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ABSTRACT

Nuclear Criticality Safety evaluations often rely on the availability of relevant benchmark
experiments to determine justifiable margins of subcriticality. Recently developed sensitivity and
uncertainty analysis-based upper subcritical limit (USL) methods allow NCS engineers to
automatically identify benchmark experiments that share similar sources of uncertainty with a target
validation application. This aspect supports and augments what was historically an element of expert
judgment based on experience, while assisting less experienced staff in this determination. However,
few method-to-method or code-to-code comparisons exist for these sensitivity-based methods.

This study provides a code-to-code comparison of USL estimates using the SCALE
USLSTATS trending analysis method, the SCALE TSURFER data assimilation method, and the
MCNP/Whisper non-parametric method. These three methods are applied to the example
application from Appendix D of ANSI/ANS-8.24, which models buckets of UO2F2, waste material
in both nominal dry (H/X = 80) conditions, and wet (H/X=600) upset conditions. This study reviews
and contrasts the three sensitivity methods, compares their identified pertinent benchmarks for this
example application, and compares computational bias and USL estimates for this example under
both normal and upset conditions.
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1 INTRODUCTION

Determining that a system will be subcritical under a number of process conditions is an integral part
of a Nuclear Criticality Safety (NCS) evaluation. Hand calculation methods or handbook information may
be appropriate for simple problems, but more sophisticated calculation methods are required when the
system’s geometry is complex or when intricate surfaces or arrays are present. Recent developments in high
fidelity sensitivity analysis methods have opened the door for increasingly quantitative statistical methods
for estimating computational bias and the upper subcritical limit (USL) [1][2][3]. Rather than basing USL
estimates on quasi-quantitative parameters, such systems’ EALF or H-X ratio, these methods generally
estimate USLs using sensitivity analysis methods that identify common sources of computational bias.

However, despite the additional fidelity offered by these methods developments, few rigorous code-
to-code comparisons of these methods exist. While there are some notable code-to-code comparisons [4][5],
this study attempts to compare the USL estimates offered by the Whisper, USLSTATS, and TSURFER
techniques [2][6][7]. This study applies all three methods to an example application and compares the
resulting computational bias and USL estimates from the three methods.
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2 SAMPLE PROBLEM DESCRIPTION

This study applied the three computational bias and USL estimation methods to the example
application from Appendix D of ANSI/ANS—8.24, which models an array of 5-gallon buckets of 5 wt%
UO,F; waste material, as described in Table I. The material is normally dry (minimum H/X ratio of ~80),
and upset conditions include moderation scenarios up to an H/X ratio of ~600.

Table I. Sample Problem Description and Process Parameters

Parameter Process Data
Fissile Material 23U in UOsF,
Fissile Form UOzF2 compounq form (normal S:(‘)ndition)
UQO»F> solution (upset condition)
. = 80 (normal condition
Moderation (H/X) = 600 (abnormal conditi(on = estimated op)timum moderation)
Enrichment ( wt% 230) 1 wt% to 5 wt% (analyzed at 5 wt%)
Uranium Concentration Minimal to 3000 g/L
Moderating Material Water
Other Materials Predominant Elements are Na and F
. . Unreflected (light steel) (normal condition
Reflecting Materials Water reéef‘[ed (abn)o(rmal condition) :
Geometry Cylinders and Arrays
Heterogeneity / Homogeneity Homogeneous System
Unknown, estimated to be thermal up to intermediate energy
Neutron Energy
spectrum

3 CALCULATIONAL METHODS

This study compares USL estimates for the sample problem under both the normal and upset conditions
using the Whisper, USLSTATS, and TSURFER techniques. All calculations were performed using
continuous-energy ENDF/B-VII.1 cross sections and fission source convergence was confirmed in each
Monte Carlo simulation. These methods use sensitivity coefficients to either estimate the degree of
similarity between benchmark experiments and a target application, and/or to estimate the computational
bias present for that application. The sensitivity coefficient for a response, here the critical eigenvalue k, to
an input parameter, X, is defined as

Sk, = 7%, (D

These sensitivity coefficients describe how changes to or uncertainties in the input parameters affect
the eigenvalue of a system. Sensitivities can account for uncertainty in the mass, density, or geometry of
materials in an integral experiment, and in the NCS field these uncertain parameters are typically nuclear
data parameters (i.e., nuclear cross sections, the energy distribution of fission neutrons, etc.).

