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ABSTRACT

This paper discusses the application of the Area Metric to
the quantification of modeling errors. The focus of the discus-
sion is the effect of the shape of the two distributions on the re-
sult produced by the Area Metric. Two different examples that
assume negligible experimental and numerical errors are pre-
sented: the first case has experimental and simulated quantities
of interest defined by normal distributions that require the def-
inition of a mean value and a standard deviation; the second
example is taken from the V&V10.1 ASME Standard that applies
the Area Metric to quantify the modeling error of the tip deflec-
tion of a loaded hollow tapered cantilever beam simulated with
the static Bernoulli-Euler beam theory.

The first example, shows that relatively small differences be-
tween the mean values are sufficient to filter the information con-
tained in the standard deviation. Furthermore, the example of the
V&V10.1 ASME Standard produces an Area Metric equal to the
difference between the mean values of experiments and simula-
tions. Therefore, the error quantification is reduced to a single
number that is obtained from a simple difference of two mean
values. This means that the Area Metric fails to reflect a depen-
dence for the difference in the shape of the distributions repre-
senting variability.

The paper also presents an alternative version of the Area
Metric that does not filter the effect of the shape of the distribu-
tions by utilizing a reference simulation that has the same mean
value of the experiments. This means that the quantification of
the modeling error will have contributions from the difference in
mean values and from the shape of the distributions.

1 INTRODUCTION
The assessment of the quality of computational simulations

requires the quantification of the modeling error resulting from
the assumptions and approximations included in the mathemati-
cal model that represents the physical reality.

Nowadays, it is commonly accepted [1–4] that the goal of
validation is exactly this quantification of the modeling error,
which is performed by comparing numerical results with exper-
imental data for a given quantity of interest (also known as vali-
dation variable, system response or figure of merit).

The quantification of modeling errors for a given quantity
of interest is not as trivial as the highly popular graphical com-
parisons of numerical and experimental results might suggest.
Experimental measurements are affected by measurement uncer-
tainties and variability in material properties, heat transfer coef-
ficients and/or boundary conditions, [5]. Simulations include nu-
merical uncertainties and input parameters uncertainties, which
are related to the material properties, heat transfer coefficients
and/or boundary conditions.

Deterministic simulations use nominal values of the in-
put parameters (scalar quantities) to perform simulations. On
the other hand, stochastic approaches characterize the uncer-
tain input parameters with probabilistic distributions. These
distributions must be propagated through the mathemati-
cal/computational model to obtain the quantities of interest,
which will also be represented by a probabilistic distribution.
The quantification of modeling errors in stochastic simulations
is based on the comparison of probabilistic distributions obtained
from experiments and simulations.

The experimental characterization of the quantity of interest
can be affected by measurement uncertainty and statistical con-
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vergence (number of samples available), whereas the simulations
results for the quantity of interest can be affected by numerical
uncertainty (discretization, iterative and round-off errors), uncer-
tainties in the definition of the input parameters distributions and
statistical convergence. Therefore, multiple probabilistic distri-
butions (probabilistic boxes) [6] may be required. However, in
the present study, following [7] we focus on problems where ex-
perimental measurement uncertainty, numerical uncertainty and
uncertainties in the input parameters distributions are negligible.
In these conditions, the probabilistic distributions that character-
ize the quantity of interest are only a consequence of variabil-
ity in material properties, any other problem parameters and/or
boundary conditions. Furthermore, statistical convergence is as-
sumed to be achieved in experiments and simulations.

The selected conditions are ideal for the application of the
Area Metric presented in [7], which is a Validation metric that
quantifies the modeling error when the experimental and simula-
tions results have statistically converged, i.e. when the number
of samples in experiments and simulations is sufficiently large.
In the Area Metric, the challenging task of obtaining a single
number from the differences between two distributions is accom-
plished using the absolute differences between cumulative distri-
bution functions (CDF).

