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Introduction
• The electrical grid is being updated to help integrate renewable resources, and to improve 

reliability, availability, cost, and efficiency 

• These updates require the addition of new systems to be connected to the grid:

• Energy Storage Systems (ESSs): in this case Battery Energy Storage Systems (BESSs) 

• Electrical Components: sensors (voltage, current, temperature), communication devices, 

hardware components. These components may or may not be connected to the internet.

• Battery Energy Storage Systems Overview

• Most commonly, stacks (multiple batteries connected together) of Lithium Ion (Li-ion) 

batteries are used in grid applications

• A Battery Management System (BMS) is responsible for making sure the batteries perform 

within their operating and safety specifications, collecting data about the batteries (current, 

voltage, and temperature), performing state variable estimation, monitoring the health of the 

system and ensuring the system is safe

• State variables cannot be measured and must be estimated by the BMS, inaccurate 

estimation could make the system unsafe

• The state variable State of Charge (SoC) was investigated in this study. The SoC is a 

measure of how much charge is left on a battery relative to the total charge (ex: when your 

phone battery has 86% remaining, the SoC would be 0.86)

• The SoC can be estimated using Equivalent Circuit Models (ECM) and Charge Reservoir 

Models (CRM) that approximate the physics of battery systems

• Cyber Threats Overview

• With more devices being connected to the internet, the grid and its BESS have become more 

vulnerable to cyberattacks

• Common cyberattacks include:

• Denial of Service (DoS): prevents the system from doing its desired purpose by 

spamming the system with error messages

• Replay Attacks: replacing new sensor measurements with old, repeated measurements so 

the system is performing with out-of-date information

• False Data Injection Attacks (FDIAs): manipulates sensor readings that are needed for 

state variable estimation, this causes inaccurate estimation and incorrect orders from 

management systems

• False Data Injection Attacks

• Small-magnitude attacks that evade other commonly used detectors

• The attacker typically has knowledge of the system design and targets sensors

• Require additional detection mechanisms to be discovered

• Could be randomly generated or targeted to a specific system

• Usually expensive to implement, the attacker would target the minimum number of 

sensors required to damage the system
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Purpose
• Detecting and responding to FDIA is critical to the safe operation of the electrical grid

• This poster presents an approach based on the Cumulative Sum (CUSUM) Algorithm that is 

capable of detecting FDIA injected into the voltage sensors of battery stacks

• Possible Consequences of FDIA on BESS and the electrical grid:

• Power outages or failure of critical equipment (BESS, sensors, hardware devices)

• Thermal runaway events (very hot batteries, fires, and in some cases explosions)

• Increased costs to utility companies and consumers

• Systems performing outside of specifications and decreased efficiency

• Damage to equipment, including degradation of batteries

Method
FDIA Detection using CUSUM Algorithm

• Used to detect a shift in the mean of a stationary random process

• Fig. 1 is a flowchart that describes the processes to detect an FDIA 

using the CUSUM Algorithm

• Adds data over time and adds/subtracts a correction term to 

determine if the system goes out of bounds 

• The upper (UCL) and lower bounds (LCL) are symmetric about 

the horizontal axis:

𝑈𝐶𝐿 = ℎ𝜎 ҧ𝑧

𝐿𝐶𝐿 = −ℎ𝜎 ҧ𝑧

Where h is a correction term and σതz is the population standard 

deviation.

• High Sum (SH) and Low Sum (SL) are used to more accurately 

determine the presence of FDIA than using a single sum

𝑆𝐻𝑖 = 𝑚𝑎𝑥 0, ഥ𝑧𝑖 − 𝜇 − 𝑘𝜎 ҧ𝑧 + 𝑆𝐻𝑖−1

𝑆𝐿𝑖 = 𝑚𝑖𝑛 0, ഥ𝑧𝑖 − 𝜇 + 𝑘𝜎 ҧ𝑧 + 𝑆𝐿𝑖−1
Where ഥzi is the residual data, μ is the population mean, k is a 

correction term, σതz is the population standard deviation, SHi−1

and SLi−1 are the previous high sum and low sum, respectively.

• The data input into the CUSUM algorithm was the a priori 

residual data (the unadjusted difference between the estimated 

sensor values and actual sensor values):

𝑧 𝑘 𝑘 − 1 = 𝑦 𝑘 − ො𝑦 𝑘 𝑘 − 1
Where z is the a priori residual, y is the actual measurements 

(sensor values), ොy is the sensor values estimated from the battery 

model, and k is the time step.

• An out-of-bounds system indicates FDIA is present

Application
Modeling of Battery Energy Storage 

System Stacks
• A simple battery stack can be represented using an 

Equivalent Circuit Model (ECM) (Fig. 2) and a Charge 

Reservoir Model (CRM) (Fig. 3)

• Equations were derived from Fig. 2 and Fig. 3 to 

approximate the physics of the batteries

• The battery model (ECM and CRM) was used to 

estimate state variables for each battery cell in the stack 

• Voltage drops (𝑣1,1, 𝑣2,1, … , 𝑣1,𝑁 , 𝑣2,𝑁) across the 

Resistor-Capacitor circuit (Fig. 2)

• State of Charge: SoC (𝜍1, … , 𝜍𝑁) (Fig. 3)

• Sensors were used to take measurements for each 

battery cell in the stack 

• Voltage drop across each battery cell (𝑣𝑏𝑎𝑡,1,

… , 𝑣𝑏𝑎𝑡,𝑁)

