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ABSTRACT 

Nuclear Criticality Safety evaluations often rely on the availability of relevant benchmark 
experiments to determine justifiable margins of subcriticality. Recently developed sensitivity and 
uncertainty analysis-based upper subcritical limit (USL) methods allow NCS engineers to 
automatically identify benchmark experiments that share similar sources of uncertainty with a target 
validation application. This aspect supports and augments what was historically an element of expert 
judgment based on experience, while assisting less experienced staff in this determination. However, 
few method-to-method or code-to-code comparisons exist for these sensitivity-based methods. 

This study provides a code-to-code comparison of USL estimates using the SCALE 
USLSTATS trending analysis method, the SCALE TSURFER data assimilation method, and the 
MCNP/Whisper non-parametric method. These three methods are applied to the example 
application from Appendix D of ANSI/ANS–8.24, which models buckets of UO2F2 waste material 
in both nominal dry (H/X = 80) conditions, and wet (H/X=600) upset conditions. This study reviews 
and contrasts the three sensitivity methods, compares their identified pertinent benchmarks for this 
example application, and compares computational bias and USL estimates for this example under 
both normal and upset conditions. 
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1  INTRODUCTION 

Determining that a system will be subcritical under a number of process conditions is an integral part 
of a Nuclear Criticality Safety (NCS) evaluation. Hand calculation methods or handbook information may 
be appropriate for simple problems, but more sophisticated calculation methods are required when the 
system’s geometry is complex or when intricate surfaces or arrays are present. Recent developments in high 
fidelity sensitivity analysis methods have opened the door for increasingly quantitative statistical methods 
for estimating computational bias and the upper subcritical limit (USL) [1][2][3]. Rather than basing USL 
estimates on quasi-quantitative parameters, such systems’ EALF or H-X ratio, these methods generally 
estimate USLs using sensitivity analysis methods that identify common sources of computational bias. 

However, despite the additional fidelity offered by these methods developments, few rigorous code-
to-code comparisons of these methods exist. While there are some notable code-to-code comparisons [4][5], 
this study attempts to compare the USL estimates offered by the Whisper, USLSTATS, and TSURFER 
techniques [2][6][7]. This study applies all three methods to an example application and compares the 
resulting computational bias and USL estimates from the three methods. 
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2 SAMPLE PROBLEM DESCRIPTION 

This study applied the three computational bias and USL estimation methods to the example 
application from Appendix D of ANSI/ANS–8.24, which models an array of 5-gallon buckets of 5 wt% 
UO2F2 waste material, as described in Table I. The material is normally dry (minimum H/X ratio of ~80), 
and upset conditions include moderation scenarios up to an H/X ratio of ~600. 

 
Table I. Sample Problem Description and Process Parameters 

Parameter Process Data 
Fissile Material 235U in UO2F2 

Fissile Form UO2F2 compound form (normal condition) 
UO2F2 solution (upset condition) 

Moderation (H/X) = 80 (normal condition) 
= 600 (abnormal condition = estimated optimum moderation) 

Enrichment ( wt% 235U) 1 wt% to 5 wt% (analyzed at 5 wt%) 
Uranium Concentration Minimal to 3000 g/L 

Moderating Material Water 
Other Materials Predominant Elements are Na and F 

Reflecting Materials Unreflected (light steel) (normal condition) 
Water reflected (abnormal condition) 

Geometry Cylinders and Arrays 
Heterogeneity / Homogeneity Homogeneous System 

Neutron Energy Unknown, estimated to be thermal up to intermediate energy 
spectrum 

3 CALCULATIONAL METHODS 

This study compares USL estimates for the sample problem under both the normal and upset conditions 
using the Whisper, USLSTATS, and TSURFER techniques. All calculations were performed using 
continuous-energy ENDF/B-VII.1 cross sections and fission source convergence was confirmed in each 
Monte Carlo simulation. These methods use sensitivity coefficients to either estimate the degree of 
similarity between benchmark experiments and a target application, and/or to estimate the computational 
bias present for that application. The sensitivity coefficient for a response, here the critical eigenvalue 𝑘, to 
an input parameter, Σ!, is defined as 
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%"

"&
%$!

