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• MELCOR code introduction

• Delayed neutrons and reactor kinetics

• Standard and fluid-fuel point kinetics equations in MELCOR 

• Validation against ORNL MSRE zero-power flow coast-down experiment

• Conclusions



MELCOR – History and Introduction 
 Began in 1982 shortly after TMI-2
 Replaced Source Term Code Package
 Systems-level approach to modeling
 Emphasis on “best-estimate” 
 Repository of knowledge 
 Global standard (used by 31+ nations)

 Users’ groups (AMUG & EMUG) 
 Annual CSARP/MCAP meetings 

 Used by USNRC, USDOE & US industry
 Used for naval reactors (US/UK) 
 Evolves to meet regulatory needs 
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• Accident Tolerant Fuels
• Non-LWRs
• Accident Management



MELCOR – History and Introduction 
• Fully integrated, multi-physics engineering-level code

• Thermal-hydraulic response in the reactor coolant system, reactor cavity, 
containment, and confinement buildings

• Core heat-up, degradation, and relocation
• Core-concrete attack
• Hydrogen production, transport, and combustion
• Fission product release and transport behavior

• Diverse application
• Multiple core designs
• Models built from basic code constructs
• Adaptability to new or non-traditional reactor designs (ATR, Naval, VVER) 

• Validated physics models (ISP’s, benchmarks, experiments, accidents)

• Uncertainty analysis & dynamic PRA (fast-running, reliable, access to parameters)

• User convenience
• Windows/Linux versions
• User utilities and post-processing/visualization capabilities 
• Extensive code documentation
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Reactor Kinetics & Dynamics
• Time-dependent neutron population (kinetics) plus system feedback mechanisms (dynamics) 

• Delayed neutron (DN) emission from delayed neutron precursor (DNP) decay a primary governor of dynamic response
• Solid fuel –DNP’s stay and hence DN’s contribute to economy

• Fluid fuel – DNP’s move (ex-core) and lost DN’s impact economy

• DNP grouping help with analyses (group decay, abundance) 

• Process of DNP advection with flowing fuel -> DNP “drift” 

• Cannot neglect the kinetic/dynamic implications of DNP “drift”
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Standard Point Reactor Kinetics Equations
• Textbook Six DNP group PRKE’s

• DNP drift 

• Leads to lower effective DN fraction, 

• Looks like negative reactivity insertion, and 

• Introduces a “reactivity bias” barrier to criticality for a given flow 

• Relatively lower DN emission in core as core DNP inventory decreases

• Relatively higher DN emission in core as core DNP inventory increases 

• Fuel flow has direct reactivity implications (e.g. pump coast-down increases reactivity, pump ramp-up decreases reactivity) 
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Fluid Fuel Point Reactor Kinetics Equation Model
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A –  In-Vessel DNP gain by fission 
B –  In-Vessel DNP loss by decay, flow
C –  In-Vessel DNP gain by Ex-Vessel DNP flow
D – Ex-Vessel DNP gain by In-Vessel DNP flow
E –  Ex-Vessel DNP loss by decay, flow



ORNL MSRE Zero-Power Flow Reactivity Experiments

• Null transient was checked

• Steady-state MSRE model, fluid-fuel PRKE’s start at some time with an initial power

• Verify steady power level (no Δρ) and a bias reactivity due to steady flow 

• Good test of input structures and data read/write capabilities

• Zero-power fuel pump coast-down
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*Fuel circulation worth is: 
0.212 +/- 0.004 δK/K 



ORNL MSRE Zero-Power Flow Reactivity Experiments

• Validation of MELCOR FFPRKE predictions against experimental data and a separate computer code
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Conclusions
• To facilitate MELCOR modeling of MSRs, a fluid fuel point reactor kinetics equation model was developed and integrated

• An approach consistent with the systems-level modeling philosophy of MELCOR was taken 

• Validation was performed against experimental data from the ORNL MSRE zero-power flow reactivity experiments
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