• Total voltage drop across the battery stack (𝑉𝑠𝑡𝑎𝑐𝑘)
• The a priori residual data, used in the CUSUM 

algorithm, was generated using this model

Case Studies

Conclusions
• FDIAs pose a threat to the safe and efficient operation 

of the grid and its BESSs, and require additional 

detection mechanisms

• The CUSUM Algorithm presented was able to detect 

small-magnitude FDIA during single sensor and multi-

sensor attacks with no false positives

• The redundancy added by the 𝑉𝑠𝑡𝑎𝑐𝑘 measurement 

allows the system to remain observable in the event of a 

single sensor failure

• The CUSUM Algorithm was unable to determine the 

sensor(s) being targeted or the magnitude of the attacks

Fig. 1 : CUSUM Algorithm Flowchart

Fig. 2: Equivalent Circuit Model for Stack of N Batteries

Fig. 3: Charge Reservoir Model for Stack of N Batteries

False Data Injection Attacks
• Injected into the voltage sensors of the 

battery model during simulation

• Tested on single sensors and 

multiple sensors

• Tested at random timesteps

• Larger magnitude attacks (Fig. 4) can 

be visually seen in state variable 

estimation, while smaller magnitude 

attacks require a detector to be noticed

• During these experiments attacks 

of ±500 𝜇𝑉 to ±20𝑚𝑉 were 

tested

• Attacks on voltage sensors may effect 

the a priori residual

• Used to verify the CUSUM algorithm 

is a viable attack detector Fig. 4: Estimated State Variables for Cell 1, Following an 

Attack of 10 mV Injected in the 𝑣𝑏𝑎𝑡,1 Sensor at t = 5500

Attack on a Single Sensor
• Most likely FDIA due to the cost and effort associated with 

launching a FDIA

• Was tested on a three-cell battery stack

• Voltage sensors susceptible to attacks: 

𝑣𝑏𝑎𝑡,1, 𝑣𝑏𝑎𝑡,2, 𝑣𝑏𝑎𝑡,3, 𝑉𝑠𝑡𝑎𝑐𝑘
• Every sensor was tested with a variety of attack times and 

magnitudes

• Goal: to determine the minimum magnitude attack that was 

detectable by the CUSUM Algorithm 

Observability Study
• Observability is a measure of whether a system is observable, 

unobservable systems are unable to perform state variable 

estimation

• A system may become unobservable when one or more sensors 

become disconnected / offline

• Was tested on a two-cell battery stack

• Voltage sensors that could go offline: 𝑣𝑏𝑎𝑡,1, 𝑣𝑏𝑎𝑡,2, 𝑉𝑠𝑡𝑎𝑐𝑘
• The 𝑉𝑠𝑡𝑎𝑐𝑘 measurement added redundancy to the sensor 

measurements, as it was a combination of the other 

measurements (𝑣𝑏𝑎𝑡,1 and 𝑣𝑏𝑎𝑡,2)

• Goal: to determine if state variables could still be accurately 

estimated in the event of sensor failure(s)

Time-To-Detection Analysis
• Time-To-Detection is a measure of how quickly an attack was 

detected by the CUSUM Algorithm

• Calculated for online and offline applications

• Online applications: done in real-time, the amount of time it 

took the CUSUM Algorithm to detect an attack from the time it 

had been injected to a sensor

• Offline applications: typically done over a longer timeframe 

(ex: once a day), once all the residual data was collected and 

stored, it was run through the CUSUM Algorithm all at once.

• Goal: to determine if CUSUM Algorithm is fast enough to work in 

real-world applications

Attack on Multiple Sensors
• Unlikely to occur if an attack on a single sensor will suffice, but 

included for completeness

• Was tested on a three-cell battery stack (with minimum detectable-

magnitude attacks, where applicable)

• Voltage sensors susceptible to attacks: 

𝑣𝑏𝑎𝑡,1, 𝑣𝑏𝑎𝑡,2, 𝑣𝑏𝑎𝑡,3, 𝑉𝑠𝑡𝑎𝑐𝑘
• Every combination of sensors was tested with a variety of 

attack times and magnitudes

• Attack scenarios included:

• Attacks of the same magnitude, injected at the same time

• Attacks of different magnitudes, injected at the same time

• Attacks of the same magnitudes, injected at different times

• Attacks of different magnitudes, injected at different times

• Goal: to determine if the CUSUM Algorithm was able to detect 

attacks when multiple sensors were injected with FDIA

Results
❖ Successfully detected attacks (as low as ±500 𝜇𝑉) 

injected in a single sensor with no false alarms

❖ For a stack of two batteries, the system remained 

observable in the event of a single sensor failure, 

therefore state variables were able to be accurately 

estimated

❖ The 𝑉𝑠𝑡𝑎𝑐𝑘 measurement added redundancy that 

created a more robust estimator

❖ In the event of a multi-sensor failure (where more 

than one sensor failed at a time), the system became 

unobservable and this method would no longer be 

effective to estimate states or detect FDIA using the 

a priori residual

❖ The CUSUM was found to be effective in online 

and offline grid applications

❖ In all offline experiments the attacks were detected 

in less than 0.1 s

❖ In all online experiments the attacks were detected 

in less than 10 s (sometimes less than 1 s) 

❖ In general it took significantly longer to detect 

attacks in online applications than offline 

applications, this is because the CUSUM Algorithm 

had to wait for the system to generate residual data 

in real time

❖ The CUSUM Algorithm was able to detect attacks 

when multiple sensors were attacked

Fig. 5 : CUSUM Charts with a +1 mV Attack Injected to the 

𝑣𝑏𝑎𝑡,1 measurement at t = 5500

Fig. 6: CUSUM Charts with a +500 𝜇V Attack Injected to 

the 𝑣𝑏𝑎𝑡,1 and 𝑣𝑏𝑎𝑡,2 measurement at t = 5500
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