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Sandia
Elliptic nonlocal operators (D=

Let & € (0, o] be the horizon, Q@ C R4 a bounded open domain, define the interaction domain
Q:={FeRI\Q: X7 <9, forXecQ}.

We want to numerically solve equations involving the nonlocal operator

Lo =p. [ () w0 R ). xeq,
Quay
with
%,7) = (X, ¥) X — v 7P Xy X,y €QUQ
Y%, ¥) = &(X,¥) X — ¥l R—71<8+ X,y €QU,
d(X,y) > 0.
m Examples:

m Integral fractional Laplacian: ¢ ~ const, 3 = d + 2s,s € (0,1),6 = oo

m Tempered fractional Laplacian: ¢ (X, ¥) ~ exp(—A|X — ¥|)

® Truncated fractional Laplacian: ¢ finite

m Variable order fractional Laplacians with varying coefficient: 8(X,y) = d + 2s(X, ¥),
$(x,y) >0

m Integrable kernels: constant kernel (3 = 0), “peridynamic” kernel (3 = 1)

m Assumptions (for now):

m +y is symmetric.
m Interaction domain is defined wrt £5-norm.
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@ﬁ;"::s.
m Nonlocal Poisson’s equation: o
—Lu=f inQ,
u=0 inQ.
m Nonlocal heat equation:
u—Lu=f in(0,T)x K,
u=0 in(0,T)x €,
u=ug on {0} xQ.
m Source control

m Parameter learning:

1
min  Ju - ugl?% +R(s,36,...)

u,s,0,...

subject to nonlocal equation.
m Remark: Homogeneous Dirichlet “boundary” condition for simplicity.

Assemble and solve nonlocal equations in similar complexity & memory as their local
counterparts, i.e. O(nlogn).
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Bilinear form
m We consider
=5 [ [ @ —u @) ¢ @~V D)
+/Q d/ﬂ a7 u (%) v (%) (%, 7).
posed on H* (Q2) or L2(Q) respectively, where

H () = {u € L2(Q) | Julysey < oo} 5 (Q) : {u €H (Rd) lu=0in Q} ,

and

_(u(X) — u(y))?
(Wl iy = Iy + [ o [ 7 PRl

||u||§s / dx g dy |®_U( )) _

% ‘d+25

B Ford = oo, ify(X,y) = . (x ¥), can reduce integral from 2 x Q¢ to Q x Q.

(E.g. T(X,¥) ~ # for the constant-order fractional kernel.)
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Sandia

Finite element approximation =

m Partition domain into shape-regular mesh P, = {K} with edges e on the boundary 9.
m Set Vj, C H* () the space of continuous, piecewise linear functions.

aw) =3 35 [ 6% [ i@ —u@) 6 —v @)1ED
KR
+XK:Z/K d)?u()'(')v()_()/e d7 Fie - T(, 7).

dimV, =:n
m Approximate cut elements with simplices, O(hﬁ) error!

1Marta D’Elia, Max Gunzburger, and Christian Vollmann. “A cookbook for approximating Euclidean balls and for quadrature
rules in finite element methods for nonlocal problems”. In: Mathematical Models and Methods in Applied Sciences 31.08
(2021), pp. 1505-1567.
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Sandia

Quadrature (s

m In subassembly procedure, use quadrature to evaluate element pair contributions:

(i) = 5 [ 67 [ @766 = ) (@@ - 607) 15

m Treatment for element pairs K N K # 0:

m splitK x K into sub-simplices,
m Duffy transform onto a hypercube, with Jacobian canceling the singularity.
m Choose quadrature order so that quadrature error < discretization error?:

|log hk | if the elements coincide (red),

| |log hk| 2 if the elements share only an edge (yellow),

m |log hK|3 if the elements share only a vertex (blue),

m |log h,<|4 if the elements are “near neighbours” (green), and
W Cif the elements are well separated.

