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Energy Storage - Technology and Market Drivers
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> Traditional batteries: Lead-acid, Zn-Ni, Ni-MH i —— I
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o Lithium batteries: Li-ion, Li-S, Li-metal 0

o Emerging technologies such as solid state .
batteries, Na-ion batteries, flow batteries 10 . I
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o Consumer Electronics: Rechargeable batteries
key component for all things mobile

o Electric Vehicles: Rapid growth and the largest
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o Stationary Energy Storage: Grid energy 2000
storage emerging area S
Demand driven by growth in the transportation 1,000
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‘ Li-ion Batteries

 Family of electrochemical systems 7T ———
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e Development of Lithium S
« SOA EV batteries - Specific energies near 250 Wh/kg Batteres 1970-2015
« 330-350 Wh/kg possible near term with composite g |
anodes g
(Si-based anodes)
- 500 Wh/kg as a longer term goal based on significant . «
improvements in electrode design and composition .
. . . 0 } } } } )
(e.g., lithium anodes), electrolyte formulations, and A R TR T Y

separator innovations

Source: Crabtree, Kocs, Trahey, MRS Bulletin, Dec 2015

« Safety continue to be a significant concern



System Cost ($,/kWh)
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‘ Trends In Li-ion Batteries: Materials Innovation

Current: Range of Li-ion cathodes

for different applications

o EVs, NCA nickel-based for high
energy density/long range, LFP by

some

> Reduce Co cobalt content, Introduce Si

anodes
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VOLUMETRICENERGY DENSITY

o LFP for buses, e-bike, stationary

o LCO for mobile, consumer electronics
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+ Producticn volume: 100k packs/year
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----------------- Lithium ion with Graphite

o ey DOE VTO Cell Cost Target: $60/kWh, .0
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DOE VTO Li-ion cost roadmap

Source: D. Howell, DOE VTO , 2021
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Energy density of commercial Li-ion cells
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5 ‘ Trends in Li-ion Batteries: EVs Driving Manufacturing
Growth
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Global Lithium-ion EV Battery Demand Projections
(Source: Y. Zhou Y, D. Gohlke, L. Rush, J. Kelly, Q. Dai, Lithium-
lon Battery Supply Chain for E-Drive Vehicles in the Unite
States: 2010-2020. Argonne National Laboratory. 2021;
ANL/ESD-21/3.




6‘ Trends in Li-ion Batteries: Global Growth
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7 ‘ Grid Energy Storage: Range of Technologies and
Applications

= Range of battery technologies for short = Applications of energy storage systems
duration energy storage, seconds to days = “Energy” applications: slower time scale, large
= Pumped hydro and CAES for hours-to-day long amounts of energy
energy storage = “Power” applications: faster time scale, real-time
= No ready solutions for real long-duration and control of the electric grid

seasonal storage needs

Power vs. Energy

4 Power Applications Energy Applications

g Emerging Techqu_lggigs

E Frequency regulation Peak shaving
g 8 Renewable smoothing Load shifting
% Ramp control Islanding
= » Voltage support T&D deferral
; é Capacity firming
g
= £
% E Power Technologies 4 Frequent m:or;is Energy Technologies
£ ration
g - Batteries with Lithium-ion i el Discharge Batteries

'g f urther technical Flywheels Pumped Hydro

c§ ....... advancements Capacitors Thermal storage
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Sources: Potential Benefits of High-Power High-Capacity Batteries, DOE Report, Jan
Energy Storage Primer, IEEE Power and Energy Society,
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Grid Energy Storage: Tied to Renewables and Grid

Modernization
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Global Solar PV Annual Installations, GW
Source: BNEF, Wood Mackenzie estimates
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Projections for Energy Storage Annual Capacity Additions,
GWh

Source: BNEF, Wood Mackenzie estimates (2021)

Solar PV installed capacity reaching 1 TW in 2022, projection of
3 TW of installed capacity 2030. Similar growth in on-shore and
offshore wind.

Battery energy storage installed capacity reaching 100 GWh in
2022, projections installed capacity of 1 TWh by 2030.

