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Dynamics of He Bubbles during Thermal Annealing: A Data-driven Approach
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Figure 7. Histograms of He bubbles in fully reconstructed
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« Coordinate tracking allows us to expand our binary classification
problem to a multi-class classification problem, yielding insights
of the characteristics to individual bubbles.

Figure 5. U-Net architecture. Boxes represent cross-sections
of square feature maps. Individual map dimensions indicated
on left, and number of channels indicated below dimensions.
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