2Mark Ainsworth and Christian Glusa. “Aspects of an adaptive finite element method for the fractional Laplacian: A priori
and a posteriori error estimates, efficient implementation and multigrid solver”. In: Computer Methods in Applied Mechanics
and Engineering (2017).
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O(nlogn) approximations to the stiffness matrix @ .

Depending on é and h:
m Straightforward discretization can lead to a fully dense matrix.

m Assembly and solve would have at least O(n?) complexity and memory requirement.

Better approach

Panel clustering / Fast Multipole Method / hierarchical matrix approximation

m Find low-rank representations of off-diagonal matrix blocks:
lots of methods, varying level of intrusiveness.

m Important: we don’t want to assemble a dense matrix and then compress it.

m Approximation incurs error. Control it so that it is dominated by discretization error.

H2-matrix approximation®*

FE assembly and matrix-vector product in O (n log2d n) operations.

3Mark Ainsworth and Christian Glusa. “Towards an efficient finite element method for the integral fractional Laplacian on
polygonal domains”. In: Contemporary Computational Mathematics-A Celebration of the 80th Birthday of lan Sloan. Springer,
2018, pp. 17-57.
“Mark Ainsworth and Christian Glusa. “Aspects of an adaptive finite element method for the fractional Laplacian: A priori
and a posteriori error estimates, efficient implementation and multigrid solver”. In: Computer Methods in Applied Mechanics
and Engineering (2017).
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Conditioning and scalable solvers e

m O(nlogn) matrix-vector product in all cases — can explore iterative solvers

m Steady-state:
m Fractional kernel, § = 0o®: k(A) ~ h~2 ~ n?/d
m Fractional kernel, § < 60% K(A) ~ 6257 2h~2 ~ §25—2p25/d
m Constant kernel, § finite?: x(A) ~ 672

m Time-dependent:

m k(M4 AtA) ~ 1 4+ At k(A)
m Depending on time-stepper and CFL condition, this is well-conditioned for small s, large 4.

m Scalable solver options:
m Multigrid

m Geometric (GMG)
B Algebraic (AMG)

m Domain decomposition
B Substructuring
m Schwarz methods
m Krylov methods
The matrix is well-conditioned in the certain parameter regimes, e.g.

B constant kernel, § large, or
m fractional kernel, s small, 6 large.

5Mark Ainsworth, William McLean, and Thanh Tran. “The conditioning of boundary element equations on locally refined
meshes and preconditioning by diagonal scaling”. In: SIAM Journal on Numerical Analysis 36.6 (1999), pp. 1901-1932.
6Burak Aksoylu and Zuhal Unlu. “Conditioning analysis of nonlocal integral operators in fractional Sobolev spaces”. In: SIAM
Journal on Numerical Analysis 52.2 (2014), pp. 653-677.
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Substructuring+8:? E

m Assume 6 = O(h).

m Cover with overlapping subdomains
QU Q) = JQ, diam (€ N ;) ~ 6 for adjacent
subdomains.

m Duplicate unknowns in overlaps:

L2 A M U
weto (5 T)(%)

m A, is block diagonal by subdomain,
partition-of-unity type scaling included.

m For floating subdomains, local matrix A, is singular.

m M has entries {£1, 0}, encodes the identity
constraints on the overlaps (non-redundant).

7 Giacomo Capodaglio, Marta D’Elia, Pavel Bochey, and Max Gunzburger. “An energy-based coupling approach to nonlocal
interface problems”. In: Computers & Fluids 207 (2020), p. 104593.

8Xiao Xu, Christian Glusa, Marta D’Elia, and John T. Foster. “A FETI approach to domain decomposition for meshfree
discretizations of nonlocal problems”. In: Computer Methods in Applied Mechanics and Engineering 387 (2021), p. 114148.
TWIP with Bochey, Capodaglio, D'Elia, Gunzburger, Klar, Vollmann
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Reduced system and Dirichlet preconditioner .