The USLSTATS and Whisper methods use sensitivity coefficients for a given application to estimate
the similarity between that application and various benchmark experiments. To achieve this, first the
sandwich equation must estimate the amount of nuclear data—induced uncertainty that is shared between
the benchmark experiment and the application eigenvalues (k; and k,, respectively):
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where € ovs 3z, is the matrix or nuclear cross section covariance (i.e., uncertainty) data. Having

obtained the uncertainty shared between the benchmark and application systems, the similarity coefficient
¢y can be calculated for the two systems [8]:
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where oy, and oy, represent the data-induced uncertainty in the eigenvalues of systems 1 and 2,
respectively. This ¢; coefficient is analogous to a Pearson coefficient of correlation and describes the
fraction of nuclear data—induced uncertainty that is shared between the benchmark experiment and the
application. Because NCS analyses typically use high-fidelity Monte Carlo neutron transport simulations
to estimate the critical eigenvalue of a system, it is reasonable to assume that any bias or disagreement
encountered between the computed and experimental eigenvalues from high quality benchmark evaluations
is typically attributed to errors or deficiencies in the underlying nuclear data. Therefore, a benchmark
experiment that shares the same sources of nuclear data—induced uncertainty with an application is likely
to experience a computational bias in its eigenvalue that is similar to the bias in the application.

Benchmark experiment sensitivity data files (SDFs) for the USLSTATS and TSURFER calculations
for the benchmark experiments were obtained using the VALID library of 315 reference SDFs distributed
with the Database for the International Handbook of Evaluated Criticality Safety Benchmark Experiments
(DICE), and benchmark experiment eigenvalues and measurement uncertainties were extracted from DICE
[9][10]. All Whisper calculations used SDFs for 1,100 ICSBEP benchmark experiments [10] that were
generated using MCNP6.2 and distributed with Whisper in the MCNP 6.2 code release distribution.
Automated benchmark rejection are performed for benchmarks that are distributed with Whisper. An
administrative margin is not assumed for USL estimates calculated in this study.

3.1 USLSTATS Trending Analysis Method

USLSTATS is a generic parameter trending analysis code within the SCALE Code System that uses
the results of benchmark experiments to estimate the bias present in modeling and simulation tools for
application cases [6]. To perform USLSTATS simulations, a user enters values for a trending parameter for
each benchmark experiment and USLSTATS then develops a linear regression fit and confidence intervals
for ratios of the calculated-to-experimental (C/E) benchmark experiment eigenvalues values. USLSTATS
either interpolates or extrapolates this trend to estimate the bias and USL for application cases.

This study used ¢ similarity coefficients as the trending parameter and computed these similarity
coefficients using SCALE 56-group covariance data. When trending on ¢, values, USLSTATS estimates
quantities by extrapolating the C/E regression fit to a value of ¢, = 1; this extrapolation is chosen to
estimate the computation bias because, assuming that errors in the nuclear data predominantly drive
computational bias, any benchmark that shares all sources of neutronic uncertainty with an application
would be expected to experience the same computational bias. Examining ¢, considers to which nuclear
cross section data an application case is most sensitive, which cross section data contain the highest degree
of uncertainty, and how much of the nuclear data-induced uncertainty is shared between the target
application and the library of benchmark experiments. However, these trending methods generally rely on
the availability of a significant number of sufficiently similar benchmark experiments to accurately predict
the computational bias for an application.

Studies by Broadhead and others suggest that an application should have at least 20 experiments with
¢y values greater than 0.80 [8]; guidance from the US Nuclear Regulatory Commission (NRC) recommends
that NCS analysts have access to multiple experiments with ¢; values in excess of 0.90 or 0.95 [11]. If a
sufficient number of similar experiments does not exist, the licensee must justify that the most important



sources of uncertainty have been accounted for in the application and/or provide additional margin of
subcriticality.

As shown in Fig. 1, USLSTATS was able to develop a regression trend for the sample application
using a sufficient number of similar benchmark experiments (c; > 0.90) under both the normal and upset
conditions, although no highly similar benchmarks (¢, > 0.95) were identified under normal conditions.
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Figure 1. USLSTATS regression trends for the ANSI/ANS-8.24 Sample Problem under normal (top) and
upset (bottom) conditions.

3.2 TSURFER Data Assimilation / Data Adjustment Method

The TSURFER tool relies on the Bayesian-based Generalized Linear Least-Squares (GLLS)
methodology to estimate USLs [7]. This methodology compares benchmark experiment eigenvalues with
those predicted by a modeling and simulation code (here, KENO), and adjusts nuclear data in a way that



maximizes agreement between the code and the experiments. This adjustment is performed such that no
data is adjusted by an unreasonable number of its standard deviations and so that benchmark experiment
results that are identified as outliers are automatically omitted from the adjustment process. Again, it is
reasonable to assume that nuclear data is primarily responsible for computational biases in NCS simulations
that use high-fidelity methods (i.e. KENO and MCNP) because of the minimal number of approximations
inherent to these methods.