As stated in [7], if the two CDF’s exhibit negligible intersec-
tion the Area Metric is equal to the difference between the mean
values of the two distributions and so it filters the information
contained in the type of distributions that represent the experi-
ments and simulations. This would be a welcomed result if the
Area Metric became insensitive to the type of distributions only
for large differences between the mean values. However, the ex-
ercise reported in [8] for the V&V10.1 example [9] showed that
small differences in the mean values (8.4% of the mean exper-
imental value) are sufficient to obtain a negligible influence of
the shape of the distributions. Therefore, the objectives of the
present paper are:

1. Quantify the difference between the mean values of the ex-
perimental and simulations CDF’s that leads to a negligible
influence of the shape of the distributions;

2. Suggest a modification to the Area Metric as presented in [7]
that does not ignore the discrepancies in shape of the ex-
perimental and simulations distributions for problems with
negligible intersection of the CDFs.

The first objective is accomplished using normal distribu-
tions1 defined by mean values and standard deviations of exper-
iments and simulations. In this case, it is possible to quantify
the Area Metric as a function of the mean values and standard
deviations of the two distributions and quantify the difference in
mean values that leads to a negligible contribution of the standard
deviations (shape of the distributions).

1Other types of distributions could be used to make an equivalent exercise.

The exercise performed with the normal distributions sug-
gested an alternative formulation of the Area Metric. The pro-
posed formulation keeps the contribution of the different shapes
of the experimental and simulations distributions independently
of the difference between mean values.

The remainder of this paper is organized as follows: section
2 describes the Area Metric and the alternative formulation pro-
posed in this study; the outcome of the area metric as a function
of the mean values and standard deviations of normal distribu-
tions that characterize the experimental and simulation data is
presented and discussed in section and section 4 presents the re-
sults of the two formulations of the Area Metric for the example
presented in V&V10.1; Conclusions of this study are summa-
rized in section 5.

2 AREA METRIC
For a given Quantity Of Interest φ defined by an experi-

mental probability density function (PDFD(φ)) and a simulations
PDFS(φ), the area metric requires the calculation of the cumula-
tive distribution functions CDFX (φ)

CDFX (φ) =
∫

φ

−∞

PDFX (φ)dφ , (1)

where X is D for the experiments and S for the simulations, re-
spectively.

As presented in [7], the Area Metric M(φ) is defined by

M(φ) =
∫ +∞

−∞

|CDFS(φ)−CDFD(φ)|dφ . (2)

In [9], the value of area metric is made dimensionless using
the mean value µD(φ) of the experimental PDFD(φ).

Figure 1 illustrates the determination of the Area Met-
ric for two cases where the quantity of interest φ of experi-
ments and simulations is defined by normal distributions. The
figure presents a case with a difference between the mean
values ∆µ = µS − µD = 0.2µD (top plots) and another with
∆µ = µS−µD = µD (bottom plots). M(φ) corresponds to the
gray area of the right plots. For ∆µ = 0.2µD, there is intersection
of the two CDF’s and so the differences in standard deviations
σS and σD will contribute to M(φ). On the other hand, with
∆µ = µD there is a negligible area of intersection and so M(φ)
will be almost identical to |µS−µD|.

2.1 Proposal of an Alternative Area Metric
In a stochastic simulation, it is not expected that the mod-

eling error is independent of the shape distribution, which is the
result obtained from the Area Metric when there is a negligible
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∆µ(φ) = µS−µD = 0.2µD
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FIGURE 1. Illustration of the determination of the Area Metric (gray
area in the right plots) for two cases with quantities of interest defined
by normal distributions.
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FIGURE 2. Illustration of the determination of the contribution of the
shape of the distributions for the alternative Area Metric (gray area in
the right plots) proposed in this work.

area of intersection between the two CDF’s. Therefore, we pro-
pose an alternative formulation of the Area Metric that does not
filter the information of the shapes of the distributions for any
value of ∆µ .