Let nullspace of A be given by Z.

Eliminate primal variables from
Ace M e \ _( f
M 0 A o 0

PoKA = Po(MA! 7.)
G'x=7f.,

and obtain

where K = MALMT, G = MZ, Py = 1 — G(GTG)1GT.
Use projected CG to solve system.
Pg acts as a “coarse grid”.
Preconditioner for K:
m Let Ay, M, be local parts of Ac. and M.
m WiteK = 30 MATM] = S M,siM,.
m Dirichlet preconditioner: Q = 25:1 I\~/Ip5ph~/lg.

Results shown use Manuel Klar’s (U of Trier) assembly code
https://gitlab.uni-trier.de/klar/nonlocal-assembly
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Weak scaling - 2D, constant kernel ()
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Weak scaling - 2D, fractional kernel, s = 0.4 () i,
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Strong scaling, 2D () ..

Time
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Figure: constant kernel, 6 = 8h.
10"
10°

36 144 576 2304
subdomains

Figure: fractional kernel, s = 0.4, § = 8h.
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Schwarz methods (WIP) 1© () B,

m Drawback of substructuring: cannot handle § > h.
m Schwarz method
m overlapping subdomain restrictions {Ry }, local matrices A, = R,,AR;
m partition of unity 25:1 R;D,,Rp = I, with {D, } diagonal
m additive Schwarz preconditioner: Q; := z=1 RZA;lRp, or restricted additive Schwarz
m No global information exchange — need a coarse grid
m GenEO approach:
Span coarse space using solutions of subdomain eigenvalue problems
DpApDpy, k = Ap kBpVp , where By is similar to Ay, but assembled over a modified local
mesh.
m Distributed H-matrix is built using Pierre Marchand’s Htool library
https://github.com/htool-ddm/htool
m Pierre Jolivet’s HPDDM library for DD and GenEO https://github. com/hpddm/hpddm

m 2D fractional Poisson problem, s = 0.75, § = oo

#DoFs #MPlranks dense H GMRES+DD #its (solve time)
65,025 72 31.5GB 5.4GB 21 (1.34s)
261,121 288 508 GB 12.6 GB 23 (0.96s)
1,046,529 1152 8160GB 86 GB 24 (2.4s)
m Caveats:

m solver setup needs improvement, working on alternative low-rank approximations
m direct solves and eigenvalue problems (for now) in dense format

10\yith Pierre Marchand (INRIA)
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Sandia
Conclusion () .

m Domain decomposition solvers (and multigrid) are optimal for nonlocal problems.

m Discretized fractional equations are dense, but not structurally dense.
— approximation of off-diagonal matrix blocks

m Resulting approaches have essentially the same complexity as PDE case.

Thanks for listening!

MATNIP

Funding:

The MATNIP LDRD project (Pl: Marta D’Elia) develops for the first time a rigorous nonlocal
interface theory based on physical principles that is consistent with the classical theory of
partial differential equations when the nonlocality vanishes and is mathematically well-posed.
This will improve the predictive capability of nonlocal models and increase their usability at
Sandia and, more in general, in the computational-science and engineering community.
Furthermore, this theory will provide the groundwork for the development of nonlocal solvers,
reducing the burden of prohibitively expensive computations.
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Sandia

O(nlogn) approximations to the stiffness matrix e

4 T
s=0.25
s=0.75
| J
0= T T
-5 0 5

Figure: Left: Fractional kernels in d = 1 dimensions. Right: Magnitude of matrix entries.

Depending on ¢ and h:
m Straightforward discretization can lead to a fully dense matrix.
m Assembly and solve would have at least O(n2) complexity and memory requirement.