TSURFER produces a set of adjustments to the nuclear data (see Fig. 2) that improves the accuracy of
the computational simulation results compared to benchmark experiment measurements (see Fig. 3). After
obtaining these recommended data adjustments, TSURFER applies the adjustments to the application case
to examine how they would change the eigenvalue of the application simulations; this change in the
application eigenvalue is analogous to the computational bias for these simulations. Sensitivity coefficient
data (i.e. SDFs) for the benchmark experiments are required for TSURFER to solve for an optimal set of
nuclear data adjustments, and SDFs for the application cases allow TSURFER to predict how these nuclear
data adjustments will change the application eigenvalues.

The TSURFER data adjustments and bias estimates for the sample application were performed using
the same SDF and benchmark experiment data that was used for the previously mentioned USLSTATS
simulation (i.e., 315 of the ORNL-validated SDFs that are distributed with DICE) to estimate the
computational bias present in the application simulations. The resulting TSURFER data adjustments and
pre- and post-adjustment C/E values are given in Figs. 2 and 3. While the TSURFER method has great
potential for estimating the computational bias of simulations, it has not yet been adapted to provide USL
estimates with a known statistical confidence interval (e.g., a 99/99 confidence interval). Studies by Perfetti
have proposed methods for generating confidence intervals using the TSURFER data assimilation method,
but this study will limit its scope to TSURFER computational bias estimates [5].
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Figure 2. TSURFER-recommended adjustments to nuclear cross section data. 25U (n,7) reactions
experienced substantial adjustments (up to 26%) between 1 keV and 100 keV because these cross sections
contain a large degree of uncertainty (up to 34%) in this energy range.
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Figure 3. TSURFER-recommended nuclear data adjustments significantly improved the accuracy of
benchmark experiment eigenvalue computational estimates.

3.3 Whisper Extreme Value Theory Method

The Whisper method uses extreme value theory to estimate a conservative margin of subcriticality for
an application based on the observed computational biases in relevant benchmark experiments. The
Whisper method assigns each benchmark experiment a weight for computing the Margin of Subcriticality
(MOS) that is related to the experiment’s degree of similarity to a target application; these weights are
computed as

_ (Ck,exp_—ck,acc.)
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where ¢y ¢xp. 18 the ¢i value for a benchmark experiment, ¢y pqy. is the maximum cj from all available
experiments, and cy 4. s the smallest ¢ that has been deemed acceptable for including a benchmark in
the validation analysis. Benchmarks can have a maximum weight of one. As described in detail by
Kiedrowski, these weights can then be used to estimate the computational bias by estimating the mean of a
weighted, extreme value probability density function (PDF) [3]. Making use of this extreme value PDF
provides an intentional degree of conservatism when estimating the computational bias because this bias
estimate is dictated predominantly by the benchmark experiments with the most conservative bias
estimates. Thus, the Whisper method is not intended to estimate the true bias in the computational methods
in the same way as the USLSTATS and TSURFER methods, but rather the maximum likely bias that an
application may experience.

The Whisper benchmark library distributed with MCNP 6.2 contains over 1,100 MCNP input files
spanning a large set of uranium and plutonium systems containing a variety of fissionable isotopes, forms
(metal, oxide, solution), geometries, spectral characteristics, etc. Whisper provides two sets of 44-group
covariance data: the first set is the same data that is distributed with SCALE 6.1 in a format that Whisper
can parse. The second set is an adjusted nuclear data library based upon a GLLS fitting of the benchmarks
following rejection (using the same methodology as TSURFER). Whisper uses the latter to quantify the
effect of nuclear data uncertainties within the MOS.

Whisper method separates the MOS into several components when computing USL estimates:
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where m represents the calculational margin from the extreme value theory calculation. The MOS,, 4,
term represents additional margin that is added to account for any undetected code errors or bugs in the
sensitivity analysis and radiation transport tools. Kiedrowski suggests assuming a value of 0.005 for
MOS, o4, but this study assumed a value of 0.000 to allow for a fairer method-to-method comparison. The
MOS;4¢q term equals the nuclear data-induced uncertainty in the application following a GLLS data
assimilation calculation and is intended to account for any additional uncertainty in the subcritical margin
that is introduced due to uncertainty and errors in the nuclear data.

4 RESULTS
Table II shows the eigenvalue estimates produced by MCNP and SCALE/KENO for the sample
problem under normal and upset conditions. The two codes produced eigenvalue estimates for both

conditions that agreed well: a 107 per cent mille (pcm) difference and a 146 pcm difference for the normal
and upset condition cases, respectively.