The alternative version of the Area Metric is defined by

Ma(φ) = |µS(φ)−µD(φ)|+Mo(φ) , (3)

where

Mo(φ) =
∫ +∞

−∞

|CDFS(φ
∗)−CDFD(φ)|dφ , (4)

and2

φ
∗ = φ − (µS(φ)−µD(φ)) . (5)

This guarantees that µS(φ
∗) = µD(φ) and σS(φ

∗) = σS(φ)
and so ∆µ is removed from the integral of the differences be-
tween the two CDF’s included in equation (5). For the two cases,
illustrated in figure 1, the CDFS(φ

∗) are identical and the con-
tribution of the shape of the distributions (Mo(φ)) to Ma(φ) is
illustrated in figure 2. The same area is valid for the two cases
presented in figure 1, but Ma(φ) will not be identical because
the difference between mean values (µS−µD) is not identical in
both cases. Note that the areas illustrated in figure 1 correspond
to M(φ), whereas the area represented in figure 2 corresponds
only to the contribution of the different shapes of the distribu-
tions (Mo(φ)).

3 AREA METRIC FOR QUANTITIES OF INTEREST DE-
FINED BY NORMAL DISTRIBUTIONS
The goal of this study is to quantify the contribution of the

shape of the experimental and simulations distributions to M(φ)
as a function of the difference between the mean value of the
PDFS(φ) and PDFD(φ), µS(φ) and µD(φ), respectively.

The definition of the area metric M(φ), equation (2), does
not impose any restriction to the type of distribution that leads to
the experimental and simulations CDF’s. In fact, these functions
can be determined from a discrete set of samples, as illustrated in
[9]. However, in order to assess the effect of the variability in the
experimental and simulations data it is convenient to use CDF’s
that allow the analytic determination of M(φ). Several options
could be used to achieve such result, as for example uniform,
triangular or normal distributions. In the present study, we have
used normal distributions. However, equivalent results can be
obtained for the uniform and triangular distributions.

3.1 Probability density function, PDF
For a variable φ , a normal PDF is defined by

PDF(φ) =
1

σ(φ)
√

2π
e
−1

2

(
φ −µ(φ)

σ(φ)

)2

, (6)

where µ(φ) is the mean value of the distribution and σ(φ) is the
standard deviation

2φ∗ can be interpreted as the result of a calibrated model.
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3.2 Cumulative distribution function, CDF
The cumulative distribution function CDF defined by equa-

tion (1) is obtained from

CDF(φ) =
1
2

[
1+ erf

(
φ −µφ

σφ

√
2

)]
, (7)

where erf stands for the error function.

3.3 Area Metric, M(φ)

Substituting the analytic definition of the CDF for a normal
distribution in equation (2) we obtain:

M(φ) =
1
2

∫ +∞

−∞

∣∣∣∣erf
(

φ −µS(φ)

σS(φ)
√

2

)
−
(

φ −µD(φ)

σD(φ)
√

2

)∣∣∣∣dφ . (8)

The value of M(φ) depends on the point where the simula-
tions CDFS(φ) and experimental CDFD(φ) intersect, φI , which
can be determined analytically.

φI

µD(φ)
=

(
σS(φ)
σD(φ)

− µS(φ)
µD(φ)

)
(

σS(φ)
σD(φ)

−1
) . (9)

Equation (9) shows that there in no intersection be-
tween the two CDF’s when σSφ

= σDφ
, which leads to

M(φ) = |µS(φ)−µD(φ)|. Therefore, when the variability in the
experiments and simulations is identical, the area metric does
not include any contribution of σD(φ) and σS(φ), which is the
expected result.

The advantage of using normal distributions for the experi-
mental and simulation data is that M(φ) can also be calculated
analytically when σD(φ) 6= σS(φ).

M(φ)

|µD(φ)|
=
(
Mµ(φ)+Mσ (φ)

)
, (10)

where

Mµ(φ) =

∣∣∣∣∣∣∣erf

 φI
µD(φ)

−1

σD(φ)
µD(φ)

√
2

(1− µS(φ)

µD(φ)

)∣∣∣∣∣∣∣ (11)

and

Mσ (φ) =

∣∣∣∣∣σD(φ)

µD(φ)

√
2
π

(
1− σS(φ)

σD(φ)

)∣∣∣∣∣e
−


φI

µD(φ)
−1

σD(φ)

µD(φ)

√
2


2

.

