Thislpaperidescribes ob|ect|ve technicall results and| analy3|s Anylsubiectivelviewslorfopinionslthatjmightlbelexpressedjin| -
representfth flithe]U.S JDepartmentjoflEnergyforithejUnitediStatesjGovernment. SAND2022-1599C

Sandia

Data-Parallel Primitives for Minimizin e
Many-core Development Cost

Mark Bolstad February 17, 2022

US DEPARTMENT OF Sandia Nat\onal Laggr;(;l*

Acknowledgements

« This material is based upon work supported by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research, under Award Numbers 10-
014707, 12-015215, and 14-017566.

« This research was supported by the Exascale Computing Project (17-SC-20-5C), a
collaborative effort of two U.S. Department of Energy organizations (Office of Science and
the National Nuclear Security Administration) responsible for the planning and preparation
of a capable exascale ecosystem, including software, applications, hardware, advanced
system engineering, and early testbed platforms, in support of the nation’s exascale
computing imperative.

- Sandia National Laboratories is a multimission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary
of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-NA-0003525.

« Thanks to many, many partners in labs, universities, and industry.

February 17, 2022

VTK-m

* Scientific Visualization has a rich history with GPUs
* Rending, but also algorithms and transformations

* In 2010, three development teams focused on portable SCIENTIFIC
performance: VISUALIZATION

* EAVL (data models) ALGORITHMS

° DAX (execuﬁon mOde|$) emerging processor architectures.
* PISTON (algorithms)

* Three teams merge to form VIK-m
* Teams at Oak Ridge, Kitware, Los Alamos, OSU, and Sandia

* Open source, tutorial materials available (VIS19), public github

* Key publications:

* K. Moreland, C. Sewell, W. Usher, L. Lo, J. Meredith, D. Pugmire, J. Kress, H. Schroots, K.- L. Ma, H. Childs, M. Larsen, C.-M. Chen, R.
Maynard, and B. Geveci. VTK-m: Accelerating the Visualization Toolkit for Massively Threaded Architectures. IEEE Computer
Graphics and Applications (CG&A), 36(3):48—58, May/June 2016.

* K. Moreland, R. Maynard, D. Pugmire, A. Yenpure, A. Vacanti, M. Larsen, and H. Childs. Minimizing Development Costs for Efficient
Many-Core Visualization Using MCD3. Parallel Computing, 108:102834, Dec. 2021.

February 17, 2022 m) | 3

Data Parallel Primitives (DPP)

* Origins: Guy Blelloch Ph.D dissertation(1990), “Vector Models for Data-parallel Computing”
°* What are they?

°* Assume you have N elements in an array
* Assume there are >= N cores

* A DPP must complete in O(log N) time
* Examples: Map, Reduce, Scan, Gather, Scatter

© Why?
* Performant algorithms

* Increased reliability

°* Hardware agnostic

AMP, BOLT, Boost.Compute, Thrust, and recent additions to C++ standard implement DPPs

February 17, 2022

MCD3

* Meta-DPPs: which are parallel processing patterns that involve one or more DPPs. The word choice of “meta” is
meant to evoke its definition of “denoting something of a higher or second-order kind.”

* Convenience routines: which encapsulate common operations for scientific visualization.
* DPPs: which provide parallel processing patterns.

* Data management: which insulates algorithms from data layout complexities. These complexities range from how
data is organized (e.g., structure-of-arrays vs array-of-structures) to different types of meshes (e.g., unstructured,
rectilinear, etc.) to different memory spaces (e.g., host memory, device memory, or unified managed memory)

* Devices: which enable code to run on a given hardware architecture.

Algorithm Developer

Meta-DPPs Convenience Routines

Data Management

DPPs
Devices

February 17, 2022

5 Meta-DPPs + Modifiers”

Map Field Point Neighborhood

Input Array #1 Input Array eeo [[oo [T L] ==L LLRT] -

I‘I'I

Input Amray #2

Ouputamay #1 [V I T I T T T T Cutput Array

Visit Cell with Points

5 B 7

0 1 2 3 4
inputarray # [T e Tl T g Input Array 1

Output Array #1 5T ¢ [E [0 [© |
1] 1 2 3 4

ES
Scatter
CDUntArray|3|D|1|2IDID|D|4I1I2|

Al e i e R

mputarray#2 £ 1 F F, 1T 1T |

outputanay # S I IS e T = =]

February 17, 2022

Reduce By Key

KeysJoJaf1Jofaf1]1]4]
Input Array [4.7]9.7]9.2]1.3[7.9 |67 |53]8.1]

. m;

Qutput Array | 2] =] =

3 Outputarmay# | " T T X "L 151"
0 1

Functor

Convenience Routines

= ArrayRange: Given an array, ArrayRange finds the minimum and maximum value in that array.

