sandia
National
Laboratories

Sandia National Laboratories

From laboratory to large-scale sCO₂ Brayton cycle development

Logan Rapp
Sandia National Laboratories

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

sCO₂ research at Sandia National Laboratories

Brayton Laboratory

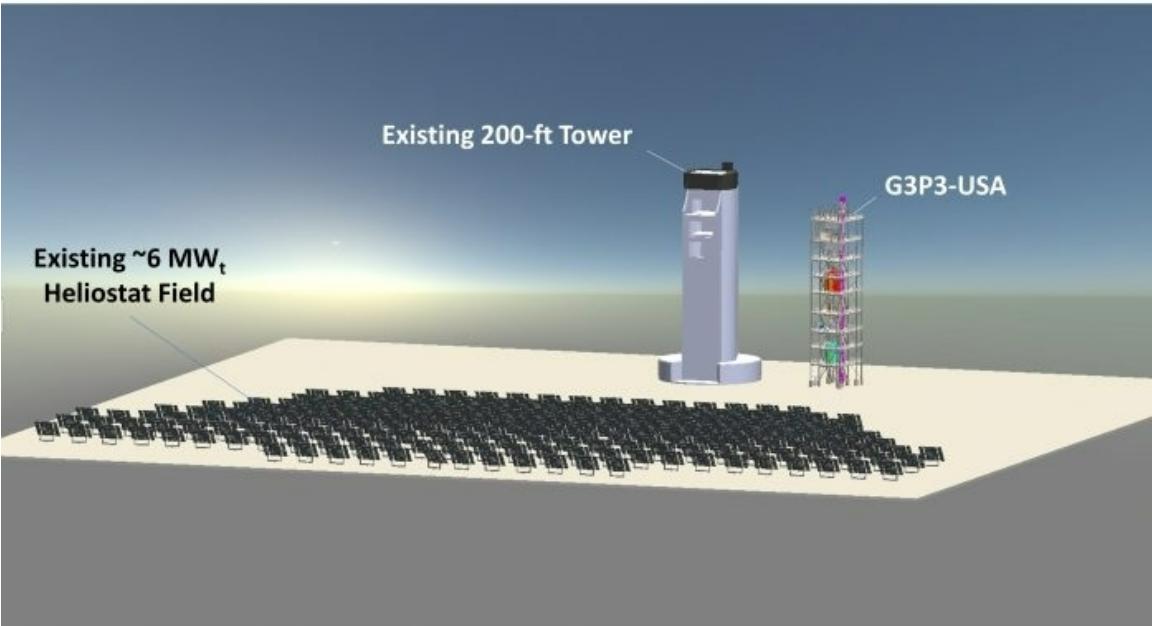
National Solar Thermal Test Facility
(NSTFF)

Current work at the Brayton Laboratory

Turbomachinery Testing

- 1MWe scale turbocompressor
- Retrofitting ~125kW TACs with “off-the-shelf” motor controllers
- Investigating RCBC control/operation strategies

Bearings Testing


- Installing magnetic bearings in existing TACS
- Installing porous media bearings in existing TACS
- Evaluating gas-foil bearing performance in turbocompressor

Seals Testing

- Dry-gas seals for 10MW, 700C turbine inlet
- Evaluating pressure activated leaf seals

sCO₂ related work at NSTFF

Gen 3 Particle Pilot Plant (G3P3)

- 6MW_{th} storage
- 1MW_{th} particle-to-sCO₂ HX
- sCO₂ loop, but no turbomachinery for initial testing
- Temperatures of 725C & Pressures of 4060 psi (280 bar)
- Air cooled (sCO₂ to air cooler)

TESTBED: Integrated Thermal Energy Storage and Brayton Cycle Equipment Demonstration

- Awarded to Heliogen, Sandia is a sub
 - Focus on 550-630C temperature range

Evaluating Microchannel Heat Exchanger Lifetime for Concentrating Solar Power Applications

- SETO Lab call project
- Investigating thermal fatigue in PCHEs

Pumped Thermal Energy Storage (PTES) project

- Construction and testing of PTES system
- Storage to CO₂ HX

Future work

Construction of new testing loop (depending on funding)

- ~700C & 250 bar temperature/pressure limits
 - At least 1 x 350 kWe turbo-generator
- RCBC demonstration with retrofitted TACs
 - Focus on motor controllers and control strategies
- Bearing selection and impact on cycle efficiency
- Identifying value proposition for sCO₂ Brayton cycles

Thank you