Better approach

Panel clustering / Fast Multipole Method / hierarchical matrix approximation

m Find low-rank representations of off-diagonal matrix blocks.

m Lots of methods for computing a structurally sparse approximation, varying level of
intrusiveness. | will show what | use: panel clustering.

m Important: we don’t want to assemble a dense matrix and then compress it.

m Approximation incurs error. The game is to control it so that it is dominated by

discretization error.
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Sandia

Cluster method: admissible clusters =

First question: Which sub-blocks of the matrix do we want to compress?

Build tree of clusters of DoFs.
m root contains all unknowns

m subdivision based on coordinates

m distributed computations: first level given
by partition of unknowns
Figure: A cluster tree ind = 1 dimensions.

m Find cluster pairs (P, Q) that are
admissible for approximation: sufficient
separation compared to sizes.

m Matrix entries that are not part of any
admissible cluster pair are assembled
directly into the sparse near-field matrix

Figure: Elements of admissible cluster pairs in blue.

Anear-
near Overlaps in dark blue.
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Sandia
Cluster method - H-matrices () B,
Let P,Q C €, P and Q admissible.
Let ¢, ¢ be FE basis functions with supp ¢ C P, suppy C Q.

a(6,0) = // (%,7) 6 (R) ¥ ().

Let 5{; be Chebyshev nodes in P and Lg the associated Lagrange polynomials. Then

md

&N~ > (G EE®, Xervea
a,B=1
and
d

2@ ~= Y 1(8.8) [¢@h® & [ v o7

a,p=1

m Decouples ¢ and v, “sparsifies” off-diagonal matrix blocks.

m Replaces subblock of a(-, -) with a low rank approximation UPE(P‘Q)UB with tall and
skinny Up, Uq.

m If we stop now, we have constructed a so-called H-matrix approximation:

A X Anear + Atar = Anear + Z UPE(p’Q) Ug.
(P,Q) admissible
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Sandia
Cluster method - H2-matrices () .
For X in a sub-cluster Pof Q,i.e. P C Q,

d

1B => 12 (&)
B=1

Need to compute
® Far-field coefficients [, ¢ (X) LE, (X) dX only for leaves of the cluster tree,

m shift coefficients L2 (ég),

m kernel approximations -y (@;’, g‘;)

m near-field entries.

-matrix approximation112

FE assembly and matrix-vector product in O (n log2d n) operations.

m Finite §: need to be able to form clusters that fit within the horizon.

m Less intrusive but more costly way of computing far-field interactions via entry sampling:
Adaptive Cross Approximation (ACA)

1 Mark Ainsworth and Christian Glusa. “Towards an efficient finite element method for the integral fractional Laplacian on
polygonal domains”. In: Contemporary Computational Mathematics-A Celebration of the 80th Birthday of lan Sloan. Springer,
2018, pp. 17-57.

12Mark Ainsworth and Christian Glusa. “Aspects of an adaptive finite element method for the fractional Laplacian: A priori
and a posteriori error estimates, efficient implementation and multigrid solver”. In: Computer Methods in Applied Mechanics
and Engineering (2017).
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Sandia
Operator interpolation®3:1# @ .
Parameter learning problem requires operators for different values of s and 4.
m Piecewise Chebyshev interpolation in s:

Lemma

Let's € [Smin, Smax] C (0,1), 6 € (0,00), and let n > 0. Assume that u € Hgl/Q*(R“),
v € Hg, (R™). There exists a partition of [Smin, Smax] into sub-intervals Sy with interpolation
orders My ~ |logn|.

a(u(s), vi5.) = 8(u(9), 35, 8)] < 1 18(5) g ) g IVl oy -

and the total number of interpolation nodes satisfies

K

> (M +1) < Cllogn],
k=1

and the constant C depends on ¢ and Smax.

m Combined with hierarchical matrix approach: O(n log2d+1 n) complexity & memory.
m Also allows to evaluate derivatives wrt s.

m Assembly for different values of § is achieved by splitting the kernel into infinite horizon,
singular part, and §-dependent regular part.