= CountToOffset: Because visualization algorithms often deal with jagged dataq, it is common to need to
pack items of different sizes into a larger array. Often an algorithm will start with a count of how many
components are with each group (e.g. a count of how many vertices are in each cell of an unstructured
grid such as the first has 8 vertices, the second has 4 vertices, etc.). countToOffset will efficiently compute
the necessary offsets from the counts.

= Locators: An algorithm sometimes needs to identify which cell in a mesh contains a point at a given
coordinate. For irregular meshes, finding these cells efficiently requires special search structures.

= MapFieldMergeAverage: Visualization algorithms sometimes need to merge elements together. Often this
is a simplification of a mesh with elements that are coincident or that can be combined with minimal error.
When elements are merged, the fields on the elements need to be combined in some way.

= MapFieldPermutation: Many visualization algorithms modify the structure of a mesh and need to pass
data according to the modifications. For example, a threshold algorithm will remove cells from the mesh.
MapFieldPermutation can reorder the cell fields on the input mesh to match the new cell ordering of the
output mesh.

February 17, 2022 P

Data-Parallel Primitives (DPPs)

* Currently used DPPs in VTK-m

Copy

Copylf
CopySubRange
CountSetBits

Fill
LowerBounds
Reduce
ReduceByKey
Scaninclusive

ScanlnclusiveByKey

February 17, 2022

ScanExclusive
ScanExclusiveByKey
ScanExtended

Sort

SortByKey
Synchronize
Transform

Unique
UpperBounds

Data Management (DM)

* The DM layer decouples memory layout from execution
* Insulates meta-DPP and convenience routines from data layout and reorganization issues

* It enables a single code base to support many data layouts

* For a functor, data is always points, cells, ...

* DM layer reorganizes prior to execution

* Reorganization
* AOS vs SOA

°* Data Layout

* Isolating cells from structured /unstructured meshes

° In-situ processing is a major motivator

February 17, 2022

Devices

* Represents the physical hardware
* Assumes compiler for each device supports C++

* Extended language features are hidden from
developers

* DM and DPPs work to unify interface to
devices

°* DM layer prepares data for use on devices

* Copying data for devices with separate memory
spaces

* Allocating memory for managed uniform
memory

* Each device has a unique implementation for
the DPPs

February 17, 2022

Algorithm

Hardware
Abstraction

Architecture

Reducing Development Costs

* Assertion: Meta-DPP Reuse = Reduced
development cost

* VITK-m has 57 visualization algorithms

85 meta-DPPs, 44 convenience routines, 32 Copy DPPs,
78 non-Copy DPPs

97% use at least 1 meta-DPP, 47% a convenience
routine, 56% a Copy DPP, 47% a non-Copy DPP

* On average, an algorithm uses

1.5 meta-DPPs

0.8 convenience routines
0.6 Copy DPPs

1.4 non-Copy DPPs

* Estimating developer cost is difficult, our
methodology is necessarily an approximation

February 17, 2022

CellSetsonnec ivity
CleanGrid
ClipWithField
ClipWithbmplic itFunchon
Contowr

ImageConre ctivity

5 treamSurface
WertenChstering
ContmrTreedugmented
EmterralFaces
Pathline

S plittharpEdges

5 treamline

Surfacel armals
ContourTreeMesh2D
ContourTreeM esh3D
FhostC ell Remowve
Entropy

Histogram
HDEntopy
NDHistogram

Prohe

Tetrahedralizs
Threshold
Triangulate
Lagmnziant tuchies
Particleddvection
Thres holdPoints
Tube
ExtractFeametry
ExtractPoints
Extractstmeotared
Gradient

Lagrangian

Mask

MaskPoints

Mes huality
ParticleD ensit] eavestGrid Point
ZFPC ompres soxl D
ZFPC ompres so¥2D
Celliveraze
CellMeasums
CrossProduct
CylindrealC ocrdinate Trans form
DotPmoduct
FieldTaCalos
GhostCellC las sifty
ImazeMedian
Fointhverage
PointElevation
PointTrans form
SphericalC oordinate Trans form
VectorMaznide
Warph calar
WarpVector
ZFFPDiecompres sorl D
ZFPD ecompres sor2D)