$!&
	.	 (1) 

These sensitivity coefficients describe how changes to or uncertainties in the input parameters affect 
the eigenvalue of a system. Sensitivities can account for uncertainty in the mass, density, or geometry of 
materials in an integral experiment, and in the NCS field these uncertain parameters are typically nuclear 
data parameters (i.e., nuclear cross sections, the energy distribution of fission neutrons, etc.). 

The USLSTATS and Whisper methods use sensitivity coefficients for a given application to estimate 
the similarity between that application and various benchmark experiments. To achieve this, first the 
sandwich equation must estimate the amount of nuclear data–induced uncertainty that is shared between 
the benchmark experiment and the application eigenvalues (𝑘' and 𝑘(, respectively): 
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where 𝐶𝑜𝑣$!,$$ is the matrix or nuclear cross section covariance (i.e., uncertainty) data. Having 
obtained the uncertainty shared between the benchmark and application systems, the similarity coefficient 
𝑐" can be calculated for the two systems [8]: 
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where 𝜎"" and 𝜎"# represent the data-induced uncertainty in the eigenvalues of systems 1 and 2, 
respectively. This 𝑐" coefficient is analogous to a Pearson coefficient of correlation and describes the 
fraction of nuclear data–induced uncertainty that is shared between the benchmark experiment and the 
application. Because NCS analyses typically use high-fidelity Monte Carlo neutron transport simulations 
to estimate the critical eigenvalue of a system, it is reasonable to assume that any bias or disagreement 
encountered between the computed and experimental eigenvalues from high quality benchmark evaluations 
is typically attributed to errors or deficiencies in the underlying nuclear data. Therefore, a benchmark 
experiment that shares the same sources of nuclear data–induced uncertainty with an application is likely 
to experience a computational bias in its eigenvalue that is similar to the bias in the application. 

Benchmark experiment sensitivity data files (SDFs) for the USLSTATS and TSURFER calculations 
for the benchmark experiments were obtained using the VALID library of 315 reference SDFs distributed 
with the Database for the International Handbook of Evaluated Criticality Safety Benchmark Experiments 
(DICE), and benchmark experiment eigenvalues and measurement uncertainties were extracted from DICE 
[9][10]. All Whisper calculations used SDFs for 1,100 ICSBEP benchmark experiments [10] that were 
generated using MCNP6.2 and distributed with Whisper in the MCNP 6.2 code release distribution. 
Automated benchmark rejection are performed for benchmarks that are distributed with Whisper. An 
administrative margin is not assumed for USL estimates calculated in this study. 

3.1 USLSTATS Trending Analysis Method 
USLSTATS is a generic parameter trending analysis code within the SCALE Code System that uses 

the results of benchmark experiments to estimate the bias present in modeling and simulation tools for 
application cases [6]. To perform USLSTATS simulations, a user enters values for a trending parameter for 
each benchmark experiment and USLSTATS then develops a linear regression fit and confidence intervals 
for ratios of the calculated-to-experimental (C/E) benchmark experiment eigenvalues values. USLSTATS 
either interpolates or extrapolates this trend to estimate the bias and USL for application cases. 

This study used 𝑐" similarity coefficients as the trending parameter and computed these similarity 
coefficients using SCALE 56-group covariance data. When trending on 𝑐" values, USLSTATS estimates 
quantities by extrapolating the C/E regression fit to a value of 𝑐" = 1; this extrapolation is chosen to 
estimate the computation bias because, assuming that errors in the nuclear data predominantly drive 
computational bias, any benchmark that shares all sources of neutronic uncertainty with an application 
would be expected to experience the same computational bias. Examining 𝑐" considers to which nuclear 
cross section data an application case is most sensitive, which cross section data contain the highest degree 
of uncertainty, and how much of the nuclear data-induced uncertainty is shared between the target 
application and the library of benchmark experiments. However, these trending methods generally rely on 
the availability of a significant number of sufficiently similar benchmark experiments to accurately predict 
the computational bias for an application. 

