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Background

Reactor core isolation cooling (RCIC) is a system that provides emergency cooling to RPV 
(reactor pressure vessel) after an initial loss of  power. 
◦ RCIC performance during beyond design basis event conditions is not well characterized.

It is assumed that battery loss or depletion results in RCIC failure.

Fukushima Daiichi Unit 2 is an example of  a real world RCIC response: 
◦ RCIC started after initial loss of  onsite power.

◦ Batteries lost/failed at ~1 hour.

◦ RCIC overflowed but did NOT fail until ~3 days into accident.

The RCIC system is a steam-driven pumping system which utilizes a Terry turbine. 
◦ Terry turbines are not a new design but are also not well characterized. 

Conservative assumptions about Terry turbines limit the mitigation options considered for 
normal and emergency operations.

Goal: Better understand Terry turbine behavior through a combined effort of  modeling and 
full-scale experimental testing funded by the Terry Turbine Expanded Operating Band 
(TTEXOB) program. This includes:
◦ MELCOR modeling Texas A&M (TAMU) experimentation of  ZS-1 and GS-2 Terry turbines

◦ MELCOR modeling a “generic” boiling water reactor (BWR) experiencing self-regulating behavior 
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MELCOR Modeling – TAMU ZS-1 Experiments Description3

Experiments:

ZS-1 turbine flowing air with dynamometer loading 
used to control turbine speed 

◦ ZS-1: 457 mm (18 in) diameter and 1 nozzle

◦ A range of  pressures, mass flow rates, and speeds

◦ Data collected: mass flow rate, dynamometer loading, 
torque, power

MELCOR Modeling:

Mass flow rate and pressure from experiment matched

Dynamometer/resistive torque as input to Terry turbine model

TAMU ZS-1 and GS-2 experiment publications:

A. Patil et al., “Two-phase operation of a Terry steam turbine using air and water mixtures as working

fluids,” Applied Thermal Engineering, 165, pp. 114567 (2020)

J. Vandervort et al., “Performance evaluation of a Terry GS-2 steam impulse turbine with air-water

mixtures,” Applied Thermal Engineering, 191, pp. 116636 (2021)

ZS-1 MELCOR Nodalization



MELCOR Modeling – TAMU ZS-1 Calibration4

Loss form for ZS-1 was provided by TAMU:

◦ 𝑐𝑙𝑖𝑛𝑒𝑎𝑟 = 1.39 × 10−7 and 𝑐𝑤𝑖𝑛𝑑𝑎𝑔𝑒 = 2.3 × 10−4 approximated from data

◦ 𝑐𝑡𝑜𝑟𝑞𝑢𝑒 needs to be determined through calibration.

Two calibration exercises:

1. Calibrate a 𝑐𝑡𝑜𝑟𝑞𝑢𝑒 value for every TAMU test.

◦ NOT predictive, but can be used to verify model is working properly

2. Calibrate a global 𝑐𝑡𝑜𝑟𝑞𝑢𝑒 value for all TAMU tests

Results of Calibrating 𝑐𝑡𝑜𝑟𝑞𝑢𝑒 Individually to Each Test

𝜔 = 𝑠𝑝𝑒𝑒𝑑
𝜏 = 𝑡𝑢𝑟𝑏𝑖𝑛𝑒 𝑡𝑜𝑟𝑞𝑢𝑒



MELCOR Modeling – TAMU ZS-1 Global Calibration

Results of  calibrating single 𝑐𝑡𝑜𝑟𝑞𝑢𝑒 value for all experiments 

◦ Overall good match to speed/torque can be obtained from calibrating global 𝑐𝑡𝑜𝑟𝑞𝑢𝑒 value.

◦ Power curve is a product of  both quantities.
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MELCOR Modeling – TAMU GS-2 Comparison

TAMU also performed GS-2 air experiments.

◦ GS-2:  610 mm (24 in) diameter and 5 nozzles**

◦ GS-2 was included for comparison, but not the focus of  this modeling exercise

A new global coefficient would need to be determined for the GS-2.

