
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Data-Parallel Primitives for Minimizing
Many-core Development Cost

Mark Bolstad February 17, 2022

SAND2022-1599CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Acknowledgements

• This material is based upon work supported by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research, under Award Numbers 10-
014707, 12-015215, and 14-017566.

• This research was supported by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of two U.S. Department of Energy organizations (Office of Science and
the National Nuclear Security Administration) responsible for the planning and preparation
of a capable exascale ecosystem, including software, applications, hardware, advanced
system engineering, and early testbed platforms, in support of the nation’s exascale
computing imperative.

• Sandia National Laboratories is a multimission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary
of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-NA-0003525.

• Thanks to many, many partners in labs, universities, and industry.

February 17, 2022 2

VTK-m

• Scientific Visualization has a rich history with GPUs
• Rending, but also algorithms and transformations

• In 2010, three development teams focused on portable
performance:
• EAVL (data models)
• DAX (execution models)
• PISTON (algorithms)

• Three teams merge to form VTK-m
• Teams at Oak Ridge, Kitware, Los Alamos, OSU, and Sandia

• Open source, tutorial materials available (VIS19), public github

February 17, 2022 3

• Key publications:
• K. Moreland, C. Sewell, W. Usher, L. Lo, J. Meredith, D. Pugmire, J. Kress, H. Schroots, K.- L. Ma, H. Childs, M. Larsen, C.-M. Chen, R.

Maynard, and B. Geveci. VTK-m: Accelerating the Visualization Toolkit for Massively Threaded Architectures. IEEE Computer
Graphics and Applications (CG&A), 36(3):48–58, May/June 2016.

• K. Moreland, R. Maynard, D. Pugmire, A. Yenpure, A. Vacanti, M. Larsen, and H. Childs. Minimizing Development Costs for Efficient
Many-Core Visualization Using MCD3. Parallel Computing, 108:102834, Dec. 2021.

Data Parallel Primitives (DPP)

• Origins: Guy Blelloch Ph.D dissertation(1990), “Vector Models for Data-parallel Computing”

• What are they?
• Assume you have N elements in an array

• Assume there are >= N cores

• A DPP must complete in O(log N) time

• Examples: Map, Reduce, Scan, Gather, Scatter

• Why?
• Performant algorithms

• Increased reliability

• Hardware agnostic

• AMP, BOLT, Boost.Compute, Thrust, and recent additions to C++ standard implement DPPs

February 17, 2022 4

MCD3

• Meta-DPPs: which are parallel processing patterns that involve one or more DPPs. The word choice of “meta” is
meant to evoke its definition of “denoting something of a higher or second-order kind.”

• Convenience routines: which encapsulate common operations for scientific visualization.

• DPPs: which provide parallel processing patterns.

• Data management: which insulates algorithms from data layout complexities. These complexities range from how
data is organized (e.g., structure-of-arrays vs array-of-structures) to different types of meshes (e.g., unstructured,
rectilinear, etc.) to different memory spaces (e.g., host memory, device memory, or unified managed memory)

• Devices: which enable code to run on a given hardware architecture.

February 17, 2022 5

5 Meta-DPPs + Modifiers*

February 17, 2022 6

Visit Point with CellsVisit Cell with Points

Point Neighborhood Reduce By KeyMap Field

Scatter*

Functor

Convenience Routines

 ArrayRange: Given an array, ArrayRange finds the minimum and maximum value in that array.
 CountToOffset: Because visualization algorithms often deal with jagged data, it is common to need to

pack items of different sizes into a larger array. Often an algorithm will start with a count of how many
components are with each group (e.g. a count of how many vertices are in each cell of an unstructured
grid such as the first has 8 vertices, the second has 4 vertices, etc.). countToOffset will efficiently compute
the necessary offsets from the counts.

 Locators: An algorithm sometimes needs to identify which cell in a mesh contains a point at a given
coordinate. For irregular meshes, finding these cells efficiently requires special search structures.

 MapFieldMergeAverage: Visualization algorithms sometimes need to merge elements together. Often this
is a simplification of a mesh with elements that are coincident or that can be combined with minimal error.
When elements are merged, the fields on the elements need to be combined in some way.