Studies by Broadhead and others suggest that an application should have at least 20 experiments with 
𝑐" values greater than 0.80 [8]; guidance from the US Nuclear Regulatory Commission (NRC) recommends 
that NCS analysts have access to multiple experiments with 𝑐" values in excess of 0.90 or 0.95 [11]. If a 
sufficient number of similar experiments does not exist, the licensee must justify that the most important 



sources of uncertainty have been accounted for in the application and/or provide additional margin of 
subcriticality. 

As shown in Fig. 1, USLSTATS was able to develop a regression trend for the sample application 
using a sufficient number of similar benchmark experiments (𝑐" > 0.90) under both the normal and upset 
conditions, although no highly similar benchmarks (𝑐" > 0.95) were identified under normal conditions. 

 

 

 
Figure 1. USLSTATS regression trends for the ANSI/ANS–8.24 Sample Problem under normal (top) and 

upset (bottom) conditions. 
 

3.2 TSURFER Data Assimilation / Data Adjustment Method 
The TSURFER tool relies on the Bayesian-based Generalized Linear Least-Squares (GLLS) 

methodology to estimate USLs [7]. This methodology compares benchmark experiment eigenvalues with 
those predicted by a modeling and simulation code (here, KENO), and adjusts nuclear data in a way that 



maximizes agreement between the code and the experiments. This adjustment is performed such that no 
data is adjusted by an unreasonable number of its standard deviations and so that benchmark experiment 
results that are identified as outliers are automatically omitted from the adjustment process. Again, it is 
reasonable to assume that nuclear data is primarily responsible for computational biases in NCS simulations 
that use high-fidelity methods (i.e. KENO and MCNP) because of the minimal number of approximations 
inherent to these methods. 

TSURFER produces a set of adjustments to the nuclear data (see Fig. 2) that improves the accuracy of 
the computational simulation results compared to benchmark experiment measurements (see Fig. 3). After 
obtaining these recommended data adjustments, TSURFER applies the adjustments to the application case 
to examine how they would change the eigenvalue of the application simulations; this change in the 
application eigenvalue is analogous to the computational bias for these simulations. Sensitivity coefficient 
data (i.e. SDFs) for the benchmark experiments are required for TSURFER to solve for an optimal set of 
nuclear data adjustments, and SDFs for the application cases allow TSURFER to predict how these nuclear 
data adjustments will change the application eigenvalues. 

The TSURFER data adjustments and bias estimates for the sample application were performed using 
the same SDF and benchmark experiment data that was used for the previously mentioned USLSTATS 
simulation (i.e., 315 of the ORNL-validated SDFs that are distributed with DICE) to estimate the 
computational bias present in the application simulations. The resulting TSURFER data adjustments and 
pre- and post-adjustment C/E values are given in Figs. 2 and 3. While the TSURFER method has great 
potential for estimating the computational bias of simulations, it has not yet been adapted to provide USL 
estimates with a known statistical confidence interval (e.g., a 99/99 confidence interval). Studies by Perfetti 
have proposed methods for generating confidence intervals using the TSURFER data assimilation method, 
but this study will limit its scope to TSURFER computational bias estimates [5]. 

 
Figure 2. TSURFER-recommended adjustments to nuclear cross section data.  235U (n,g) reactions 

experienced substantial adjustments (up to 26%) between 1 keV and 100 keV because these cross sections 
contain a large degree of uncertainty (up to 34%) in this energy range. 

 



 
Figure 3. TSURFER-recommended nuclear data adjustments significantly improved the accuracy of 

benchmark experiment eigenvalue computational estimates. 
 

