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Background

Reactor core isolation cooling (RCIC) is a system that provides emergency cooling to RPV
(reactor pressure vessel) after an initial loss of power.

o RCIC performance during beyond design basis event conditions is not well characterized.

It 1s assumed that battery loss or depletion results in RCIC failure.

Fukushima Daiichi Unit 2 is an example of a real world RCIC response:
o RCIC started after initial loss of onsite power.
o Batteries lost/failed at ~1 hout.
o RCIC overflowed but did NOT fail until ~3 days into accident.

The RCIC system is a steam-driven pumping system which utilizes a Terry turbine.
o Terry turbines are not a new design but are also not well characterized.

Conservative assumptions about Terry turbines limit the mitigation options considered for
normal and emergency operations.

Goal: Better understand Terry turbine behavior through a combined effort of modeling and
full-scale experimental testing funded by the Terry Turbine Expanded Operating Band
(TTEXOB) program. This includes:

o MELCOR modeling Texas A&M (TAMU) experimentation of ZS-1 and GS-2 Terry turbines
o MELCOR modeling a “generic” boiling water reactor (BWR) experiencing self-regulating behavior

Unknown Author, 1918. “The Terry turbine-
driven fans”. Journal of the American
Society of Naval Engineers, 30(1), pp. 598-
599.




3 ‘ MELCOR Modeling — TAMU ZS-1 Experiments Description

Experiments:

Z.5-1 turbine flowing air with dynamometer loading

used to control turbine speed
o /S-1: 457 mm (18 in) diameter and 1 nozzle

° A range of pressures, mass flow rates, and speeds

° Data collected: mass flow rate, dynamometer loading,

torque, power

MELCOR Modeling:

Mass flow rate and pressure from experiment matched

Dynamometer/resistive torque as input to Terry turbine model

ZS-1 MELCOR Nodalization

______ RCIC Model _ _
! 1
: Nozzle !
Air i Model :
Source Bt e H Lo !
Mixing | _ | Turbine | Nozle; & | :__b Turbine
Pipe Inlet Exhaust
Water 4 -
Source > ! N v
turbine

TAMU ZS-1 and GS-2 experiment publications:

A. Patil et al., “Two-phase operation of a Terry steam turbine using air and water mixtures as working
fluids,” Applied Thermal Engineering, 165, pp. 114567 (2020)

J. Vandervort et al., “Performance evaluation of a Terry GS-2 steam impulse turbine with air-water
mixtures,” Applied Thermal Engineering, 191, pp. 116636 (2021)

Dynamometer Environment

Torque CF




4 ‘ MELCOR Modeling — TAMU ZS-1 Calibration

Loss form for ZS-1 was provided by TAMU:

2
Tloss — CwindageW + Clinearw + constant w = Speed

Tnet = Ctorque X TT — Tloss

T = turbine torque

° Clineqr = 1.39 X 1077 and Cwindage = 2-3 X 10~* approximated from data

° Ctorque needs to be determined through calibration.

Two calibration exercises:

1. Calibrate a Corqye value for every TAMU test.

o NOT predictive, but can be used to verify model is working properly

2. Calibrate a global C¢opgye value for all TAMU tests

A 4

Results of Calibrating c¢orqye INdividually to Each Test
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MELCOR Modeling — TAMU ZS-| Global Calibration

Results of calibrating single C¢orgye value for all experiments

° Overall good match to speed/torque can be obtained from calibrating global C¢ppqye value.

> Power curve is a product of both quantities.

Z5-1 Experiment vs MELCOR Speed & Torque
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6 ‘ MELCOR Modeling — TAMU GS-2 Comparison

TAMU also performed GS-2 air experiments.
° GS-2: 610 mm (24 in) diameter and 5 nozzles**

> (GS-2 was included for comparison, but not the focus of this modeling exercise

A new global coefficient would need to be determined for the GS-2.

°> Loss data will need to be provided to perform a similar exercise

GS-2 Experiment vs MELCOR Power using Z5-1 Global ¢,y Value and Z5-1 loss form
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7 I MELCOR Modeling — Generic BWR with Uncontrolled RCIC

A MELCOR input deck was developed with emphasis on capturing self-regulating RCIC turbopump
behavior of a GS-1 turbine

Self-regulating feedback mechanism:

(¢]

Loss of power leads to trip/governor valves opening

(¢]

Increased steam admittance = increased turbine speed/pump injection = water overflowing the RPV into
RCIC steam line

o Water enters turbine = turbine slows down = decreased pump injection = RPV water level drops

o

Increased steam admittance = increased turbine speed/pump injection = ... And so on



s | MELCOR Modeling — Generic BWR with Uncontrolled RCIC

Accident being modeled:
> SCRAM att =0
> RCIC starts at t=60 seconds
° Battery power lost at t=2 hours
° Trip/governor valves open

> RCIC operates uncontrolled
Generic BWR MELCOR Nodalization

RCIC Model
== Trip Gowvernor
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RPV water Ling !
——
 J
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i . after CST
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MELCOR Modeling —Uncontrolled RCIC Modes

Three Uncontrolled RCIC Modes:
o Stable-degraded self-regulation: Constant turbine speed and degraded pump injection.
> Unstable self-regulation: Unstable turbine speed and pump injection.

