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A Brief Introduction to Magnetism2

• Diamagnetism – weakly repulsive, 
present in all materials, repulsion 
between applied field & moving 
electrons. No T dependence or 
saturation. (bulk gold, 
superconductors)

• Paramagnetism – weakly 
attractive, attraction between 
unpaired electrons & external field. 
T dependence & saturation.

• Ferromagnetism – magnetic 
moments of individual 
paramagnetic atoms aligned in the 
same direction, reinforcing each 
other. (Fe, Ni, Co, etc)

• Nanoscale more interesting than 
macro.
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Magnetic Nanoparticles – the Other Paramagnetism
 SUPERparamagneitc particles – single domain nanoparticles whose individual electron 
spins are aligned into a single magnetic moment.

3

 Single Domain
 More Flux Leakage
 No Energy Lost to Domain Walls

 Multi-Domain
 Less Flux Leakage
 Energy Lost to Domain Walls



Size Dependent Magnetic Properties – Blocking 
Temperature •TB (blocking temperature): Temperature above 

which the dipole of the particle can freely reorient 
with an applied field on the timescale of the 
experiment.

•Above TB – particles are superparamagnetic

•Below TB – particles are (anti)ferromagnetic 
(hysteresis).

•Susceptibility (c) is maximized at TB

•c is much larger for superparamagnetic particles 
than multidomain particles.
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Magnetic Relaxation Time is Size Dependent5
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Typical Magnetite Nanoparticle Synthesis6

Hyeon, T. and coworkers, Nat. Mater. 2004, 3, 891-895.

Fe3O4

Strengths
• Yields generally high
• Inexpensive starting materials

Weaknesses
• Size reproducibility hard to manage
• Requires purification of intermediate
• Iron oleate intermediate poorly 

characterized



Literature Methods vs New One-Pot Approach7

Hufschmid R., Arami H., Ferguson R. M., Gonzales M., Teeman E., Brush L. N., Browning N. D., Krishnan K. M. Nanoscale 2015; 7, 11142-11154.

Park J., An K., Hwang Y., Park J. G., Noh H. J., Kim J. Y., Park J. H., Hwang N. M., Hyeon T. Nat. Mater. 2004; 3, 891-895.
Shokouhimehr M., Shin K.-Y., Lee J. S., Hackett M. J., Jun S. W., Oh M. H., Jang J., Hyeon T. J. Mater Chem A. 2014, 2, 7593-
7599.
Kim B. H; et al. J. Am. Chem. Soc. 2013, 135, 2407-2410.
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Literature Method Reproducibility8

Krishnan

Size (nm) [σ, RSD]
1 20.01 [1.96, 9.8%]
2 22.58 [3.52, 15.6%]
3 31.75 [5.87, 18.5%]
4 33.07 [5.49, 16.6%]
5 29.13 [4.57, 15.7%]
Avg 27.31 [4.51, 16.5%]

Coefficient Of Variation

21.0% (5 samples)

Hufschmid R., Arami H., Ferguson R. M., Gonzales M., Teeman E., Brush L. N., Browning N. D., Krishnan K. M. Nanoscale 2015; 7, 11142-11154.



Literature Method Reproducibility9

Size (nm) [σ, RSD]
1 10.71 [1.16, 10.8%]
2 7.63 [0.66, 8.7%]
3 6.93 [0.85, 12.2%]
4 6.15 [0.67, 10.9%]
5 7.06 [1.06, 15.0%]
Avg 7.70 [0.90, 11.7%]

Coefficient Of Variation

22.9% (5 samples)

Hyeon

Park J., An K., Hwang Y., Park J. G., Noh H. J., Kim J. Y., Park J. H., Hwang N. M., Hyeon T. Nat. Mater. 2004; 3, 891-895.
Shokouhimehr M., Shin K.-Y., Lee J. S., Hackett M. J., Jun S. W., Oh M. H., Jang J., Hyeon T. J. Mater Chem A. 2014, 2, 7593-
7599.
Kim B. H; et al. J. Am. Chem. Soc. 2013, 135, 2407-2410.



Newly Developed One-Pot Procedure10

Size (nm) [σ, RSD]
1 23.52 [1.51, 6.4%]
2 24.15 [1.74, 7.2%]
3 22.34 [1.45, 6.5%]
4 22.89 [1.42, 6.2%]
5 24.43 [1.76, 7.2%]
Avg 23.47 [1.58, 6.7%]

Coefficient Of Variation

3.7% (5 samples)

Run 
1

Run 
2

Run 3

Run 
5

Run 
4

Dreier, T.A.; Vreeland, E.C.; Watt, J.; Huber, D.L. Nanotechnology, Submitted (Invited Article)



Comparison and Summary11

Average 
Size

Spool CV

One Pot 23.47 nm 1.58 nm 
(6.7%) 3.7%

Krishnan 27.31 nm 4.51 nm 
(16.5%) 21.0%

Hyeon 7.70 nm 0.90 nm 
(11.7%) 22.9%

• One pot procedure is highly reproducible
• Low dispersity products
• Low variation between replications
• Compares favorably to existing methods

Remaining Questions:
• How scalable is the result?
• Other figures of merit?
• Best method of size control?
• Can other ferrites be made similarly?



“Extended LaMer” Reaction For Magnetite12

Vreeland, E.C.; et al. Chem. Mater. 2015, 27, 6059-6066.

Continuous Precursor Addition

Extended LaMer Mechanism

Size Control

Fe(III) oleate
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Vreeland, E.C.; et al. Chem. Mater. 2015, 27, 6059-6066.

Fe3O4

Ferrite
NPs

Extended LaMer Approach to Mixed Ferrites



Optimized Reaction Conditions14

Fe2MO4 NPs

  Run 1 Run 2 Run 3 Average CoV

Co Ferrite 18.13 (10.8%) 17.95 (11.6%) 18.54 (14.2%) 18.21 (12.3%) 1.66%
Mn Ferrite 19.10 (7.2%) 18.79 (8.7%) 18.34 (8.4%) 18.74 (8.1%) 2.04%
Cu Ferrite 28.56 (9.8%) 25.08 (10.8%) 24.65 (8.4%) 26.10 (9.8%) 8.22%
Zn Ferrite 29.56 (8.9%) 27.78 (10.0%) 31.57 (9.1%) 29.64 (9.3%) 6.40%

CoV for One Pot Magnetite: 3.7%
CoV for Hyeon Magnetite: 17.7%
CoV for Krishnan Magnetite: 21.0%



TEM Results15

MnFe2O4

CoFe2O4 NiFe2O4

CuFe2O4

ZnFe2O4



Summary and Future Directions16

• M(acac)2 generally applicable 
precursors
• Structure of Mx(oleate)y  NP 
properties
• Mx(oleate)y structure controllable
• Modular approach to binary ferrites
• Same process for ternary ferrites?
• Pre-nucleation coordination 
dynamics?
• Universal size control strategy?Ferrite

NPs
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