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Outline

* MELCOR code introduction

* Delayed neutrons and reactor kinetics

» Standard and fluid-fuel point kinetics equations in MELCOR

* Validation against ORNL MSRE zero-power flow coast-down experiment

* Conclusions
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MELCOR - History and Introduction
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| = Began in 1982 shortly after TMI-2

= Replaced Source Term Code Package
= Systems-level approach to modeling
= Emphasis on “best-estimate”

= Repository of knowledge

= Global standard (used by 31+ nations)
Users' groups (AMUG & EMUG)
Annual CSARP/MCAP meetings
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 Morth America (non-US)

= Used by USNRC, USDOE & US industry
= Used for naval reactors (US/UK)
= Evolves to meet regulatory needs
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MELCOR - History and Introduction

* Fully integrated, multi-physics engineering-level code

« Thermal-hydraulic response in the reactor coolant system, reactor cavity,
containment, and confinement buildings

« Core heat-up, degradation, and relocation

« Core-concrete attack

* Hydrogen production, transport, and combustion
« Fission product release and transport behavior

* Diverse application
*  Multiple core designs
*  Models built from basic code constructs
«  Adaptability to new or non-traditional reactor designs (ATR, Naval, VVER)

* Validated physics models (ISP's, benchmarks, experiments, accidents)
» Uncertainty analysis & dynamic PRA (fast-running, reliable, access to parameters)

* User convenience
*  Windows/Linux versions
«  User utilities and post-processing/visualization capabilities
»  Extensive code documentation

Multi- Physics

Diverse Application

Uncertainty &
Dynamic PRA

Dynamic Event Tree
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Reactor Kinetics & Dynamics

* Time-dependent neutron population (kinetics) plus system feedback mechanisms (dynamics)

* Delayed neutron (DN) emission from delayed neutron precursor (DNP) decay a primary governor of dynamic response
» Solid fuel -DNP's stay and hence DN's contribute to economy Br (5.6 5)

* Fluid fuel - DNP's move (ex-core) and lost DN's impact economy

8TKr (excited)
* DNP grouping help with analyses (group decay, abundance) B

* Process of DNP advection with flowing fuel -> DNP “drift”

« Cannot neglect the kinetic/dynamic implications of DNP “drift” ISR S
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Standard Point Reactor Kinetics Equations

* Textbook Six DNP group PRKE's
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* Leads to lower effective DN fraction,
* Looks like negative reactivity insertion, and

* Introduces a “reactivity bias” barrier to criticality for a given flow
* Relatively lower DN emission in core as core DNP inventory decreases
* Relatively higher DN emission in core as core DNP inventory increases

* Fuel flow has direct reactivity implications (e.g2. pump coast-down increases reactivity, pump ramp-up decreases reactivity)
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Fluid Fuel Point Reactor Kinetics Equation Model

dPt) [pt) =@ © A - In-Vessel DNP gain by fission
dt ( A )P(t) +Z’1£CEC + S0 B - In-Vessel DNP loss by decay, flow
= C - In-Vessel DNP gain by Ex-Vessel DNP flow
dcc@w) @ ©
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Where: [= Effective delayed neutron fraction

P{(t)= Thermal power due to fission 0 F= Delayed neutron fraction {static, in absence of drift effects)
CF = delayed neutron precursor group i inventory/concentration in-core A = 1/""["2}”: Neutron generation time

CiL= delayed neutron precursor group i inventory/concentration ex-core MC,/L/
Tein = ()

= Residence time of precursors (core, loop, respectively)
S5¢= Thermal power generation rate due to neutron source _ )
V¢ 1= Fluid volume (core, loop, respectively)

k-1 - : N
p(t) = — = Reactivity for k the effective multiplication factor ;= Decay constant of delayed neutron precursor group i



ORNL MSRE Zero-Power Flow Reactivity Experiments

* Null transient was checked
* Steady-state MSRE model, fluid-fuel PRKE's start at some time with an initial power
* Verify steady power level (no Ap) and a bias reactivity due to steady flow

* Good test of input structures and data read/write capabilities
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ORNL MSRE Zero-Power Flow Reactivity Experiments

» Validation of MELCOR FFPRKE predictions against experimental data and a separate computer code
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Conclusions

* To facilitate MELCOR modeling of MSRs, a fluid fuel point reactor kinetics equation model was developed and integrated
* An approach consistent with the systems-level modeling philosophy of MELCOR was taken

» Validation was performed against experimental data from the ORNL MSRE zero-power flow reactivity experiments
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