◦ Loss data will need to be provided to perform a similar exercise
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GS-2 Experiment vs MELCOR Power using ZS-1 Global 𝑐𝑡𝑜𝑟𝑞𝑢𝑒 Value and ZS-1 loss form

**GS-2 Terry turbines have 10 nozzles, but 5 were blocked in TAMU experiments
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MELCOR Modeling – Generic BWR with Uncontrolled RCIC

A MELCOR input deck was developed with emphasis on capturing self-regulating RCIC turbopump 
behavior of  a GS-1 turbine

Self-regulating feedback mechanism:

◦ Loss of  power leads to trip/governor valves opening

◦ Increased steam admittance  increased turbine speed/pump injection  water overflowing the RPV into 
RCIC steam line

◦ Water enters turbine  turbine slows down  decreased pump injection  RPV water level drops

◦ Increased steam admittance  increased turbine speed/pump injection … And so on
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MELCOR Modeling – Generic BWR with Uncontrolled RCIC8

Generic BWR MELCOR Nodalization

Accident being modeled:

◦ SCRAM at t = 0

◦ RCIC starts at t=60 seconds

◦ Battery power lost at t=2 hours

◦ Trip/governor valves open

◦ RCIC operates uncontrolled 



MELCOR Modeling –Uncontrolled RCIC Modes

Three Uncontrolled RCIC Modes:

◦ Stable-degraded self-regulation: Constant turbine speed and degraded pump injection.

◦ Unstable self-regulation: Unstable turbine speed and pump injection.

◦ Semi-stable degraded self-regulation: Constant turbine speed and degraded pump injection with significant 
fluctuations of  turbine speed and pump injection rate.

Difference in modeling: 

◦ 5 nozzle flow paths

◦ Varied elevation of  nozzles relative to each other

◦ Nozzle elevation affects nozzle void fraction

◦ Stable-degraded: Evenly spaced in elevation

◦ Unstable: 3 high, 2 low

◦ Semi-stable: 2 high, 3 low
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MELCOR Modeling – Stable-Degraded Self-Regulation 

Stable-degraded self-regulation: Constant turbine 
speed and degraded pump injection.

◦ 13 and 18 kg/s injection produced by the pump during self-
regulating mode, which is degraded from the standard rated 
injection of  ~39 kg/s.

◦ Steady injection leads to a relatively steady RPV/steamchest
water level

◦ Nozzles evenly spaced in elevation  Bottom 4 nozzles 
submerged, top 1 nozzle is uncovered through nearly entire 
simulation
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MELCOR Modeling – Unstable Self-Regulation 

Unstable self-regulation: Unstable turbine speed 
and pump injection.

◦ Fluctuating pump injection leads to a fluctuating 
RPV/steamchest water level

◦ Three nozzles at top of  steamchest, two at bottom
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MELCOR Modeling – Semi-Stable Degraded Self-Regulation12

Semi-stable degraded self-regulation: Constant turbine speed and degraded pump injection with 
significant fluctuations of  turbine speed and pump injection rate.

Has characteristics of  both stable and unstable self-regulation.

◦ Two nozzles at top of  steamchest, three at bottom

◦ Addition of  1 “bottom” (i.e., primarily flowing water nozzle) enough to prevent the frequent turbine speed spikes seen in unstable modeling



MELCOR Modeling –Uncontrolled RCIC Modes Summary

What determined the self-regulating mode: how the nozzles were represented.

◦ 5 nozzle flow paths

◦ Varied elevation of  nozzles relative to each other

◦ Stable-degraded: Evenly spaced in elevation

◦ Unstable: 3 high, 2 low

◦ Semi-stable: 2 high, 3 low

◦ How to best represent the nozzles is an uncertain parameter and it is unknown how a steam and 
water mixture will behave once the mixture enters the steam chest and the nozzles

RCIC behavior is highly sensitive to uncertain model inputs.

◦ Some of  these behavior modes will be inherently more stressful mechanically, and severe 
oscillations could potentially take the system offline.

◦ Uncertain if  this sensitivity extends to the real life RCIC turbopump system
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Overall Conclusions

Modeling RCIC behavior is complicated due to the coupled feedback mechanisms that drives the 
system behavior. 