10

E E

wDPP Copy mhetaDPF o Convenience

i1

|11

10

Methodology

* Uses(A,X)is 1if A uses X, otherwise 0
* Equiv(X) is the cost to implement X in a DPP-only system

. Cost Functions

CrepalA) =3 oy Uses(A,m) + 3 5. p Uses(A, d)
Cppp-oniy(A) = Y Uses(A,m) * Equiv(m)+
meM

Z Uses(A, c) + Equiv(c)+
ce(’

Y Uses(A,d)

del)
Coppiconu(A) =3 2y Uses(A,m) * Equiv(im) 43, , Uses(A,d)

* Results (Implementation Costs)
~ CMCD3 - 195

Cppp-onty = 605

CDPP+Conv = 399

February 17, 2022

Feature

DPPs

Visit Point With Cells
Reduce By Key
Scatter Counting
Visit Cell With Points
Point Neighborhood

meta-DPP

Map Field

Convenience

Locator
MapFieldMergeAverage
FieldMapPermutation

CountToOffset

ArrayRRange

i T = - . -

Savings Factor

Algorithm Uses DPP-Only DPP + Conv
Visit Points with Cells 41X 3.5X
Visit Cells with Points 3.2X 23X
All Other 27X 1.4X
Other: Particle Advection 8.8X 1.4X
Other: Non-Particle Advection 1.6X 1.4X

i1

Results

35

Legend

Visit Point with Cells

20

Visit Cell with Points

Other

25

20

CMCD3

W
—

1500 wdopaaq

Cppp+Conv

5

nnporgiod
ULIOISURITRIO 0D RIUPUTAD
1INPOIJS8010

U paa Be]

AFrsseID RIS
(Jziossardwona 17
(q1iessardwona 117
Jo3aa pdm

meeagdme
apnpuSepiolna y
uposmeI TR Ioo eI tayds
WIS TR T IU0,]
uoneAITIUIO

SI0[0D0 TP TR
Jziossardwon 17
qriossardwon 17
1IpUOsareapTAIIS Ul (TajanmRe]
sjuTo I SeR]

ASEFL

PRININNSIIRIEY
wresSolsTH I

Adonug N

Adonug

ure 150181

(£ Ysa{ a1] In0juoy)
(IZYsa{231] In0juo;)
PaIua WBNF 321 [IN0U0 T
Aannaunoer afew]
merFuerse T
sarnjonygueiBueise T

U HIAApTaPLR]
aued

AU URIS

EERUEEEN D IEN)
aBelaavypED
Appendysapy
Anpuwoaniienxg
aqny,

380 WA]3035 0L
ploysay,
ajenSueli],
SZNEPIYERI],

0B NG WIS
Bursajsnoxrapas,
vonaun PRHdwgEip D
ATATIAUNONIAE T
PIAEGILAAD
sa3e IR uialxg
aqoig

PHDWEID
aBeraayiuto g

8110 J308 HET
JUampEID
saBpgdreysids
SRUIIO pJAJETING
SJUO P [oYsaI T,
INouey

0

|i|1|13

February 17, 2022

Efficacy

* |s MCD? overly complicated?

* No, see chart

* |Is MCD? too simple?

°* Main visualization library behind Ascent
0 Used by 12+ computational sim teams

» Our 57 algorithms provide a sufficient feature set

* Oiriginally designed with 20 core algorithms
* All implemented

* Does not exhaustively cover the space of possible
visualization algorithms

. Future algorithms may be difficult to fit within the
framework

February 17, 2022

Feature

Use By Visualization Algorithms (percent)

meta-DPP

Convenience

DPP

Map Field

Visit Cell With Points
Visit Point With Cells
Scatter Counting
Reduce By Key
Point Neighborhood

MapFieldPermutation
ArrayRange
CountToOffset

Locator
MapFieldMergeAverage

Copy

Copylf
ScanExclusive
Sort

Reduce

Unique
LowerBounds
CopySubRange
SortByKey
UpperBounds
ReduceByKey
Transform
ScanExtended
BitFieldToUnorderedSet
Fill

72%
35%
12%
12%
11%
7%
28%
18%
18%
11%
4%
56%
23%
21%
18%
16%
14%
9%
7%
7%
7%
5%
5%
2%
2%
2%