(12)
Equations (10) to (12) show that M(φ)/|µD(φ)| depends

only on three ratios:

1. Standard deviation of the experimental distribution over the
mean value of the experiments, σD(φ)/µD(φ);

2. Mean value of the simulations distribution over the mean
value of the experiments, µS(φ)/µD(φ);

3. Standard deviation of the simulations distribution over the
standard deviation of the experiments, σS(φ)/σD(φ).

The contribution of the variability of the experimental and
simulation distributions to the value of the area metric can be
obtained from

∆M(φ)

M(φ)
= 1− |µS(φ)−µD(φ)|

M(φ)
. (13)

Equation (13) quantifies the contribution of the differences
between the shapes of the CDFS and CDFD to M(φ) as a function
of µS(φ)/µD(φ), σD(φ)/µD(φ) and σS(φ)/σD(φ), which is the
goal of this study. It is clear that ∆M = M when µS(φ) = µD(φ)
and that ∆M→ 0 when the difference between the mean values
(∆µ(φ) = |µS(φ)−µD(φ)|) increases.

Figure 3 illustrates the contribution of the shape of the
distributions ∆M(φ) to the Area Metric M(φ) as a function
of the difference between the mean values of the distributions
(|(µS(φ)−µD(φ))/µD(φ)|) and the ratio of the standard devi-
ations of the two distributions σS(φ)/σD(φ). The four plots
present the isolines of ∆M(φ)/M(φ) for four different values of
the ratio σD(φ)/µD(φ). The white area of the plots corresponds
to ∆M(φ)< 0.01M.

There is a significant decay of ∆M/M with the increase
of the difference between the mean value of the two distribu-
tions. The isolines of ∆M/M plotted in figure 3 are linear
with a slope that depends on σD(φ)/µD(φ). The largest val-
ues of σD(φ)/µD(φ) lead to the smallest slopes of the isolines,
which means slowest decay of ∆M(φ)/M(φ) with the increase
of ∆µ(φ).

The largest value of ∆M/M is equal to 1 and it is ob-
tained for µS(φ) = µD(φ) for any values of σS(φ)/σD(φ) and
σD(φ)/µD(φ). In these conditions (µS(φ) = µD(φ)), we have
M(φ) = Mo(φ) with Mo(φ) defined by equation (4). In order to
quantify the filtering of the contribution of the shape of the distri-
butions to M(φ) for increasing values of ∆µ(φ), figure 4 presents
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FIGURE 3. Illustration of the contribution of the shape of the distri-
butions ∆M(φ) for the value of the Area Metric M(φ) for normal distri-
butions defining the experimental and simulations results. White area of
the plots corresponds to ∆M(φ)< 0.01M.
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FIGURE 4. Illustration of the decay of the contribution of the shape
of the distributions ∆M(φ) for the value of the Area Metric M(φ) for
normal distributions defining the experimental and simulations results.

∆M(φ)/Mo as a function of (|(µS(φ)−µD(φ))/µD(φ)|) for four
values of σS(φ)/σD(φ) and four values of σD(φ)/µD(φ).

The results show that the contribution of the shape of the
distributions can become negligible even for small values ∆µ(φ),

FIGURE 5. Illustration of the contribution of the shape of the distri-
butions Mo(φ) for the value of the alternative Area Metric Ma(φ) for
normal distributions defining the experimental and simulations results.

which is not a desirable feature for the quantification of modeling
errors of stochastic simulations.

3.4 Alternative Area Metric, Ma(φ)
The alternative Area Metric defined by equations (3) to (5)

is straightforward to calculate, because Mo(φ) corresponds to
Mσ (φ)|µD(φ)| when φI = µD(φ). This leads to

Mo(φ)

|µD(φ)|
=

∣∣∣∣∣σD(φ)

µD(φ)

√
2
π

(
1− σS(φ)

σD(φ)

)∣∣∣∣∣ . (14)

Figure 5 presents Mo(φ)/|µD(φ)| as a function of
σD(φ)/|µD(φ)| and σS(φ)/σD(φ). As desired, the alternative
area metric reflects the increase of differences between σS(φ) and
σD(φ) independently of ∆µ(φ).

4 ASME V&V10.1 EXAMPLE
4.1 Problem definition

The validation exercise described in [9] is an elastic, hol-
low, tapered, cantilever, box beam under a uniform loading ap-
plied over half the length of the beam. The quantity of interest
is the transverse tip deflection of the beam w, which in the ex-
perimental apparatus is measured directly using a displacement
transducer. Details of the geometry are given in [9], including
the constraints to apply at the “fixed-end” of the beam, where the
rotational constraint is assumed to vary linearly with the magni-
tude of the moment reaction. For the sake of clarity, the problem
is illustrated in figure 6.

