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Motivation: RF Micro-Magnetic Devices m
S
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Magneto-acoustics will enable micro-scale RF magnetic devices!
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Lamb Waves for High
Frequency Multiferroics

Rapid Modelling of
Magneto-Acoustic Devices

50 nm Ni on Lithium Niobate (Y-Cut Z-Propagating)
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4 | Outline

Lamb Waves for High
Frequency Multiferroics

Tiwari, S., et al., JIMEMS (2020)




5 | Background: Multiferroic Surface Acoustic Wave Devices

Magnetic Thin Film
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Pros- Labanowski, D., et al., APL (2016)

= Simple and cheap to fabricate

= Mechanically robust

Cons: |

= Low coupling coefficient (compared to bulk modes)

= Difficult to scale to higher frequencies (>1 GHz)



6 | Lamb Waves for High Frequency Multiferroic Devices
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= Higher piezoelectric coupling coefficients than SAW based devices
(Makes higher harmonics viable for device applications)

= Higher wave velocities means easier lithography and higher frequencies

(Devices have been demonstrated up to 55 GHZz!)

=  Multiple types of Lamb modes give greater design flexibility

(Different strain profiles will give rise to different coupling profiles)

= Thin waveguide cross-sections give rise to steep strain gradients in thin-film overlays
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7 1 Acoustic Wave Coupling to Spin Wave Modes m

_Nickel Dispersion Curves

4 Trend of Bias Magnitude vs Angle for Spin Wave
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= Highly nonuniform strain profiles are better described as coupling to spin waves instead of |
ferromagnetic resonance |

=k vector of the spin wave is set by the Lamb wave, with the magnetic field bias magnitude
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¢ | Characterization of Lamb Wave Delay Line
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= Delay structure is a stack of Aluminum Nitride (400 nm) and CoFeB (70 nm), 144 ym square

= Chosen mode of propagation is a symmetric Lamb mode at ~7.5 GHz
= Change ininsertion loss measured as a function of bias magnitude and angle

= |FBW is set to 500 Hz and averaging is set to 10 points to maximize sensitivity



o | Characterization Results

Change in Acoustic Transmission as a Function of Field Field of Maximal Damping vs Bias Angle
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Change in Acoustic Transmission as a Function of Field
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= Asin typical ADFMR experiments, loss increases at a particular bias
= Transmission is found to increase at a particular bias, attributed to wave velocity increase

= As bias angle is increased, the bias magnitude for maximum absorption decreases,
consistent with spin wave theory

= Nonreciprocal transmission has also been demonstrated, but the physics behind it has yet
to be determined
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Rapid Modelling of
Magneto-Acoustic Devices
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11 | Background: Modelling for RF Multiferroic Devices
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= Robustin regards to acoustic wave mode chosen , ,
Propagation Constant Perturbation

= Can simulate transients (FDTD) and nonlinearity (FDTD) Magnetic Film y=-h

= Flexible simulation geometry (FEA) o~y y=0

SAW z
Cons: - - Oy
y

= Very slow and resource intensive for practical device scale

Gowtham, P.G., et al., PRB (2016)



12 | P-Matrix Modelling of Acoustic Devices

P-matrices model the combined electrical
and acoustic response of a single element

Acoustic wave devices are built out of many arrayed
elements, making the structures many of wavelengths long
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= P-matrices can be derived for elements via FEA, coupling of modes, perturbation theory, etc
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= Once P-matrix elements are built, they can be cascaded to rapidly simulate complex acoustic devices

magneto-acoustic devices

= With a P-matrix for a magneto-acoustic element derived, the technique can be used to rapidly design ‘
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Once surface stress is found, calculation of scattering coefficients is straight forward

. 1 (!
)'Z APijz_f (E?(x)'ﬂ'(x) )-ﬁdx
z=0 4 0 — z=0

Ay = (v+ T+

|
Wave Scattering due to Magnetic Thin-Film m



14 1 Calculation of Surface Perturbation from Magnetic Film
Magneto-Acoustic Stiffness

gi (wrﬂbms) = EM + %i (wrﬂbms) =

IIIE':
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= ¥, Is the “external susceptibility”, which already includes RF demagnetization fields

" Xe IS NOt symmetric, meaning the stiffness tensor is no longer symmetric, so Ty; # T;; cannot be assumed

= Dependence on ¢ means waves travelling in the +x and —x don't necessarily see the same stiffness

Solution for Surface Stresses - Lithium Niobate (Y-Cut Z-Propagating :
S - Uy ] [ Ux ] =0.35 —ckel (100 Qe at 21)
System O;f Equat/rons. u, u, % g
aTxE_I_aTzi_ ) u, u, g
dx gz PO 13& i% =025 ]
: 1/0u; OJu; B0z |-, |P 0z 3 0.2_-_—____
Tij=CijkLi'_ 1+ /  ou :i F ou » g
2\0x; 0x; J Uy J 9ty 2 0.15
Boundary Condlitions: p oz p oz T o1l —_—]
; J Ouy J Ouy - —xy
T 5 Z=h=0 3 07 | B oz go.os .
g

i - U Tabulated for most common modes. 0 5 10 15 20
7=0 — Can be easily calculated for others. Film Z-Dimension [nm]



15 | Results: Simple Delay Structures
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= 1000 points (frequency or angle) are simulated between 0.25 - 1 seconds! I
= Model init's current state reproduce typical trends from ADFMR experiments but over predicts |

absorbed power (using literature material values)

= |mprovements to the model (edge discontinuities, conductivity, nonuniform magnetization, etc)
to improve quantitative accuracy are currently underway



Results: Mixed Delay + Bragg Structures @i

Repeated 20x 50 nm Ni on Lithium Niobate (Y-Cut Z-Propagating) i
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= For high bias fields, ferromagnetic resonance is far from the operating frequency and the |

structure behaves as a normal Bragg grating

= When bias is set to 300 Oe, ferromagnetic resonance aligns with the stop band and the
reflection coefficient drops by 7.5 dB
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- ISummary m

= Traditional RF magnetic devices rely on electromagnetic wave interactions with the magnetic material, making them

bulky as a result

= Leveraging magneto-elastic materials offers a route towards the miniaturization of RF magnetic devices, as the
acoustic wavelength is 5 orders-of-magnitude smaller

= Lamb waves offer several advantages over SAWs for high frequency magneto-acoustic devices, such as higher
velocities and coupling coefficients

= |t has been demonstrated that magneto-acoustic interactions with Lamb waves is more akin to spin wave coupling
than ADFMR

= To enable practical design of magneto-acoustic device, modelling techniques traditional to acoustic device design
(such as the P-matrix method) must be adapted

= A perturbation based model for magneto-acoustic devices is derived, and it's utility in simulation of magneto-acoustic
structures is demonstrated
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Thank you!

Questions?