 MapFieldPermutation: Many visualization algorithms modify the structure of a mesh and need to pass
data according to the modifications. For example, a threshold algorithm will remove cells from the mesh.
MapFieldPermutation can reorder the cell fields on the input mesh to match the new cell ordering of the
output mesh.

February 17, 2022 7

Data-Parallel Primitives (DPPs)

• Copy
• CopyIf
• CopySubRange
• CountSetBits
• Fill
• LowerBounds
• Reduce
• ReduceByKey
• ScanInclusive
• ScanInclusiveByKey

• ScanExclusive
• ScanExclusiveByKey
• ScanExtended
• Sort
• SortByKey
• Synchronize
• Transform
• Unique
• UpperBounds

February 17, 2022 8

• Currently used DPPs in VTK-m

Data Management (DM)

• The DM layer decouples memory layout from execution
• Insulates meta-DPP and convenience routines from data layout and reorganization issues
• It enables a single code base to support many data layouts

• For a functor, data is always points, cells, …

• DM layer reorganizes prior to execution

• Reorganization
• AOS vs SOA

• Data Layout
• Isolating cells from structured/unstructured meshes

• In-situ processing is a major motivator

February 17, 2022 9

Devices

• Represents the physical hardware
• Assumes compiler for each device supports C++
• Extended language features are hidden from

developers

• DM and DPPs work to unify interface to
devices

• DM layer prepares data for use on devices
• Copying data for devices with separate memory

spaces
• Allocating memory for managed uniform

memory

• Each device has a unique implementation for
the DPPs

February 17, 2022 10

A-1 A-2 A-3 A-4 A-5 A-NAlgorithm

Architecture

...

Hardware
Abstraction

...Map Reduce Scan

HIP CUDA OpenMP

Reducing Development Costs

February 17, 2022 11

• Assertion: Meta-DPP Reuse  Reduced
development cost
• VTK-m has 57 visualization algorithms

• 85 meta-DPPs, 44 convenience routines, 32 Copy DPPs,
78 non-Copy DPPs

• 97% use at least 1 meta-DPP, 47% a convenience
routine, 56% a Copy DPP, 47% a non-Copy DPP

• On average, an algorithm uses
• 1.5 meta-DPPs
• 0.8 convenience routines
• 0.6 Copy DPPs
• 1.4 non-Copy DPPs

• Estimating developer cost is difficult, our
methodology is necessarily an approximation

Methodology

February 17, 2022 12

Results

February 17, 2022 13

Efficacy

February 17, 2022 14

• Is MCD3 overly complicated?
• No, see chart

• Is MCD3 too simple?
• Main visualization library behind Ascent

• Used by 12+ computational sim teams
 Our 57 algorithms provide a sufficient feature set

• Originally designed with 20 core algorithms
• All implemented
• Does not exhaustively cover the space of possible

visualization algorithms
• Future algorithms may be difficult to fit within the

framework

Performance

• MCD3 vs Hardware-Specific
• Mix of rendering/visualization software

• Embree, HAVS, OptiX, VisIt, VTK, Vapor

• And direct implementations
• CUDA, OpenMP, pthreads, TBB, Thrust

• Two algorithms had significantly worse
performance
• External facelist

• Essentially a serial algorithm

• Ray Tracing
• OptiX and Embree are just stinkin’ good

February 17, 2022 15

* References in chart are from the
original MCD3 paper in Parallel
Computing, 108:102834, Dec. 2021

Performance (Detailed)

• MCD3 vs Hardware-Specific
• Horizontal axis is the ratio in MCD3

performance against it’s comparator
• 2-1  MCD3 took twice as long

• 21  MCD3 took half the time

February 17, 2022 16

Performance (MCD3 Scaling on Multi-Core CPUs)

February 17, 2022 17

Conclusion

• Results demonstrate efficacy of MCD3 in minimizing developer time while achieving
portable performance on multi-core architectures

• 3.1x for developer efficiency
• An approximation, but high enough to indicate savings for the VTK-m development

• Overall 1.14x faster than hardware-specific implementations
• Somewhat surprising to the team

• Ideal was 1.0x, expected 0.8x - 0.9x
• 0.95x for GPUs is compelling

• Underlying system is time-consuming to implement
• Heavy use of template meta-programming increases barrier to developers, increased compile time

February 17, 2022 18