Pace of deployments of energy storage picking up

- Grid reliability, solar + storage, resiliency applications

I I Em B

Long term growth driven by competitive economics



0 ‘ Where is Battery Energy Storage Getting Deployed?

megawatt G
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https://www.eia.gov/electricity/data/eia860m/

Li-ion BESS Driving Large Commercial Projects

Deployment of large BESS
plants becoming routine

GWh size plants no longer
at the conceptual stage

Tesla 100 MW / 129 MWh ESS
Australia - Grid stability

— i
-
e
[

. - . Vistra Energy, Moss Landing, Monterey,
AES 30 MW /120 MWh ESS, Escondido, CA CA
Peaker replacement 300 MW / 1200 MWh — Peaker

Replacement,
Grid Reliability ~ Images: Company websites and Wikipedia




Trends in Li-ion Batteries: Solid State Batteries
All-Solid- Stﬁtﬁqszhclnt‘a?rgg.? Battery

Big push on solid-state batteries, SSBs e o
(Li metal anode + solid electrolyte) ]
. . . Anode Cathode Anode
o Li-metal anode, higher energy densities 7 oL ™
- Replacement of flammable liquid 7 ' - attsofia IS
electrolyte, improved safety - o state
. \ 1 J
Key leferences quuidelectrolybeJ LSeparatur Solid-state electrolyte
o Liquid to solid electrolyte (L) tithiumion () : Anion
. Image courtesy: Prof. Xiaoqging Pan, UC Irvine
> Non-flammable solid https:/ /sites.uci.edu/pangroup2/solid-oxide-electrolytes /
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Lead-Acid Batteries

Sealed lead-acid

(¢]

(¢]

Gel and Absorbed Glass Mat (AGM)
More temperature dependent

Advanced Lead Acid Energy Storage

o

Carbon plates significantly improve performance

Mature technology with established global
manufacturing footprint

Highly recycled system

Advantages/Drawbacks

(@)

(@)

Low cost/Ubiquitous

Limited life time (5~15 yrs)/cycle life (500~1000
CDyCIIDG)S) and degradation w/ deep discharge (>50%
0

New Pb/C systems > 5,000 cycles.
Low specific energy (30-50 Wh/kQ)
Overcharging leads to H2 evolution
Sulfation from prolonged storage

Simple & standardized construction

Terminal | Bushing

Cast-on-5trap
’7 HNegative Flate

PE Separator
Positive Plate

Lid —

Paste

Grid (Negative)

Grid (Positive)

site. Source: PNM Resources
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Zn-based Batteries an Environmentally Frlendller

Alternative to Lead Acid

Range of alkaline battery chemistries
o Zn-Ni, Zn-MnO2

Aqueous chemistry, on-flammable

Long shelf-life, Limited thermal
management required

Reversibility and cycle life have been the
primary technical challenges for Zn-MnO,