Table II. Sample Problem Eigenvalue Estimates

Case SCALE/KENO MCNP
Dry (Normal) 0.37746 + 0.00020 0.37639 + 0.00028
Wet (Upset) 0.87079 + 0.00027 0.87225 +0.00032

Table III gives the computational bias estimates from the USLSTATS and TSURFER methods. The
Whisper bias estimates were not included in this table because Whisper does not produce bias estimates
that are analogous to those produced by other methods; rather than estimating the most likely computational
bias, Whisper estimates the most likely, most conservative bias present for the application.

The TSURFER method does not currently provide traditional USL estimates, but a method for using
TSURFER to generate USL estimates has been proposed by Perfetti [5]:

TSURFER USL = 1+ min(0, B) — k g5 — Akgamin, (6)

where k is a single-sided tolerance factor for the 99/99 tolerance interval where a percentage p of the
benchmarks is bounded with confidence level g, and gp is the nuclear data-induced uncertainty present in
the application following the TSURFER data adjustment (i.e. the bias uncertainty).

Table II1. Sample Problem Bias and USL Estimates

USLSTATS | TSURFER

TSURFER USLSTATS Whisper USL

Case Bias Estimates | Bias Estimates I.JSL I.JSL Estimates
Estimates Estimates
Dry
(Normal) -0.00282 -0.00214 0.9822 0.9939 0.9759

Wet (Upset) -0.00165 -0.00421 0.9829 0.9953 0.9800




The USLSTATS and TSURFER methods were found to produce very similar computational bias
estimates for the sample problem under normal conditions but produced bias estimates that disagreed more
significantly under upset conditions. The TSURFER method used the same underlying data adjustments to
compute both bias estimates and the USLSTATS method had more highly similar benchmark experiments
available for the upset condition case, so it is difficult to say which method produced a more accurate bias
estimate under upset conditions.

The USLSTATS and Whisper methods produced similar USL estimates for their normal and upset
condition cases. Overall, the Whisper method produced more conservative USL estimates than the
USLSTATS method, which given that the Whisper method was designed to be intentionally produce more
conservative USL estimates than USLSTATS. These methods assumed a 99% confidence interval for their
USL estimates, or a 99/99 confidence interval as applicable.

The TSURFER data adjustment process has the effect of reducing the size of the nuclear data-induced
uncertainty in the application — this occurs because comparing the simulated benchmark responses against
the experimental responses mitigates some of the initial uncertainty in the nuclear data [7]. The TSURFER-
Perfetti method produced the highest USL estimates because the post-adjustment nuclear data uncertainty
(dp) was roughly 10-20% as large as the initial nuclear data-induced uncertainty, suggesting that the
TSURFER data assimilation process was able to successfully identify which nuclear data components
contributed most significantly to the code computational bias. It should be noted that if the TSURFER USL
calculation used the pre-adjustment nuclear data-induced uncertainty for og, that it would have produced

USL estimates that were significantly closer to, yet significantly more conservative than, the USLSTATS
and Whisper estimates (0.9777 and 0.9657 for the normal and upset cases, respectively, compared to
USLSTATS estimates of 0.9822 and 0.9829 for the normal and upset cases, respectively).

S CONCLUSIONS

This study has provided a brief review of three statistical methods for estimating computational bias
and USLs that are based on cutting-edge, high-fidelity sensitivity analysis methods, and has compared their
bias and USL estimates for the sample application from Appendix D of ANSI/ANS-8.24 under both normal
and upset conditions. The Whisper and USLSTATS methods produced similar USL estimates for both
normal and upset conditions, while the TSURFER method’s proposed USL estimation method produced
significantly less conservative results. While it is not clear which method(s) produce the most accurate
computational bias and USL estimates, it is our hope that future studies will investigate and benchmark
these methods in greater detail.

NCS analysts must determine and understand the effects of approximations and errors in computer
codes and nuclear data to quantify the accuracy of calculated eigenvalue estimates. The use of computer
codes has become prevalent in the NCS industry, a trend that will be continued with the next generation of
NCS staff. Coupled with a much larger set of NCS benchmarks available for use in validation, there is an
industry need to develop tools and techniques to replace historical methods based solely on expert
judgment, were often limited to benchmarks known to that expert or site, and that were often limited in
their application to simple checks on quasi-quantitative parameters (EALF, H-X ratio, etc...)

It is almost impossible for any individual to be familiar with all of the benchmarks and their accepted
application areas, and it is accepted that modern computer techniques can identify applicable benchmarks.
Moving forward the industry needs to build trust in these sensitivity-based benchmark selection methods
so that they may ultimately be used to determine computational biases and/or USLs for given applications.
With these advancements and improved understanding of computational biases, the industry will have the
opportunity to optimize operational activities based on reducing unnecessary conservatism. To reach this
point there must be an increase in the scrutiny and importance placed on validation methods, as has been
seen in recent years.
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