ZS-1 modeling:

◦ We were provided loss data that allows us to characterize the loss form. To perform the same 
analysis for the GS-2, we would need GS-2 loss data. 

◦ Improving the ZS-1 and GS-2 TAMU Terry turbine models will support and inform modeling 
efforts pertaining to the full-scale plant analysis. 

Generic BWR modeling:

◦ Highly sensitive to uncertain model inputs. 

◦ Unknown parameters need to be addressed by additional experimentation, data collection, and 
modeling to gain insights into RCIC behavior
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Background Cont. - Terry Turbine Overview

Terry turbines are not a new design but are also not well characterized. 

Terry Turbines:

1. Solid, robust one-piece wheel,

2. Low maintenance requirements,

3. Can operate in degraded steam conditions,

4. Can operate at low pressures, and

5. Quick start from cold shutdown.

Typical Turbine:

1. Complex construction,

2. Requires regular maintenance, and

3. Operates at high pressures and high efficiencies. 
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MELCOR Modeling – General RCIC Model Description18

Ongoing effort to develop MELCOR models to 
express components of  RCIC turbopump 
system.

Homologous Pump Model:

◦ Flow path package

◦ Determines pressure head of  pump as a function 
of  pump speed and capacity

◦ Pump torque, friction losses, inertia, energy dissipation.

◦ User can supply pump performance curves

Pressure Stage Model (Terry Turbine):

◦ Steam through converging/diverging nozzles

◦ Flow and jet velocities used as inputs to velocity 
stage model

Velocity Stage Model (Terry Turbine):
◦ 𝜏𝑇 = 𝑟 × ሶ𝑚 × 𝑐𝑜𝑛𝑠𝑡 × [ 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡 𝑐𝑜𝑠𝛼 − 2𝑟𝜔]

◦ 𝜏𝑇 = turbine torque

◦ 𝑟 = turbine radius

◦ ሶ𝑚 = jet mass flow rate

◦ 𝑉 = velocity of  jet entering/leaving bucket

◦ 𝛼 = angle of  incidence of  the jet

◦ 𝜔 = turbine speed

Shaft speed of  coupled turbine-pump system:

◦ 𝐼𝑇 + 𝐼𝑃
𝜕𝜔

𝜕𝑡
= 𝜏𝑇 − 𝜏𝑃 − 𝜏𝑓𝑟,𝑇 − 𝜏𝑓𝑟,𝑃

◦ 𝐼 = Moment of  inertia

◦ 𝜏 = torque

◦ 𝜔 = speed

◦ 𝑡 = time

◦ Subscripts T, P, fr = turbine, pump, and friction



MELCOR Modeling – TAMU ZS-1 Calibrated to Each Test

Relationship in 𝑐𝑡𝑜𝑟𝑞𝑢𝑒 and turbine speed.

◦ Lower speed tests generally have higher 𝑐𝑡𝑜𝑟𝑞𝑢𝑒 values

◦ High pressure tests have lower 𝑐𝑡𝑜𝑟𝑞𝑢𝑒 values

◦ Low inlet pressure tests display different behavior 

Possible to get a near exact match to speed, and close match to experimental torque

Good match to speed/torque can be obtained from adjusting 𝑐𝑡𝑜𝑟𝑞𝑢𝑒 value
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MELCOR Modeling – Stable-Degraded Self-Regulation 

Stable-degraded self-regulation: Constant turbine 
speed and degraded pump injection.

◦ 13 and 18 kg/s injection produced by the pump during self-
regulating mode, which is degraded from the standard rated 
injection of  ~39 kg/s.

◦ Steady injection leads to a relatively steady RPV/steamchest
water level

◦ Nozzles evenly spaced in elevation  Bottom 4 nozzles 
submerged, top 1 nozzle is uncovered through nearly entire 
simulation
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MELCOR Modeling – An Different Unstable Self-Regulation Mode21

Unstable self-regulation: Unstable turbine speed 
and pump injection.

◦ Different input deck used than the other results shown 
previously.

◦ Higher 𝑐𝑡𝑜𝑟𝑞𝑢𝑒 value  turbine produces more torque overall


