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[. INTRODUCTION

Linear bipolar circuits such as comparators,
operational amplifiers and voltage regulators
exhibit a high sensitivity to total ionizing dose
(TID) as well as enhanced low dose rate sensitivity
(ELDRS) [1]. Numerous studies have presented
experimental data on and models of the physical
mechanisms for TID and ELDRS effects in linear
bipolar circuits and bipolar junction transistors
(BJTs) [2-8].

TID and low dose rate sensitivity are strongly
dependent on the buildup of traps at bipolar base
oxide-semiconductor interface (N;r). And the rate
of N;r generation depends on several factors such as
base oxide thickness, internal electrical fields, final
passivation materials, and pre-irradiation elevated
temperature  stress [9-11]. It was also
experimentally demonstrated that ELDRS in BJTs
is strongly related to hydrogen content in the gas
ambient inside hermetically sealed part packaging.
[12-16]. This suggests a correlation between a
relatively observable quantity, i.e., H, in gas, that
indirectly impacts defect buildup with hydrogen in
the base oxide, which is difficult to quantify but can
be mapped directly to N,y through well-developed
models [3-8]. In their 2007 paper, Chen et al.
presented a simple analytical model that related the
volume percent of H, in ambient gas to hydrogen
content in the base oxide [16]. However, this
correlation was not examined in detail nor
experimentally quantified.

In this work, metal-oxide-semiconductor (MOS)
capacitors were fabricated and irradiated with
different hydrogen concentrations in a controlled
gas ambient. Radiation-induced N;r were extracted
experimentally from capacitance-voltage (C-V)
data at wvarious dose steps and H, gas
concentrations. At the same dose steps, simulations
were performed to map varying base oxide
hydrogen concentrations to corresponding N;r
densities [8]. The experimental data were then
compared to a simulated data set. This comparison
allows for empirical validation and verification of
Chen’s analytical model relating percentage of
hydrogen in gas to hydrogen concentration in the
base oxide.

II. EXPERIMENTAL DETAILS

A. Test structure design

Fig. 1 illustrate a cross-section of the MOS
capacitors used in this study. The SiO, layer is
deposited on a p-type silicon. Aluminum is used for
both gate and substrate electrodes. The gate
electrode area is 500umx500um. The oxide
thickness of the insulator regions is equal to 100nm.

———p Aluminum gate electrode

DN \| —> si0; layer (100nm)
— P-type Silicon (100)

=—p Aluminum substrate

Fig. 1. Representational cross-sections of metal-oxide-
semiconductor (MOS) capacitor used in this study.

B. Test structure fabrication

The capacitors were fabricated at Arizona State
University (ASU) in cleanroom. At first, dry
oxidation on a (100) orientation p-type wafer was
performed to grow the SiO, layer. Electron beam
evaporation was used for the aluminum gate
electrode deposition. The gate electrode was
deposited on the backside of the wafer to form the
ohmic p-silicon substrate contact. To reduce defect
density at the Si/SiO, interface, rapid thermal
annealing (RTA) at 380°C for 2 mins was
performed in the forming gas environment.

C. Experimental setup

Radiation testing was performed at ASU using a
Co% gamma-ray source to explore the effects of the
in-package hydrogen gas content on the total dose
response of the capacitors. All capacitors were
exposed at a dose rate of 4.25 rad [Si]/sec.
Capacitors were irradiated at room temperature
with all pins shorted together during irradiation
(i.e., biased in thermal equilibrium). A glass
chamber flange was used to perform the irradiations
in hydrogen atmosphere (Fig. 2). Several
%Hydrogen concentrations were used in this study:
1%, 10%, and 100%. These concentrations are
determined by the partial pressure measured inside
the glass chamber. Two devices were irradiated for
each hydrogen concentration. Before radiation
exposure, the capacitors were soaked in the gas
chamber for 48 hours to ensure complete saturation
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of the hydrogen into capacitor materials. A deep
vacuum was performed before pumping the pure
hydrogen gas into the chamber. After reaching each
targeted dose, devices were removed from the
chamber and high frequency (1 MHz) C-V
measurements were performed using an Agilent
4284A LCR meter. Electrical characterization was
performed immediately after radiation exposure at
room temperature and in open air.