3.3 Whisper Extreme Value Theory Method 
The Whisper method uses extreme value theory to estimate a conservative margin of subcriticality for 

an application based on the observed computational biases in relevant benchmark experiments. The 
Whisper method assigns each benchmark experiment a weight for computing the Margin of Subcriticality 
(MOS) that is related to the experiment’s degree of similarity to a target application; these weights are 
computed as 
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where 𝑐",+!,. is the 𝑐"value for a benchmark experiment, 𝑐",23!. is the maximum 𝑐" from all available 
experiments, and 𝑐",3//. is the smallest 𝑐" that has been deemed acceptable for including a benchmark in 
the validation analysis. Benchmarks can have a maximum weight of one. As described in detail by 
Kiedrowski, these weights can then be used to estimate the computational bias by estimating the mean of a 
weighted, extreme value probability density function (PDF) [3]. Making use of this extreme value PDF 
provides an intentional degree of conservatism when estimating the computational bias because this bias 
estimate is dictated predominantly by the benchmark experiments with the most conservative bias 
estimates. Thus, the Whisper method is not intended to estimate the true bias in the computational methods 
in the same way as the USLSTATS and TSURFER methods, but rather the maximum likely bias that an 
application may experience. 

The Whisper benchmark library distributed with MCNP 6.2 contains over 1,100 MCNP input files 
spanning a large set of uranium and plutonium systems containing a variety of fissionable isotopes, forms 
(metal, oxide, solution), geometries, spectral characteristics, etc. Whisper provides two sets of 44-group 
covariance data: the first set is the same data that is distributed with SCALE 6.1 in a format that Whisper 
can parse. The second set is an adjusted nuclear data library based upon a GLLS fitting of the benchmarks 
following rejection (using the same methodology as TSURFER). Whisper uses the latter to quantify the 
effect of nuclear data uncertainties within the MOS. 

Whisper method separates the 𝑀𝑂𝑆 into several components when computing USL estimates: 



	 𝑈𝑆𝐿 = 1 −𝑀𝑂𝑆/45+ −𝑀𝑂𝑆5363 −𝑚 − ∆𝑘35278	,	 (5) 

where 𝑚 represents the calculational margin from the extreme value theory calculation. The 𝑀𝑂𝑆/45+ 
term represents additional margin that is added to account for any undetected code errors or bugs in the 
sensitivity analysis and radiation transport tools. Kiedrowski suggests assuming a value of 0.005 for 
𝑀𝑂𝑆/45+, but this study assumed a value of 0.000 to allow for a fairer method-to-method comparison. The 
𝑀𝑂𝑆5363 term equals the nuclear data-induced uncertainty in the application following a GLLS data 
assimilation calculation and is intended to account for any additional uncertainty in the subcritical margin 
that is introduced due to uncertainty and errors in the nuclear data. 

4 RESULTS 

Table II shows the eigenvalue estimates produced by MCNP and SCALE/KENO for the sample 
problem under normal and upset conditions. The two codes produced eigenvalue estimates for both 
conditions that agreed well: a 107 per cent mille (pcm) difference and a 146 pcm difference for the normal 
and upset condition cases, respectively. 

 
Table II. Sample Problem Eigenvalue Estimates 

Case SCALE/KENO MCNP 

Dry (Normal) 0.37746 ± 0.00020 0.37639 ± 0.00028 

Wet (Upset) 0.87079 ± 0.00027	 0.87225 ± 0.00032 
 
Table III gives the computational bias estimates from the USLSTATS and TSURFER methods. The 

Whisper bias estimates were not included in this table because Whisper does not produce bias estimates 
that are analogous to those produced by other methods; rather than estimating the most likely computational 
bias, Whisper estimates the most likely, most conservative bias present for the application. 

The TSURFER method does not currently provide traditional USL estimates, but a method for using 
TSURFER to generate USL estimates has been proposed by Perfetti [5]: 

	 𝑇𝑆𝑈𝑅𝐹𝐸𝑅	𝑈𝑆𝐿 = 1 +min(0, 𝛽) − 𝜅	𝜎9 − ∆𝑘35278,	 (6) 

where 𝜅 is a single-sided tolerance factor for the 99/99 tolerance interval where a percentage 𝑝 of the 
benchmarks is bounded with confidence level 𝑞, and 𝜎9 is the nuclear data-induced uncertainty present in 
the application following the TSURFER data adjustment (i.e. the bias uncertainty). 