UEP Zn-MnO, Cylindrical ~ ZAF Ni-Zn Prismatic Battery
Battery

AT

~~~~~~

== Zn(OH)

¥

Source: M. Lim et al., Mat. Sci. Eng. Reports,
2021

Separator |
£ .
#x
4
o
¥

Zn-Ni at 1C charge/discharge

Cupaclty [Ah}

[ ] 1000 2000 000 4000 5000 E000 7000 B0 o]
Cyce

Source: Design and Performance of Large Format Nickel-Zinc
Batteries E. Listerud and A. Weisenstein ZAF Energy Systems
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Flow Batteries Allow Decoupling of Energy and Power

. . !-IZ_E."EI“.ﬁin. _: V32 vozt,fvohil_ .Oi E"Elu.ﬁf“. -
Range of redox chemistries. D T
Most large commercial flow batteries are based cee| cwicn by cof moumncs
on V'V Chemistry T 5*’9"5 BrCl,/Brr EC CetiCe™
i e Fo/Fe? it Co¥/Cot
Benefits: Decouple energy and power; electrolyte ‘ ” §
has a long life 1 T T T 1 ]
-1.0 -0.5 0.0 0.5 1.0 15 2.0

Standard Potential of Redox Couples (V)

Issues: low energy density ~ 30 Wh/L; Costs
remain hlgh, Many mechanical parts Chalamala, et.al., Proc IEEE, vol. 102, pp. 976-999, June 2014

Modular systems (<50kWh) Utility scale systems

Primus Power modular Zn-Br, each unit is Sumitomo 2MW/8MWhr vanadium Redox Flow Battery system in San
25kW/125kWh Diego, CA



s I Many New Energy Storage Technologies Under E
Development i
i

Metal-air and Na-ion are under development

Existing Na-S and Na-halide battery technology continues to be improved

Source: DOE Energy Storage Database (2022)



Long Duration Energy Storage is Needed

Majority of current battery energy storage today

are for applications that require ~4 hours at
rated power. Requirement for 10 hours coming
up quickly.

No ready solutions for longer duration storage,
days to seasonal.

Potential for liquid fuels, hydrogen, thermal
storage are all options

Longer duration energy storage economic
requirements are significantly different from
battery storage.

Projects have to be larger to justify lower
system costs.

1000 5

System Lifetime Cost ($/kWh)

8 l Culrrenlt Colmmérciall insltalla‘tionsl llllllllll
:“ (1 to 6 h, 350 to 1000 $/kWh) 1
44\
I
S Future Li-ion
2] N T e e e e e e e e __
\
\
= PSH
1
6_ 4
A DAYS Target .
E T
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1l10 20 30 40 50 60 70 80 90 100

Duration at Rated Power (h)
Source: Albertus et al., Joule 4, 21-32, 2020.
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17 I Energy Storage is Not Just Batteries — Engineered Systems

= Integration costs are significant to meet safety and performance

requirements

= Performance of battery energy storage systems are not solely dependent on

the cell itself, but in the systems and integration level
o System-level integration modules, e.g., BMS, PCS, are crucial for the

performance, safety, and reliability

B Battery pack [ Power control system Balance of system [ Energy management system
B Engineering, procurement, construction [ Developer overheads [ Developer margin

$650/kWh

550
. -
kL I T TE

50
2017 2018 2019 2020 2021 2022 2023 2024 2025
Note: Benchmark numbers for a 1IMW/IMWh project
Source: Bloomberg New Energy Finance (BNEF) Bloomberg

Integration costs increase as cell > battery - Storage
System. For example, doubling in cost, $250/kWh
battery leads to $500-$700/kWh at the system level.

Sources: R. Baxter, |. Gyuk, R.H. Byrne, B.R. Chalamala, IEEE Electrification, Aug 2018

SM  Storage Module
PCS Rack Level System (DC)

ESS =| BESS ~ SM BOS

BESS Battery Energy Storage System
EMS Containerized System (DC)

ESS  Energy Storage System

Complete Storage System (AC)

Storage Balance of Power Energy Engineering
Procurement &

Module System Conversion Management
(SMm) (BOS) System (PCS) System (EMS) Construction (EPC)

Racking Frame / Bi-directional

Cabinat Container —— Application Library Project Management
Local Protection Electrical Distribution Electrical A RET T Engineering Studies /
(Breakers) & Control Protection P Permitting
Rack Management AT Connection to Distributed Asset Site Preparation /
System PP Transformer Integration Canstruction
Battery Management HVAC / Thermal ) . .
S e Data Logging Foundation / Mounting
Battery Module Communication Commissioning

Various components are required for system-level
integration of batteries for safety, performance, and
compliance.




=] Battery Energy Storage — Design and Application Aspects

Cell Architecture Plant Models
o Cylindrical, prismatic, bipolar, flow cell o Modularized

Cell Chemistry Power vs. Energy
o Agqueous, non-aqueous o High-power, short-duration discharge
o High-energy, long-duration discharge

= Cycle Life Fast Chara
o Electrical © ras arging
o Thermal = Safety

o Abuse resistance, flammability, toxicity,
containment

Modularity and Scalability
o kW to MW (Power Scaling)

o kWh to MWh (Energy Scaling) Thermal Management
o Module stacking and Containerization o Heating, cooling

Operational Aspects
o Round-trip efficiency
o Auxiliary power consumption
o O&M Costs




Safety R&D is Largely Focused on Li-ion BESS

Li-ion batteries: knowledge base mostly from consumer
electronics, safety issues adequately addressed.
« Safety issues for larger size (EV, grid) just beginning to
be dealt with
New technologies are being introduced
|s testing adequate for new technologies?
Li-ion — High energy anode materials
Li metal, solid state batteries
Advanced aqueous batteries
Molten salt batteries
Large storage systems targeting non-traditional locations,
and areas near population centers
Grid-scale systems are complex, including not only a large
battery but sophisticated power electronics
 How do you qualify for safety? Is full-scale testing
necessary?

- 2018-019 A string of 21 energy

2012 Battery Room Fire at
Kahuku Wind-Energy Storage
Farm

=4\

storage system fires in South Korea
leads to suspension of new projects

% 2019 A fire in an ESS in Surprise, AZ
leads to an explosion injuring first
responders
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Energy Storage in the Evolving Grid

Large scale energy storage integration is a critical enabler for renewable
integration, support electrification, and deeper decarbonization of the electric
system

De-carbonization, lower
costs, greater
resilience, & reliabiliity

De-Carbonization De-carbonize power generation Renewable
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