In the V&V10.1 standard [9], two different approaches are
presented: one that uses one single experiment compared to
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FIGURE 6. Schematic of the Hollow Tapered Cantilever Beam [9].

one simulation with all possible uncertainties involved estimated
from subject matter experts, or one that uses a modeling error as-
sessment based on 10 replicate experiments using 10 nominally
identical beams and additional sets of experiments to character-
ize the two random input variables, the modulus of elasticity of
the beam material Y and the flexibility of the linear rotational
spring restraining the beam at its constrained end fr. Results for
the first approach based only on expert opinion are not addressed
in this paper.

4.2 Experimental data
Experimental measurements are assumed to have a negligi-

ble experimental uncertainty (random or systematic), but there is
variability in the results due to the material properties3 Y and fr.

The results of the experiments performed for the 10 nom-
inally identical beams are presented in [9] and are not repro-
duced in this paper. Nonetheless, the discrete PDF and CDF
derived from the 10 experimental measurements of the beam-
tip deflection are plotted in figure 7. The plot also contains
the PDF and CDF of a normal distribution with the same mean
value4 wexp

mean =−15.36(mm) and standard deviation σwexp =
0.568(mm) of the discrete PDF.

The CDF obtained from the normal distribution fitted to the
data of the 10 experiments is in reasonable agreement with the
discrete CDF taking into account the relatively small number of
samples.

4.3 Simulations data
The simulations are based on the numerical solution of the

equation of static Bernoulli-Euler beam theory, which requires
the experimental values of the modulus of elasticity of the beam
material Y and the flexibility of the (conceptual) linear rotational
spring restraining the beam at its constrained end fr. Beam ge-
ometry and loading are assumed to have exact values.

3 fr actually depends on installation variability (as discussed in [9]) as well as
on Y , which in [9] is designated by E.

4The results are reported in [9] with only 3 significant digits for the mean
value and 2 significant digits for the variance.
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FIGURE 7. Discrete probability density function (PDF) and cumula-
tive distribution function (CDF) derived from the 10 experimental mea-
surements of the beam-tip deflection. PDFNormal and CDFNormal of a
normal distribution with the same mean value and standard deviation of
the discrete PDF. Discrete PDF is obtained with ∆w = 0.3mm.

Grid refinement level5 and machine precision are sufficient
to guarantee a negligible contribution of the numerical uncer-
tainty.

The modulus of elasticity Y of the material used in the beam
and the rotational flexibility, fr, at the clamped end of the beam
are defined by probability density functions that are obtained
from independent experiments. Details on the determination of
the PDF’s that characterize Y and fr are presented in [9]. For
the present exercise, the only important information is that any
errors in the determination of these normal distributions (small
number of samples, selected distribution, measurement errors,...)
are assumed (following [9]) to be negligible and so they do not
influence the estimation of the modeling error of the quantity of
interest.

The Monte Carlo method used “a large number of samples”
[9] to propagate the Y and fr distributions through the mathemat-
ical/computational model. The implied statistical convergence is
also sufficient to ensure a negligible level of uncertainty in the
simulation results. This means that variability in the simulation
results is dominated by the variability in Y and fr, which matches
the conditions of the experimental data.

Figure 8 compares the CDF presented6 in [9] with the CDF
defined by a normal distribution obtained from the reported mean
value wsim

mean = −14.1(mm) and standard deviation of σwsim =
0.65(mm). For illustration purposes, the normal PDF is also plot-
ted in figure 8. The normal distribution is close to the CDF pre-
sented in [9] obtained from the Monte Carlo simulations.

5Possibly iterative convergence as well, but it is not clear in [9] if the compu-
tational model uses any iterative solution technique.

6The line plotted is obtained from the plot presented in [9]. The present au-
thors have no knowledge about the exact shape of this CDF.
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V&V10.1 [9] for the computed of the beam-tip deflection wsim.
PDFNormal and CDFNormal of a normal distribution with the same mean
value and standard deviation of the simulations.