Fig. 2. Glass chamber flange used for soaking and
radiation testing of samples wunder hydrogen
environment [16].

III. EXPERIMENTAL RESULTS
Figs. 3- 5 show the measured C-V plots on the
capacitors for different percentage of hydrogen in
the package. Each curve represents the average of
two irradiated capacitors.
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Fig. 3. C-V measurement of the MOS-Capacitor
irradiated under a hydrogen environment: 1%.
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Fig. 4. C-V measurement of the MOS-Capacitor
irradiated under a hydrogen environment: 10%.
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Fig. 5. C-V measurement of the MOS-Capacitor
irradiated under a hydrogen environment: 100%.

In Figs. 3- 5 a clear shift in the slope of the C-V
curve related to dose and hydrogen concentration
can be observed. This shift is used to extract the
change in N;r[17]. Fig. 6 plots the extracted change
in N,y for different irradiation levels and
%Hydrogen in the gas ambient.
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Fig. 6. Change in N of the capacitor irradiated under
hydrogen atmosphere.




NSREC 2022

IV. SIMULATION MODEL

Simulated N, defects were calculated using a
python model in development by H. P. Hjalmarson
at Sandia National Laboratories. A primary driving
equation of this model is

du
= fwbo ™
where u represents a vector that describes destiny
of a species in a computational grid as a function of
position r and time ¢ [8, 18]. D represents ionizing
dose as a function of position and time. It is
assumed that all species, except interface traps,
eventually reach a steady state between competing
reactions. With these steady-state populations,
du
-0 (2)
This allows for reduced order modeling to be used
throughout the model [18]. Egs. 1 and 2 combined
with only interface trap densities changing gives the
equation:

AN ()]
o =fwgt), (3)

The reactions and species include electrons, holes,
excitons, oxygen vacancies, interface traps,
hydrogen release, and hydrogen depassivation [8].
The model can simulate the production of interface
traps as a function of hydrogen concentration, dose
rate, total dose, temperature, and more.

V. RESULTS AND DISCUSSION

The model described above is used to calculate
N;r as a function of total dose and hydrogen
concentration in in the bipolar base oxide. The total
dose was set to S50krad(Si), 100krad(Si), and
450krad(Si). The hydrogen concentration in the
oxide was set to a range of 102 cm to 10'8 cm.
All other parameters (dose, dose rate, oxide
thickness, temperature, and bias) were set to be the
same as in the experiment so that a meaningful
comparison can be made. To establish a
quantitative relationship between the percentage
hydrogen in the semiconductor packaging to the
concentration of hydrogen in the oxide, we assumed
the model developed by Chen et a/ [16],

Ny,ox = Knu,, Pn2 “4)

where Np,,, is the base oxide hydrogen

concentration, Ky, , is the solubility of hydrogen
in the oxide and Py is the partial pressure of H,
computed from volume percentage in the ambient.
The relation between the hydrogen percent to
partial pressure is presented in [16]. Using the
above equation, we get an assumed correlation
between the percent of hydrogen in the package gas
ambient and the hydrogen concentration in the
bipolar base oxide (see Table 1).

Table 1
%Hydrogen to hydrogen concentration in oxide (cm )

Percent H, H, partial Hydrogen conc. in
in gas (%) pressure (torr) | oxide (cm ™)
1 7.35 1016
10 73.5 10"7
100 735 1018

Using Eq. (4) with a solubility factor Ky, =
1.36x10' c¢m 3/torr, the accuracy of Chen’s model
can be evaluated. Fig. 7 (a)—(c) show the simulated
and experimental data plotted as function of
hydrogen concentration in the base oxide for
different dose levels. The results shown in Fig. 7
show that the experimental values reasonably
match with the simulated data at higher values of
hydrogen concentrations (i.e., between 10'® cm™ to
1018 cm?3).
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Fig. 7. Comparing the simulate(d zmd experimental Nit vs
different hydrogen concentrations at the oxide interface
to different irradiation levels (a).50kRad (b).100kRad
(c).450kRad.
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