130lena Burkovska and Max Gunzburger. “Affine approximation of parametrized kernels and model order reduction for
nonlocal and fractional Laplace models”. In: SIAM Journal on Numerical Analysis 58.3 (2020), pp. 1469-1494.

140lena Burkovska, Christian Glusa, and Marta D’Elia. “An optimization-based approach to parameter learning for fractional
type nonlocal models”. In: Computers & Mathematics with Applications (2021).
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Geometric multigrid (GMG) D=

Hierarchy of meshes from uniform or adaptive refinement

[
m Restriction / prolongation given by nesting of FE spaces
m Assembly into hierarchical matrix format on every level
m Smoothers:

m Jacobi,
m Chebyshey,
m Gauss-Seidel when CSR matrix format is used.

m Coarse solve: convert to dense or CSR matrix
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Numerical Examples in 2D - Timings

] 10* 4
104_5 —&— assembly { —*— assembly
103 4 ¢ indicator 1084 —— indicator
1 —&— solve 1 —e— solve
1024 4 102 ,
] n(logn) 1 — n(logn)
2] B " 1 -_
T 1014 £ 10
g ]
% 10° 4 g 104
107" 3 1071
1072 3 1072 4
1073 10-5 1
T T T T T T T T T T
10! 102 103 104 10° 100 10! 102 108 104
" n

Figure: Timings for assembly of the stiffness matrix for fractional kernels, solution of linear system using
GMG and computation of the error indicators for the two-dimensional problem. s = 0.25 on the left,
s = 0.75 on the right.
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Fractional kernel, variable order!®

numerical solution

10
0.5
0.0
~0.5 1
~1.01
15 -10 —05 00 05 L0 15
f=1,6=0.5

S(R.7) = 5 (060) +o(71)

1/5
2/5
3/5
4/5

o(z) =

ifz< —1/2,

if —1/2<z<0,
if0<z<1/2,
if1/2 < z.

15Marta D’Elia and Christian A. Glusa. A fractional model for anomalous diffusion with increased variability. Analysis,
algorithms and applications to interface problems. (Accepted in Numerical Methods for Partial Differential Equations). 2021.
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0.04
051
104
7i.5 7i.() 7[‘).5 (llvl] 015 1‘le 115
f=1,=c0
0.25 ifx,y € islands,
s(X,¥) = £ 0.75 ifX,y ¢ islands,
0.75 else.
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0.06

0.00
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FEM convergence for variable s =

102

L? error
TS

—+— L error
— pOT
: energy norm error
0 1072 s
s

T T T T
1072 1072 107! 107!

10-34

Figure: Convergence in L2 and energy norm for a 1D example (left) and a 2D example with four material
layers (right).

Rate of convergence, fractional kernels

llel] e 2
constant kernels (literature) ~ h1/2—¢  pmin{1,1/2+s}—<
variable kernels (observed) ~ hl/2—e  pmin{l,1/2+s}—e
s = mins(X, y)

= Possibly straightforward extension of regularity theory?
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H National
Solvers for Time-Dependent Problems: CG and GMG s
A MG, h=0516 A4 A—A MG, h = 0.0341 A4 MG, h=0516 A—A MG, h=0135 A4 MG, h=00311
e CCG h=056 @ @@ CG, h=00341 e CC,h=0516 @@ CC,h 5 @@ CC,h=0.0341
A—A MG, h=0266 A—A MG, h=00679 A-A MG, h=00171 A—A MG, h=0266 A—A MG, h=00679 A-A MG,h=00171
®® (G, h=026 @@ CG h=00679 © O CG, h=00171 8 (G, h=0206 @ CG h=00679 OO CG, h=00171
10* T T T 10* T T T
L 102k 1
=0l 1
10° L . . 100 " . .
102 1071 10° 10" 10? 102 1071 10° 10! 10%
At/Atga At/Aty2

Figure: Fractional kernel. Number of iterations for CG and GMG depending on At for s = 0.25 (left) and
s = 0.75 (right). At 2 is the time-step that balances discretisation errors in time and space with respect to

the L2-norm.