4.4 Area Metric results
Using the discrete CDF of the experiments and simulations

CDF, the result reported in [9] is M(w) = 1.3(mm), which is ex-
actly equal to the difference between the mean values of the two
distributions. Therefore, it has a negligible contribution of the
different shapes of the experimental and simulations CDF´s.

In order to confirm the insensitivity of M(w) to the shape of
the distributions, we have performed some extra determinations
of M(w) using the normal distribution fitted to the simulations
CDFNormal and the discrete and normal CDF’s that characterize
the experimental data. Figure 9 illustrates the three CDF’s used
to make the two additional estimates of the Area Metric.

For the bottom plot of figure 9, experimental CDFNormal
and simulations CDFNormal, the intersection of the CDF’s occurs
wI = −24.1(mm) where the two CDF’s are almost identical and
so the outcome of the Area Metric for the two normal distribu-
tions is M(w) = 1.265(mm). The result obtained from the dis-
crete experimental CDF and the simulations CDFNormal, top plot
of figure 9, is M(w) = 1.260(mm), which means that there is a
difference of 0.005(mm) between the two evaluations of M(w),
which corresponds to 0.03% of the mean experimental value of
w. Therefore, in these conditions, the Area Metric is nearly in-
sensitive to which CDF is used for the experimental data.

The insensitivity of M(w) in this example was further ex-
plored by using for the simulations a CDF defined by a Heav-
iside function with the step at µS(w) (CDFHeaviside). This CDF
is obtained from a single simulation using the mean values of
Y and fr that we will assume to lead to approximately the
mean value of the stochastic simulations. These evaluations
of M(w) are illustrated in figure 10 and the results obtained
are M(w) = 1.260(mm) for the discrete experimental CDF and
M(w) = 1.304(mm) for the normal distribution fitted to the ex-
perimental data. These results are equal to those obtained with
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FIGURE 9. Cumulative density functions (CDF) of the simulations
and experiments for additional estimations of M(w) using discrete and
normal distributions for the experimental CDF and a normal distribution
for the simulations CDF in the example of [9].

TABLE 1. Area Metric evaluations for the quantity of interest of the
example of V&V10.1 using different approximations of the experimen-
tal and simulations CDF’s.

Experimental Simulations M(w)

CDF CDF (mm)

Discrete [9] 1.3

Discrete Normal 1.260

Discrete Heaviside 1.260

Normal Normal 1.265

Normal Heaviside 1.265

the normal distribution fitted to the results of the stochastic sim-
ulations.

Table 1 summarizes all the evaluations of M(w) illustrated
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FIGURE 10. Cumulative density functions (CDF) of the simulations
and experiments for additional estimations of M(w) using discrete and
normal distributions for the experimental CDF and an Heaviside distri-
bution for the simulations CDF in the example of [9].

in figures 9 and 10. Although significantly different CDF’s were
tested, including a CDF obtained from a single simulation, the
values are all almost equal to the difference between the mean
values of the experiments and simulations. Therefore, in the
V&V10.1 example, the Area Metric is insensitive to the shape
of the experimental and simulations distributions and so it can-
not be an appropriate metric for Validation exercises of stochastic
simulations.

4.5 Alternative Area Metric results

The alternative Area Metric is tested using the discrete and
normal CDF’s of the experiments and the normal and Heaviside
CDF’s of the simulations, as illustrated in figures 11 and 12. The
values obtained for Ma(w) are presented in table 2. We recall that
the gray area of the plots of figures 11 and 12 corresponds to the
contribution of the different shapes of the distributions Mo(w) to
the value of Ma(w).
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FIGURE 11. Cumulative density functions (CDF) of the simulations
and experiments for the estimations of the alternative Area Metric
Ma(w) using discrete and normal distributions for the experimental CDF
and a normal distribution with the experimental mean value for the sim-
ulations CDF in the example of [9].

TABLE 2. Alternative Area Metric evaluations for the quantity of in-
terest of the example of V&V10.1 using different approximations of the
experimental and simulations CDF’s.