Performance

Algorithm Architecture Comp. Perf.
Ray Tracing 117 4770K Embree 0.28-0.48
. [43] I Ivy Bridge Embree 0.4-0.58
¢ MCD3 vs Hardwa re-SpeC|f|c N GTX Titan Blk OptiX 0.44-0.56
NTeslaK8OM OptiX 0.37-0.51
° ° ° ° ° N GEFOI'CC ?jﬂTi DP“.X_ 0.69—0.89
* Mix of rendering/visualization software NGeForce 620M OptX 073116
. . Volume [Ivy Bndge (1) Vislt 0.73-9.1
. Embree, HAVS, OptiX, Vislt, VTK, Vapor Rendering | 17 4T10K @® VTK 2
[46] N GTX Titan Blk HAVS 0.33-2
° And direct implementations External Ilvy Bridge (1) VTK 0.50-1.4
facelist [47] Ilvy Bridge (1) Vislt 0.08-0.25
y CUDA, OpenMP, pthreads, TBB, Thrust Wavelet [Haswell (16) Vapor 08-15
Compression N Tesla K40 CUDA 0.6-0.8
. o ofe [48]

* Two algorithms had significantly worse R e I 21436
Advection I Haswell (28) pthreads 0.03-1.6
pe rfo rmance [49] IB Power8 (20) pthreads 0.05-1.03
N Tesla K20x CUDA 0.37-2.26
. N Tesla K80 CUDA 0.54-2.45
e External facelist N Tesla P100 CUDA 0.48-4.08
. . . Point Merge 1B Power9 (1) VTK 1.07-6.86
. Essentially a serial algorithm [39] IB Powerd (40) VTK 14-2.5
NTeslaVI00 VTK-m 0.48-4.0

e R ay T racing Probabalistic Graphical Modeling (PGM) 2018 [50]
Ilvy Bridge (24) OpenMP 2.7
- OptiX and Embree are just stinkin’ good IPhi7250(68) OpenMP 0.75-4.25
PGM 2020 IlvyBridge (8) {OpenMP. 22,26
[21] I Xeon Phi 7250 pthreads} 0.04, 1.58
* References in chart are from the Hashing [52] I Skylake (32) {TBB, 1.2-37
. 3 : N Tesla K40 CUDPP, 0.09-13
original MCD* paper in Parallel N Tesla V100 Thrust} 0.27-5.96

Computing, 108:102834, Dec. 2021
February 17, 2022

Performance (Detailed)

* MCD? vs Hardware-Specific

February 17, 2022

Horizontal axis is the ratio in MCD?3
performance against it’'s comparator

21 =» MCD?3 took twice as long
2! =» MCD? took half the time

Algorithm CPUs GPUs X Phi Serial Total

External - - - 034 034
Tacelist

PGM 18 332 - 0.87 - 1.649
PGM 20 139 0.25 078
Particle 038 1.53 - - 076
advection

Poimt 1.82 - - 310 238
merge

Ray 047 055 0.51
tracing

Volumse L.13 083 - 30 143
rendering

Wavelet 1.13 0.75 - - 092
COmMpression

Hashing 597 1.45 - 294
Total 145 095 047 148 L14

Hashing

PGM 20

PGM 18
Point
Merge

Wavelet
Compression

External
Facelist

Volume
Rendering

Ray
Tracing

Particle
Advection

Data

Small

Large

Device

Serial

CPU

Xeon Phi

GPU (desktop)
GPU (Kepler)
GPU (Pascal)
GPU (Volta)

NN

25 24 23 22 21 20 21

22

23

24

25 268

Performance (MCD3 Scaling on Multi-Core CPUs)

o
N
< Algorithm Architecture Max Paraliel
N Coms Efficiency
Volume I Ivy Bridge 24 0.73
Rendering [46]
o External I Ivy Bridge 16 0.77
=) Facelist [47]
i Contour I Sapdy Bridge 32 0.24
2 Tree [57]
ZDN Point IB Power 9 40 0.55
Merge [39]
Particle I Haswell 28 0.78
- Advection [49]
Q)
o
N
20 21 22 23 24 25 26 27 28

Number of Available CPU Cores

February 17, 2022 m) | 17

Conclusion

* Results demonstrate efficacy of MCD? in minimizing developer time while achieving
portable performance on multi-core architectures

* 3.1x for developer efficiency

°* An approximation, but high enough to indicate savings for the VTK-m development

* Overall 1.14x faster than hardware-specific implementations

* Somewhat surprising to the team
. Ideal was 1.0x, expected 0.8x - 0.9x
. 0.95x for GPUs is compelling

* Underlying system is time-consuming to implement

* Heavy use of template meta-programming increases barrier to developers, increased compile time

February 17, 2022 P

