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Outline

* MELCOR code introduction

* Describe MELCOR physics models and capabilities for HTGRs in limited detail
«  Diffusional fission product release model
«  Core component conduction (intracell, intercell, core boundary)
«  Core control volume convection/flow
«  Graphite oxidation
«  Point reactor kinetics equations

» Conclusions
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MELCOR - History and Introduction
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| = Began in 1982 shortly after TMI-2

= Replaced Source Term Code Package
= Systems-level approach to modeling
= Emphasis on “best-estimate”

= Repository of knowledge

= Global standard (used by 31+ nations)
Users' groups (AMUG & EMUG)
Annual CSARP/MCAP meetings
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 Morth America (non-US)

= Used by USNRC, USDOE & US industry
= Used for naval reactors (US/UK)
= Evolves to meet regulatory needs
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MELCOR - History and Introduction

* Fully integrated, multi-physics engineering-level code

« Thermal-hydraulic response in the reactor coolant system, reactor cavity,
containment, and confinement buildings

« Core heat-up, degradation, and relocation

« Core-concrete attack

* Hydrogen production, transport, and combustion
« Fission product release and transport behavior

* Diverse application
*  Multiple core designs
*  Models built from basic code constructs
«  Adaptability to new or non-traditional reactor designs (ATR, Naval, VVER)

* Validated physics models (ISP's, benchmarks, experiments, accidents)
» Uncertainty analysis & dynamic PRA (fast-running, reliable, access to parameters)

* User convenience
*  Windows/Linux versions
«  User utilities and post-processing/visualization capabilities
»  Extensive code documentation

Multi- Physics

Diverse Application

Uncertainty &
Dynamic PRA

Dynamic Event Tree

M| -



Diffusional Fission Product Release

» Overall goals of the HTGR diffusional release model:

e  Predict radionuclide distributions within fuel elements in the core, and
e  Predict radionuclide release from fuel to coolant

* Entails a finite volume diffusion solver and a specially-tailored analytic release model for failed TRISO fuel
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» Solution algorithm and run-time strategy
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» Get molar concentration profiles and diffusional release
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Conduction

* Intercell
*  Between like or unlike components in axially or radially adjacent core cells, pending conduction logic
*  Formulated as a conductance times a temperature difference with the conductance equaling a parallel combination of:
*  FU term (geometry, solid material conductivity)

«  MXterm (geometry and effective conductivity consisting of radiation, fluid conduction, and solid conduction terms)
+  Tanaka and Chisaka formulation for PMR

. Zehner-Schlunder-Bauer formulation for PBR

*Intracell
*  Between components within the same core cell, more precisely fuel (FU) and matrix (MX) component in the context of HTGRs
*  Formulated as a conductance times a temperature difference with the conductance equaling a parallel combination of:
*  FU term (geometry, solid material conductivity)
*  MXterm (geometry, solid material conductivity)
*  Another user-specified conductivity if necessary

* Boundary
*  Allow thermal energy to pass from core periphery (usually a reflector region) to bounding heat structures (usually the core barrel region)
* Accounts for heat transfer across a user-specified gap

«  Key for modeling passive safety features of HTGRs
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Convection/Flow

* Nusselt number correlations for heat transfer coefficients
« Pebble fueled systems use correlations for isolated spherical particles:

NUjoreea = 2.0 + 0.6Re}’* Pr!/?

NUnatwrar = 2.0 + 0.6Gr;* Pr!/*

*  Prismatic fuel systems utilize conventional Dittus-Boelter correlation forms
« Forced/natural laminar/turbulent Nusselt numbers computed and maximum used
«  Sensitivity coefficient access to all correlation multipliers, constants, exponents

* For either pebble bed or prismatic cores, the matrix component thickness

contributes to heat transfer resistance Ku(e,Re) =[Gy + G + G5 (5t ) (;D:;L
Correlation G C2 Ca
- For pebble bed cores, use packed bed correlations (Ergun, Achenbach) Ergun (original) 25 | 0. | 00 -
C fl ) d | Modified Ergun (smooth) 3.6 360. 0.0
ompute flow resistance and pressure loss Modtied Ergon (tough) 50 250, 0 -
*  Frame as K-loss for convenience given phasic velocity equation forms Achenbach 175 | 220, 20.0 0.4




Graphite Oxidation

Steam oxidation

Reaction

R _ ki Pro C+H,0(g) »> CO(g)+ H,(g)
OX stecrn 05
L+ ks Py + ke Py o CO(g)+ H,0(g) - CO,(g)+ H,(g)
Air oxidation Reaction

1. C+0, - CO,(g)

T 0.21228x10° 2. C+10, > CO(g)

0.5
R, =1.7804x10" e:{p[— 20129][ il ]

3. CO(g)+10,(g) > CO,(g)
172 2 *Both steam and air include

rate limit due to steam/air
diffusion towards active
oxidation surface

4. C+CO,(g) - 2CO(g)

* Graphite oxidation active in the context of a new generalized oxidation model|

R - . | . . 69604
» For air oxidation, empirical correlation determines relative production of CO/CO,  f =%/, =739 +exp (— )

8.314 * Tyy|rFss
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Point Reactor Kinetics Equations

e Standard PRKE treatment
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* Fuel and moderator density
* Define COR cell ranges as regions over which averages are taken to inform feedback models

* Useful capability for ATWS-type scenarios

Reactivity [pcm]
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Conclusions

* To facilitate MELCOR modeling of HTGRs, several physics models and capabilities were developed and integrated
* An approach consistent with the systems-level modeling philosophy of MELCOR was taken

» Noteworthy aspects of HTGR physics models and/or modeling capabilities presented here
«  Further detail in NURETH-19 paper
«  Still further detail in MELCOR code documentation

*  Publicly-released demonstration calculation performed for USNRC
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