Experimental Simulations µS(w)−µD(w) Mo(w) Ma(w)

CDF CDF (mm) (mm) (mm)

Discrete Normal 1.26 0.068 1.328

Discrete Heaviside 1.26 0.370 1.630

Normal Normal 1.26 0.066 1.326

Normal Heaviside 1.26 0.453 1.713

With the simulations represented by a normal distribution
CDFNormal, the alternative Area Metric is 5.40% larger than the
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w (mm)

C
D

F

­18 ­17 ­16 ­15 ­14 ­13 ­12
0

0.2

0.4

0.6

0.8

1

w (mm)

C
D

F

­18 ­17 ­16 ­15 ­14 ­13 ­12
0

0.2

0.4

0.6

0.8

1

Experimental CDF
Normal

Simulations CDF
1

*

FIGURE 12. Cumulative density functions (CDF) of the simulations
and experiments for the estimations of the alternative Area Metric
Ma(w) using discrete and normal distributions for the experimental CDF
and a Heaviside distribution with the experimental mean value for the
simulations CDF in the example of [9].

original M(w) for the discrete experimental CDF and 4.82%
larger than the original M(w) for the experimental CDFNormal.
The use of a single simulation leads to a significant increase
of Ma(w), as illustrated in figure 12. For the discrete experi-
mental CDF, Ma(w) is 29.4% larger than M(w) and for the ex-
perimental CDFNormal Ma(w) is 35.4% larger than M(w). Thus
the alternative Area Metric reflects the different shapes used for
the experimental and simulations CDF’s. Furthermore, as ex-
pected, it shows a significant increase for the single simulation
CDFHeaviside.

The alternative Area Metric provides more than a single
number Ma(w). As illustrated in table 2, it gives a difference
between the mean values of the two distributions (that does not
have to be the absolute value) and an evaluation of the differ-
ence between the shapes of the two distributions Mo(w). Nat-
urally, the same approach can be applied to the original Area
Metric using equation (13) to determine ∆M(w). However, as
demonstrated in the previous section, the value of ∆M tends

very rapidly to zero with the increase of ∆µ . The three ra-
tios that control the value of M(w) for normal distributions are
|µS(w)−µD(w)|/|µD(w)|= 0.082, σD(w)/|µD(w)|= 0.037 and
σS(w)/σD(w) = 1.14. For these settings, the plots of figures 3
and 4 explain the insensitivity of M(w) to the shape of the distri-
butions obtained for the example of [9].

5 CONCLUSIONS
This paper discusses the use of the Area Metric for Vali-

dation exercises of stochastic simulations. The examples used
in this work assume (following [9]) the ideal conditions for the
application of this metric: uncertainty in the experimental and
simulations results for the quantity of interest depend only on
the variability of material properties. This means that experi-
mental measurement uncertainty, numerical uncertainty, statisti-
cal uncertainty and any uncertainties in the definition of the input
parameters probabilistic distributions are negligible. In this ide-
alized setting, the Area Metric is supposed to quantify the mod-
eling error of a quantity of interest determined by a stochastic
simulation.

The simple examples included in this study lead to the fol-
lowing conclusions:

• The original Area Metric becomes insensitive to the shape
of the experimental and simulations probabilistic distribu-
tions even for small differences between the mean values
of the two distributions. Naturally, the filtering of the dis-
tributions shape influence depends on the ratio between the
standard deviation and mean value of the experiments and
on the differences between the shapes of the experimental
and simulations distributions.

• For the conditions of the example presented in V&V10.1,
the original Area Metric is nearly insensitive to the shape of
the experimental and simulations distributions. It leads to
an evaluation of the modeling error equal to the simple dif-
ference between the mean values of experiments and simu-
lations, which is an unacceptable result even for validation
exercises of deterministic simulations.

• An alternative formulation of the original Area Metric is
proposed in this paper. The contribution to the estimate of
the modeling error of the difference between the shapes of
the experimental and simulations distributions is indepen-
dent of the difference between the mean values of both dis-
tributions.

Last but not the least, it must be mentioned that the estima-
tion of modeling errors in practical engineering problems where
most of the assumptions used in the examples of this paper are
not valid (following [9]) is an huge challenge for any Validation
metric.
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