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2 I A Brief Introduction to Magnetism

* Diamagnetism — weakly repulsive,
> £ present in all materials, repulsion
& between applied field & moving
electrons. No T dependence or
saturation. (bulk gold,
superconductors)

{

* Paramagnetism — weakly
attractive, attraction between
unpaired electrons & external field.
T dependence & saturation.

> * Ferromagnetism — magnetic
moments of individual
paramagnetic atoms aligned in the
same direction, reinforcing each
other. (Fe, Ni, Co, etc)
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3 I Magnetic Nanoparticles — the Other Paramagnetism

SUPERparamagneitc particles — single domain nanoparticles whose individual electron
spins are aligned into a single magnetic moment.

Single Domain Multi-Domain
More Flux Leakage Less Flux Leakage
No Energy Lost to Domain Walls Energy Lost to Domain Walls
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T T *T; (blocking temperature): Temperature above

' ' which the dipole of the particle can freely reorient
with an applied field on the timescale of the
experiment.
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*Above Ty — particles are superparamagnetic

Moment (Am2)
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*Below Tg — particles are (anti)ferromagnetic
(hysteresis).
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*Susceptibility (y) is maximized at Ty
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v is much larger for superparamagnetic particles
remeerstre 0 than multidomain particles.




s I Magnetic Relaxation Time is Size Dependent
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« I Typical Magnetite Nanoparticle Synthesis
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Sodium Oleate (3 equiv)

FeCl3-6H,0 :
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Hyeon, T. and coworkers, Nat. Mater. 2004, 3, 891-895.

Fe

Octadecene
320 °C, time

>  Fe;0,

Strengths
* Yields generally high

* Inexpensive starting materials

Weaknesses
» Size reproducibility hard to manage
» Requires purification of intermediate

* [ron oleate intermediate poorly
characterized




7 ‘ Literature Methods vs New One-Pot Approach
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H33C17
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1 3 = 290°C. 30 min

1-octadecene

350°C, 4 hrs -

@]
Hyeon 4 TP §
H33C17 OH
O-Fe oleic acid
O
3 300°C
2 H3C\/\/\/M 1hrs
OH —_—
oleic acid

V4 H3C ™ S S S S

1-octadecene

Park J., An K., Hwang Y., Park J. G., Noh H. J., Kim J. Y., Park J. H., Hwang N. M., Hyeon T. Nat. Mater. 2004; 3, 891-895.

Shokouhimehr M., Shin K.-Y., Lee J. S., Hackett M. J., Jun S. W., Oh M. H., Jang J., Hyeon T. J. Mater Chem A. 2014, 2, 7593-

7599.

KiwfsBhmickRal ArammHc o ses RodB, @szaleg M4 1beeman E., Brush L. N., Browning N. D., Krishnan K. M. Nanoscale 2015; 7, 11142-11154.



Literature Method Reproducibility

H33Cw4<
. O-—+Fe
Krishnan o
; 3 320°C
H3CWNV\)I\ 15 hrs
OH —_—
oleic acid

H4C

1-octadecene

| Size (nm) [0, RSD] Coefficient Of Variation

20.01 [1.96, 9.8%)]

1

2 22.58 [3.52, 15.6%] 21.0% (5 Samp|es)
3 31.75[5.87, 18.5%)]
4
5

33.07 [5.49, 16.6%]
29.13 [4.57, 15.7%]
Avg  27.31[4.51, 16.5%]

Hufschmid R., Arami H., Ferguson R. M., Gonzales M., Teeman E., Brush L. N., Browning N. D., Krishnan K. M. Nanoscale 2015; 7, 11142-11154.



Literature Method Reproducibility

@]
H33C1?4<

O-+Fe

Hyeon 0
- : 3 300°C
ey : HSC\/\/\/\M 1 hrs
OH —_—
oleic acid

H4C

1-octadecene

| size (nm) [0, RSD] Coefficient Of Variation

10.71 [1.16, 10.8%)]

1

2 7.63[0.66, 8.7%] 22.9% (5 samples)
3 6.93 [0.85, 12.2%)]
4
5

6.15[0.67, 10.9%]
7.06 [1.06, 15.0%]
Avg  7.70[0.90, 11.7%]

Park J., An K., Hwang Y., Park J. G., Noh H. J., Kim J. Y., Park J. H., Hwang N. M., Hyeon T. Nat. Mater. 2004; 3, 891-895.
Shokouhimehr M., Shin K.-Y., Lee J. S., Hackett M. J., Jun S. W., Oh M. H., Jang J., Hyeon T. J. Mater Chem A. 2014, 2, 7593-
7599.



