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Z machine generates ~20 MA current pulse

Image: https://www.sandia.gov/z-machine/about_z/how-z-works.html
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Multi-MA current losses occur near the load
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Multi-MA current losses occur near the load

9

6 cm Previous work focused on 
current loss due to plasma 
formation in the convolute. 

B-Dot 
Measure-

ments

Image: Jennings, Chris & Chittenden, Jeremy & Cuneo, Michael & Stygar, W.A. & Ampleford, David & Waisman, Eduardo & 
Jones, Michael & Savage, M.E. & LeChien, K.R. & Wagoner, T.C.. (2010). Circuit Model for Driving Three-Dimensional Resistive 
MHD Wire Array Z-Pinch Calculations. Plasma Science, IEEE Transactions on. 38. 529 - 539. 10.1109/TPS.2010.2042971. 



Magnetized Liner Inertial Fusion (MagLIF)
MagLIF Load Region

Experimental fusion concept:
 Load region magnetized 

up to 30 T
 Preionization via laser 

heating
 Cylindrical, fuel-filled 

metal liner imploded

Image: M. R. Gomez, et al. (2014). Experimental Demonstration of Fusion-Relevant Conditions in Magnetized Liner Inertial 
Fusion. Phys. Rev. Lett. 113, 155003. 10.1103/PhysRevLett.113.155003. 



What effect does the applied axial magnetic 
field have on current coupling?
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Simplified model of the trajectory of a free electron in 
the inner-MITL shows shunting in ~200 ps

Assuming:
phi = 45 degrees
dz = 3 mm
ri = 10 mm
Ba = 15 T



PIC Simulations Using LSP In Progress
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Multi-MA current losses occur near the load
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More accurate load current 
measurement with velocimetry

Two velocimetry diagnostics:

1. PDV: Photonic 
Displacement Velocimetry

2. VISAR: Velocity 
Interferometer System for 
Any Reflector

Measures Doppler-shifted light 
reflected from the flyer that is 
pushed outwards by magnetic 
pressure.

Image: M. H. Hess, K. J. Peterson, D. J. Ampleford, B. T. Hutsel, C. A. Jennings, M. R. Gomez, D. H. Dolan, G. K. Robertson, S. L. Payne, W. A. Stygar, 
M. R. Martin, and D. B. Sinars (2018). Design and testing of a magnetically driven implosion peak current diagnostic. Physics of Plasmas. 25. 
042702. 15



More accurate load current 
measurement with velocimetry

Measured velocity 
is input into a 1D 

MHD code to back 
calculate the 
current that 

produced that 
velocity history.

Image: M. H. Hess, K. J. Peterson, D. J. Ampleford, B. T. Hutsel, C. A. Jennings, M. R. Gomez, D. H. Dolan, G. K. Robertson, S. L. Payne, W. A. Stygar, 
M. R. Martin, and D. B. Sinars (2018). Design and testing of a magnetically driven implosion peak current diagnostic. Physics of Plasmas. 25. 
042702. 16



More accurate load current 
measurement with velocimetry

Key Point: Current 
measurement is 
much closer at 

R = 1.3 cm vs 6 cm

Image: M. H. Hess, K. J. Peterson, D. J. Ampleford, B. T. Hutsel, C. A. Jennings, M. R. Gomez, D. H. Dolan, G. K. Robertson, S. L. Payne, W. A. Stygar, 
M. R. Martin, and D. B. Sinars (2018). Design and testing of a magnetically driven implosion peak current diagnostic. Physics of Plasmas. 25. 
042702. 17



Unfold Process Overview

Current vs. Time Guess
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Unfold Process Overview
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Unfold Analysis Final Result

Shunted
Current



Measured Result Shows No Effect From Applied 
Field
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Measured Result Shows No Effect From Applied Field
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Unfold-velocimetry technique enables…
 measurement of current closer to the load than 

ever before on Z-machine (radius 1.3 cm vs 6 cm)
 analysis of current loss in the inner-MITL region

Upcoming paper on the effect of axial magnetic 
fields from MagLIF on current coupling.
 Results show that performance is not affected by 

the applied field

Conclusion
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