 
Table III. Sample Problem Bias and USL Estimates 

Case TSURFER 
Bias Estimates 

USLSTATS 
Bias Estimates 

USLSTATS 
USL 

Estimates 

TSURFER 
USL 

Estimates 

Whisper USL 
Estimates 

Dry 
(Normal) -0.00282 -0.00214 0.9822 0.9939 0.9759 

Wet (Upset) -0.00165 -0.00421 0.9829 0.9953 0.9800 



 
The USLSTATS and TSURFER methods were found to produce very similar computational bias 

estimates for the sample problem under normal conditions but produced bias estimates that disagreed more 
significantly under upset conditions. The TSURFER method used the same underlying data adjustments to 
compute both bias estimates and the USLSTATS method had more highly similar benchmark experiments 
available for the upset condition case, so it is difficult to say which method produced a more accurate bias 
estimate under upset conditions. 

The USLSTATS and Whisper methods produced similar USL estimates for their normal and upset 
condition cases. Overall, the Whisper method produced more conservative USL estimates than the 
USLSTATS method, which given that the Whisper method was designed to be intentionally produce more 
conservative USL estimates than USLSTATS. These methods assumed a 99% confidence interval for their 
USL estimates, or a 99/99 confidence interval as applicable. 

The TSURFER data adjustment process has the effect of reducing the size of the nuclear data-induced 
uncertainty in the application – this occurs because comparing the simulated benchmark responses against 
the experimental responses mitigates some of the initial uncertainty in the nuclear data [7].  The TSURFER-
Perfetti method produced the highest USL estimates because the post-adjustment nuclear data uncertainty 
(𝜎9) was roughly 10-20% as large as the initial nuclear data-induced uncertainty, suggesting that the 
TSURFER data assimilation process was able to successfully identify which nuclear data components 
contributed most significantly to the code computational bias.  It should be noted that if the TSURFER USL 
calculation used the pre-adjustment nuclear data-induced uncertainty for 𝜎9, that it would have produced 
USL estimates that were significantly closer to, yet significantly more conservative than, the USLSTATS 
and Whisper estimates (0.9777 and 0.9657 for the normal and upset cases, respectively, compared to 
USLSTATS estimates of 0.9822 and 0.9829 for the normal and upset cases, respectively).  

5 CONCLUSIONS 

This study has provided a brief review of three statistical methods for estimating computational bias 
and USLs that are based on cutting-edge, high-fidelity sensitivity analysis methods, and has compared their 
bias and USL estimates for the sample application from Appendix D of ANSI/ANS–8.24 under both normal 
and upset conditions. The Whisper and USLSTATS methods produced similar USL estimates for both 
normal and upset conditions, while the TSURFER method’s proposed USL estimation method produced 
significantly less conservative results. While it is not clear which method(s) produce the most accurate 
computational bias and USL estimates, it is our hope that future studies will investigate and benchmark 
these methods in greater detail. 

NCS analysts must determine and understand the effects of approximations and errors in computer 
codes and nuclear data to quantify the accuracy of calculated eigenvalue estimates. The use of computer 
codes has become prevalent in the NCS industry, a trend that will be continued with the next generation of 
NCS staff. Coupled with a much larger set of NCS benchmarks available for use in validation, there is an 
industry need to develop tools and techniques to replace historical methods based solely on expert 
judgment, were often limited to benchmarks known to that expert or site, and that were often limited in 
their application to simple checks on quasi-quantitative parameters (EALF, H-X ratio, etc...) 

It is almost impossible for any individual to be familiar with all of the benchmarks and their accepted 
application areas, and it is accepted that modern computer techniques can identify applicable benchmarks. 
Moving forward the industry needs to build trust in these sensitivity-based benchmark selection methods 
so that they may ultimately be used to determine computational biases and/or USLs for given applications. 
With these advancements and improved understanding of computational biases, the industry will have the 
opportunity to optimize operational activities based on reducing unnecessary conservatism. To reach this 
point there must be an increase in the scrutiny and importance placed on validation methods, as has been 
seen in recent years. 
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