1
Conjugate gradient is a competitive solver when the fractional order s is small and the time
step At is not too large.
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Algebraic multigrid (WIP) D=
Motivation:
m Adaptively refined / graded meshes can make geometric multigrid painful.

m Use of established algebraic multigrid framework: Trilinos/MueLu

m Lots of features (more smoothers, coarse solvers, multigrid cycles, etc)
m Able to handle coefficient and mesh variations
m Runs on lots of different computing architectures (CPU, threads, GPUs, etc)

Approach:
m Algebraic multigrid constructs coarse problems using sparsity patterns and matrix entries
— Cannot directly use matrix A when § > h and hierarchical matrix format is used.
m Construct hierarchy for an auxiliary operator:

m PDE operators, e.g. (Vu, Vv),
m (distance) Graph Laplacian wrt mesh,
m near field part of hierarchical matrix, potentially with some filtering.

m Triple matrix products Ac = RAP where R and P are sparse and A an - or H2-matrix

m Recompression of coarse matrix Ac

#DoFs #MPlranks  dense H? CG #its  CG+AMG #its
11,193 4 0.93GB 0.18GB 114 13
45169 16 152GB  0.89GB 200 15
181,473 64 245GB  5.1GB 350 20

Table: 2d fractional Poisson problem, s = 0.75, § = oo, unsmoothed prolongators
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Advertisement: PyNucleus, a FEM code for nonlocal problems @ .

Written in Python, lots of optimized kernels compiled to C via Cython.

Compatible with NumPy/SciPy

Simplical meshes in 1D, 2D, (3D); uniform refinement with boundary snapping options
Mesh (re)partitioning using (PAR)METIS

Finite Element discretizations: discontinuous Pg, continuous P, P2, P3

Assembly of local differential operators

Lots of solvers (direct, Krylov, simple preconditioners),
and in particular geometric multigrid
WIP: AMG (Trilinos/MuelLu), DD (Htool&HPDDM)

MPI distributed computations via mpi4py

Assembly of the nonlocal operators in weak form:
atw) =3 [ / — u) (V(R) — V7)), )i
QUO, )2

into

m CSR sparse matrix (5 ~ h),
m dense matrix (§ > h),
m 72 hierarchical matrix (§ >> h; only tested for fractional kernels)

For fractional kernels: quadrature orders are tuned for optimal convergence.
Code: https://github.com/sandialabs/PyNucleus
Documentation and examples: https://sandialabs.github.io/PyNucleus
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Sandia

Code example =

1

FNENTENN)

© ® N o u

11
12
13
14
15
16
17
18
19
20
21

from PyNucleus import (kernelFactory, nonlocalMeshFactory, dofmapFactory,
functionFactory, HOMOGENEOUS_DIRICHLET, solverFactory)

# Infinite horizon fractional kernel
kernel = kernelFactory('fractional', dim=2, s=0.75, horizon=inf)

# Mesh for unit disc, no interaction domain for homogeneous Dirichlet

mesh, _ = nonlocalMeshFactory('disc', kernel=kernel,
boundaryCondition=HOMOGENEOUS_DIRICHLET,
hTarget=0.15)

dm = dofmapFactory('P1', mesh) # P1 finite elements

f = functionFactory('constant', 1.) # constant forcing

b = dm.assembleRHS(f) # [ fdi

A = dm.assembleNonlocal(kernel, matrixFormat='h2') # a(¢;.¢;), hierarchical
u = dm.zeros() # solution vector

# solve with diagonally preconditioned CG

solver = solverFactory('cg-jacobi', A=A, setup=True)
solver(b, u)

u.plot()

m The documentation contains two examples of how to setup and solve local and nonlocal
problems with a lot more explanations.
m The repository contains several drivers that demonstrate some of the code capabilities.
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