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Shock-ramp compression of
iron-rich (Mg,Fe)O: preliminary
theory and application to Earth’s
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Ultra-low velocity zones

* ULVZ P- and S-wave velocities
are up to 30% slower than
surrounding mantle, while
being up to 10% denser

* \Very Fe-rich (Mg,Fe)O is a
possible explanation for ULVZs

Ultra-low
velocity

* Thermodynamic properties of
Fe-rich (Mg,Fe)O at near-core '
conditions of both pressure and
temperature remain poorly
constrained

E. Garnero and M. Li



Utilizing unique shock-ramp capabilities of Z machine
to reach core-mantle boundary conditions
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Utilizing unique shock-ramp capabilities of Z machine
to reach core-mantle boundary conditions
* Planned experiments: shock-ramp

compression on (Mg,Fe)O with X¢, G
25% and X, = 50% along isentropes e

at shock states relevant to Earth’s Lower Mantle ——
(Mg,Fe)SiOs + (Mg,Fe)O
core-mantle boundary {
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DFT calculations guiding shock and ramp
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DFT calculations guiding shock and ramp
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Fe spin transition

* PBE does not consider Fe spin
transition

40 60 80 100 120 140

140 F T — T T T Pressure (GPa)
: | ; Xre = 18.75% (T. Tsuchiya et al. 2006)
120F : E
i | ] 4000 1.0
100 - . \ 7 3500
S : Low-Spin E - 08
(D_ 80 \ } ol %3000
0 -
g | ® 2500
» 60 o ] § o.sf
e © 2000
40 g ] L 0.4
[ *._Rhombohedral g 1500
: High-Spin ' @ 1000
201 Cubic™ ™™=~~~ 3] a 02
] 500
0 - | 1 1 | +H
0.0 0.2 0.4 06 08 1.0 00720 40 60 80 100 120 140 0
Xre

Pressure (GPa)

Yingwei Fei et al. 2007 Xie = 25% (E. Holmstrom and L. Stixrude 2015)



PBE + U
PBE =
* (Mgg s5Feq25)0 & (Mgg sFeq )0 w
* PBE + U calculations using
Quantum Espresso
* 64 atoms supercell | )
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Fugacity-Temperature Buffer Zones
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Ongoing and future work

* PBE + U (Mg,Fe)O Hugoniots
* Xeo = 25% & Xz, = 50%
* Synthesis of polycrystalline
samples

e Standard shock experiments
* Ranging 70-160 GPa

e Z-machine shock-ramp
experiments

 Ramp up from 100 GPa
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