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VTK-m

• Scientific Visualization has a rich history with GPUs
• Rending, but also algorithms and transformations

• In 2010, three development teams focused on portable 
performance:
• EAVL (data models)
• DAX (execution models)
• PISTON (algorithms)

• Three teams merge to form VTK-m
• Teams at Oak Ridge, Kitware, Los Alamos, OSU, and Sandia

• Open source, tutorial materials available (VIS19), public github
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• Key publications:
• K. Moreland, C. Sewell, W. Usher, L. Lo, J. Meredith, D. Pugmire, J. Kress, H. Schroots, K.- L. Ma, H. Childs, M. Larsen, C.-M. Chen, R. 

Maynard, and B. Geveci. VTK-m: Accelerating the Visualization Toolkit for Massively Threaded Architectures. IEEE Computer 
Graphics and Applications (CG&A), 36(3):48–58, May/June 2016. 

• K. Moreland, R. Maynard, D. Pugmire, A. Yenpure, A. Vacanti, M. Larsen, and H. Childs. Minimizing Development Costs for Efficient 
Many-Core Visualization Using MCD3. Parallel Computing, 108:102834, Dec. 2021. 



Data Parallel Primitives (DPP)

• Origins: Guy Blelloch Ph.D dissertation(1990), “Vector Models for Data-parallel Computing” 

• What are they?
• Assume you have N elements in an array

• Assume there are >= N cores

• A DPP must complete in O(log N) time

• Examples: Map, Reduce, Scan, Gather, Scatter

• Why?
• Performant algorithms

• Increased reliability

• Hardware agnostic

• AMP, BOLT, Boost.Compute, Thrust, and recent additions to C++ standard implement DPPs
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MCD3

• Meta-DPPs: which are parallel processing patterns that involve one or more DPPs. The word choice of “meta” is 
meant to evoke its definition of “denoting something of a higher or second-order kind.”

• Convenience routines: which encapsulate common operations for scientific visualization.

• DPPs: which provide parallel processing patterns.

• Data management: which insulates algorithms from data layout complexities. These complexities range from how 
data is organized (e.g., structure-of-arrays vs array-of-structures) to different types of meshes (e.g., unstructured, 
rectilinear, etc.) to different memory spaces (e.g., host memory, device memory, or unified managed memory)

• Devices: which enable code to run on a given hardware architecture.
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5 Meta-DPPs + Modifiers*
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Convenience Routines

 ArrayRange: Given an array, ArrayRange finds the minimum and maximum value in that array. 
 CountToOffset: Because visualization algorithms often deal with jagged data, it is common to need to 

pack items of different sizes into a larger array. Often an algorithm will start with a count of how many 
components are with each group (e.g. a count of how many vertices are in each cell of an unstructured 
grid such as the first has 8 vertices, the second has 4 vertices, etc.). countToOffset will efficiently compute 
the necessary offsets from the counts.

 Locators: An algorithm sometimes needs to identify which cell in a mesh contains a point at a given 
coordinate. For irregular meshes, finding these cells efficiently requires special search structures. 

 MapFieldMergeAverage: Visualization algorithms sometimes need to merge elements together. Often this 
is a simplification of a mesh with elements that are coincident or that can be combined with minimal error. 
When elements are merged, the fields on the elements need to be combined in some way.

 MapFieldPermutation: Many visualization algorithms modify the structure of a mesh and need to pass 
data according to the  modifications. For example, a threshold algorithm will remove cells from the mesh. 
MapFieldPermutation can reorder the cell fields on the input mesh to match the new cell ordering of the 
output mesh.
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Data-Parallel Primitives (DPPs)

• Copy
• CopyIf
• CopySubRange
• CountSetBits
• Fill
• LowerBounds
• Reduce
• ReduceByKey
• ScanInclusive
• ScanInclusiveByKey

• ScanExclusive
• ScanExclusiveByKey
• ScanExtended
• Sort
• SortByKey
• Synchronize
• Transform
• Unique
• UpperBounds
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Data Management (DM)

• The DM layer decouples memory layout from execution
• Insulates meta-DPP and convenience routines from data layout and reorganization issues
• It enables a single code base to support many data layouts

• For a functor, data is always points, cells, …

• DM layer reorganizes prior to execution

• Reorganization
• AOS vs SOA

• Data Layout
• Isolating cells from structured/unstructured meshes

• In-situ processing is a major motivator
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Devices

• Represents the physical hardware
• Assumes compiler for each device supports C++
• Extended language features are hidden from 

developers

• DM and DPPs work to unify interface to 
devices

• DM layer prepares data for use on devices
• Copying data for devices with separate memory 

spaces
• Allocating memory for managed uniform 

memory

• Each device has a unique implementation for 
the DPPs
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Reducing Development Costs
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• Assertion: Meta-DPP Reuse  Reduced 
development cost
• VTK-m has 57 visualization algorithms

• 85 meta-DPPs, 44 convenience routines, 32 Copy DPPs, 
78 non-Copy DPPs

• 97% use at least 1 meta-DPP, 47% a convenience 
routine, 56% a Copy DPP, 47% a non-Copy DPP

• On average, an algorithm uses
• 1.5 meta-DPPs
• 0.8 convenience routines
• 0.6 Copy DPPs
• 1.4 non-Copy DPPs

• Estimating developer cost is difficult, our 
methodology is necessarily an approximation



Methodology
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Results
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Efficacy
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• Is MCD3 overly complicated?
• No, see chart

• Is MCD3 too simple?
• Main visualization library behind Ascent

• Used by 12+ computational sim teams
 Our 57 algorithms provide a sufficient feature set

• Originally designed with 20 core algorithms
• All implemented
• Does not exhaustively cover the space of possible 

visualization algorithms
• Future algorithms may be difficult to fit within the 

framework
    



Performance

• MCD3 vs Hardware-Specific
• Mix of rendering/visualization software

• Embree, HAVS, OptiX, VisIt, VTK, Vapor

• And direct implementations
• CUDA, OpenMP, pthreads, TBB, Thrust

• Two algorithms had significantly worse 
performance
• External facelist

• Essentially a serial algorithm

• Ray Tracing
• OptiX and Embree are just stinkin’ good
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* References in chart are from the 
original MCD3 paper in Parallel 
Computing, 108:102834, Dec. 2021



Performance (Detailed)

• MCD3 vs Hardware-Specific
• Horizontal axis is the ratio in MCD3 

performance against it’s comparator
• 2-1  MCD3 took twice as long

• 21  MCD3 took half the time
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Performance (MCD3 Scaling on Multi-Core CPUs)
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Conclusion

• Results demonstrate efficacy of MCD3 in minimizing developer time while achieving 
portable performance on multi-core architectures

• 3.1x for developer efficiency
• An approximation, but high enough to indicate savings for the VTK-m development

• Overall 1.14x faster than hardware-specific implementations
• Somewhat surprising to the team

• Ideal was 1.0x, expected 0.8x - 0.9x
• 0.95x for GPUs is compelling

• Underlying system is time-consuming to implement
• Heavy use of template meta-programming increases barrier to developers, increased compile time
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