> Semi-stable degraded self-regulation: Constant turbine speed and degraded pump injection with significant
fluctuations of turbine speed and pump injection rate. Controlled RCIC

\ _
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10 ‘ MELCOR Modeling — Stable-Degraded Self-Regulation

Stable-degraded self-regulation: Constant turbine 20 | L ppdegraded
speed and degraded pump injection. .
° 13 and 18 kg/s injection produced by the pump during self- i
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11 I MELCOR Modeling — Unstable Self-Regulation

—— unstable

Unstable self-regulation: Unstable turbine speed 120 - target
and pump injection.
° Fluctuating pump injection leads to a fluctuating
RPV /steamchest water level
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MELCOR Modeling — Semi-Stable Degraded Self-Regulation

Semi-stable degraded self-regulation: Constant turbine speed and degraded pump injection with
significant fluctuations of turbine speed and pump injection rate.

Has characteristics of both stable and unstable self-regulation.

° Two nozzles at top of steamchest, three at bottom

o Addition of 1 “bottom” (i.e., primarily flowing water nozzle) enough to prevent the frequent turbine speed spikes seen in unstable modeling
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13 1 MELCOR Modeling —Uncontrolled RCIC Modes Summary

What determined the self-regulating mode: how the nozzles were represented.
° 5 nozzle flow paths

° Varied elevation of nozzles relative to each other
o Stable-degraded: Evenly spaced in elevation
o Unstable: 3 high, 2 low
> Semi-stable: 2 high, 3 low

> How to best represent the nozzles is an uncertain parameter and it is unknown how a steam and
water mixture will behave once the mixture enters the steam chest and the nozzles

RCIC behavior is highly sensitive to uncertain model inputs.

> Some of these behavior modes will be inherently more stressful mechanically, and severe
oscillations could potentially take the system offline.

> Uncertain if this sensitivity extends to the real life RCIC turbopump system



14 1 Overall Conclusions

Modeling RCIC behavior is complicated due to the coupled feedback mechanisms that drives the
system behavior.

Z.S-1 modeling:

> We were provided loss data that allows us to characterize the loss form. To perform the same
analysis for the GS-2, we would need GS-2 loss data.

o Improving the ZS-1 and GS-2 TAMU Terry turbine models will support and inform modeling
efforts pertaining to the full-scale plant analysis.

Generic BWR modeling:
° Highly sensitive to uncertain model inputs.

> Unknown parameters need to be addressed by additional experimentation, data collection, and
modeling to gain insights into RCIC behavior









17 | Background Cont. - Terry Turbine Overview

Terry turbines are not a new design but are also not well characterized.

Terry Turbines:

1. Solid, robust one-piece wheel,

2. Low maintenance requirements,

3. Can operate in degraded steam conditions,

4. Can operate at low pressures, and

5. Quick start from cold shutdown.
Typical Turbine:

1. Complex construction,
2. Requires regular maintenance, and
3.

Operates at high pressures and high efficiencies. i



18 I MELCOR Modeling — General RCIC Model Description

Ongoing effort to develop MELCOR models to Velocity Stage Model (Terry Turbine):

express components of RCIC turbopump o Tp =1 X m X const X [(Viy, — Vo) cosa — 2rw]
system. ° T = turbine torque
° 1 = turbine radius
Homologous Pump Model: * T = jet mass flow rate
° Flow path package o V = velocity of jet entering/leaving bucket
> Determines pressure head of pump as a function o a = angle of incidence of the jet
of pump speed and capacity ° w = turbine speed

> Pump torque, friction losses, inertia, energy dissipation.

o User can supply pump performance curves

Shaft speed of coupled turbine-pump system:

o (Ir + IP)Z_(;) =Tr —Tp — Trrr — Tfr,p
> I = Moment of inertia
° T = tOI'qUC
°> Flow and jet velocities used as inputs to velocity °© @ = speed
stage model o t = time

Pressure Stage Model (Terry Turbine):

° Steam through converging/diverging nozzles

° Subscripts T, P, fr = turbine, pump, and friction
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MELCOR Modeling — TAMU ZS-1 Calibrated to Each Test

Relationship in Ctorgye and turbine speed.

° Lower speed tests generally have higher Ctorqye values

° High pressure tests have lower Ctppqye values

> Low inlet pressure tests display different behavior

Possible to get a near exact match to speed, and close match to experimental torque

Good match to speed/torque can be obtained from adjusting C¢prqye value
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20 ‘ MELCOR Modeling — Stable-Degraded Self-Regulation

Stable-degraded self-regulation: Constant turbine

speed and degraded pump injection. —— stable-degraded
.o . . 120 e e I e target
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21 ‘ MELCOR Modeling — An Different Unstable Self-Regulation Mode

Unstable self-regulation: Unstable turbine speed
and pump injection.
o Different input deck used than the other results shown
previously.

° Higher Ctorque value = turbine produces more torque overall
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