0 ‘ Newly Developed One-Pot Procedure

Fe(lll) acetylacetonate
H 3C\WV\)J\
CH

H,C
—_— N, flow
4 250°C, 2 hrs
O [Fe 290°C, 30 min
=0 350°C. 4hrs
HsC
’ 0

oleic acid

One Pot Heatmg Program
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Dreier, T.A.; Vreeland,

10000 15000 20000 25000
Time (seconds)

E.C.; Watt, J.; Huber, D.L. Nanotechnology, Submitted (Invited Article)

Run
1

-

23.52 [1.51, 6 4%)]
24.15 [1.74, 7.2%]
22.34 [1.45, 6.5%)]
22.89 [1.42, 6.2%)]
2443 [1.76, 7.2%)]

Avg 23.47 [1.58, 6.7%]

- Coefficient Of Variatio

3.7% (5 samples)




11 ‘ Comparison and Summary

Average Spool CcvVv
Size

One Pot

Krishnan

Hyeon

Spool =

1.58 nm o
23.47 nm (6.7%) 3.7%

4.51 nm o
27.31 nm (16.5%) 21.0%
7.70 nm LU 22.9%

(11.7%)
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One pot procedure is highly reproducible
Low dispersity products |
Low variation between replications

Compares favorably to existing methods

Remaining Questions: -
 How scalable is the result?
* Other figures of merit?
« Best method of size control?

« Can other ferrites be made similgrly?




2 | "Extended LaMer” Reaction For Magnetite

Continuous Precursor Addition

Vreeland, E.C.; et al. Chem. Mater. 2015, 27, 6059-6066.
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i3 1 Extended LaMer Approach to Mixed Ferrites

Fe(acac);

M(acac),

Vreeland, E.C.; et al. Chem. Mater. 2015, 27, 6059-6066.

oleic acid (6.78 equiv)

290 °C, 30 min, N, flow

CHEMISTRY

» Fey(oleate),

|

Fey(oleate)y
M,(oleate)

Slow Addition

Docosane/oleic acid, 350 °C

Slow Addition

oleic acid, 350 °C

Fe;O,

Ferrite
NPs



Optimized Reaction Conditions

150 °C M = Mn, Co, Ni, Cu, Zn

oleic acid O O I
i

3-12 hrs
M(acac), ———— = M(oleate) M
2 ? H4C CH,

acetylacetone (acac)

eice, H3C\A/W/V\)J\
oleic acid OH
Fe(acac); 30min_ Fe(lll) oleate oleic acid

Rt | Rz | Run3 | Average | Cov

Co Ferrite  18.13 (10.8%) 17.95 (11.6%) 18.54
Mn Ferrite  19.10 (7.2%) 18.79 (8.7%) 18.34
Cu Ferrite  28.56 (9.8%) 25.08 (10.8%) 24.65

14.2%) 18.21 (12.3%)  1.66% |
8.4%) 18.74 (8 1%) 2.04%
8.4%) 26.10 (9.8%) 8.22%
Zn Ferrite  29.56 (8.9%) 27.78 (10.0%) 31.57 (9.1%) 29.64 (9.3%) 6.40%

|
I
CoV for One Pot Magnetite: 3.7% |

I —

CoV for Hyeon Magnetite: 17.7%
CoV for Krishnan Magnetite: 21.0%



TEM Results




v I Summary and Future Directions

- M(acac), generally applicable
precursors

» Structure of M, (oleate), > NP
properties

* M,(oleate), structure controllable
» Modular approach to binary ferrites
» Same process for ternary ferrites?

* Pre-nucleation coordination
dynamics?

Ferrite * Universal size control strategy?
NPs
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