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M What is Power Flow for Current Delivery!?
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* The study of how power is delivered from the
capacitor banks to the load region
* Specifically, the magnetically insulated transmission lines
in the vacuum section of a pulsed power driver

* Electrodes heat due to ohmic heating, charged
particle bombardment, etc.

* This heating liberates contaminants from
surface/bulk and ionize

* A strong magnetic field insulates the plasma
from crossing the gap

* Plasma drifts along electrodes

* Current loss occurs when a weak or no magnetic
field 1s present to insulate the plasma

M.R. Gomez ¢ a/. PRAB (2017)
10.1103/PhysRevAccelBeams.20.010401
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https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.20.010401

M New Power Flow Platform at the University of Michigan
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Strip-line flyer plate geometry used on the Z-machine
for dynamic material property experiments

A. Porwitzky et al. PRAB (2019)

Targef in situ inside MAIZE vacuum * 3D Printed Support Structure
chamber *  Uses Form 2 SLA printer
50 pm Aluminum Planar Foil Durable Resin

Sandia v _ R = 3.6 mQ *  31.8 MPa tensile strength 3
National T.J. Smith e a/. RSI (2021) 10.1063/5.0043856 L = 20-50 nH
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Visible Self Emission Imaging - Shot 2314 — 25-um Al
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M Visible Self Emission Imaging - Shot 2314 — 25-um Al
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Python ODE solver solves RLC voltage
driven/user defined current trace to determine

ODE Solver for RLC Joule Heating of 50 micron SS-304 Foil

Semi-Analytic Model for Foil Heating & Contaminant Desorption

solid foil temperature and rate of neutral

contaminant desorption 1.0 -

Knoepfel model defines rate of heat entering
through resistive Joule heating
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desorption of contaminant surface layers

an g
= kon,,0eE /kBT

Amplitu

dt

* Solver gives semi-analytic solution in a matter of

seconds 03

* Currently working to add
* heat transfer from skin depth to foil bulk
* bulk hydrogen desorption
* metal vaporization
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; ‘ Spectrometer Calibration Setup
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McPherson 234/302VUYV Spectrometer

* Optical Design: Abberation Corrected Seya-Namioka
o f/#:£/4.5

Focal Length: 0.2 m

Gratings: 600, 1200, 2400 g/mm

Grating Coatings: Al + M2
* PI for 2400 g/mm

* Operating Wavelengths: > 40 nm

* Required Vacuum: ~10~ Torr

* Linear Dispersion: 4 nm/mm
e Slit Width: 0.1-3 mm

Photek iCMOS 160

* Quantum Efficiency: 20-25% (100-300 nm)
* Gate Width: > 3 ns

* Window Size: 25mm, 1920x1200 pixels

* Pixel Size: 13.3 um

* Window Material: Mgl’,



First Collected Spectra Using Deuterium Lamp Source
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Electrode Surface Science — Upcoming Experiments

Foil Experiments * Ohmic Heating occurs at skin depth of conductor

* Heat transfers to foil/wite bulk and surface contaminant monolayers

* As bulk thickness decreases, how does the rate of contaminant layer
desorption react?

«— Contaminant * Should be directly proportional to ohmic heating rather than other heating methods
Layer like ion/electron deposition

* Finite energy in a current pulse. Thermal Energy scales from current density at skin
depth layer (for planar geometry)

* Heat transfer should take place from skin depth layer to bulk material and
contaminant layer

* Shot-to-shot, increasing bulk thickness in relation to skin depth of current pulse
should increase the thermal energy deposited there rather in the contaminant layers
(should act as a heat sink).

* Conversely, shrinking the bulk material thickness should see more heat transferred
to the contaminant layer, increasing the rate of material desorbed from the surface

(and possibly electrode material melt)
Sanis /S‘Q‘A * Using spectroscopy, we should be able to measure the plasma density and thus the

Natioral g A\ contaminant inventory from the wire/foil
aboratories
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