

Physics-based Reduction with Monitoring Data Assimilation for Adaptive Representations in Structural Systems

Vlachas Konstantinos*, Dr. Tatsis Konstantinos*, Carianne Martinez#, Prof. Dr. Eleni Chatzi*

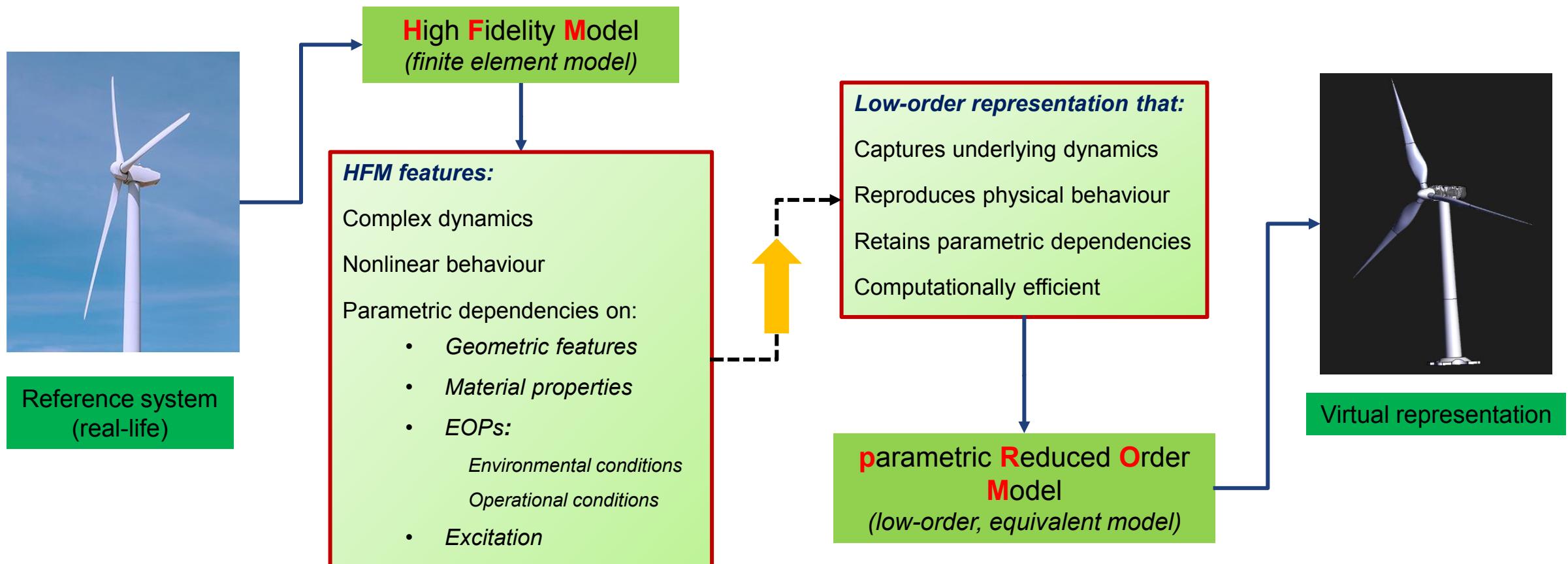
*Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Stefano-Francini-Platz-5, 8093 Zurich, Switzerland, chatzi@ibk.baug.ethz.ch

#Applied Machine Intelligence, Sandia National Laboratories, Albuquerque, New Mexico

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

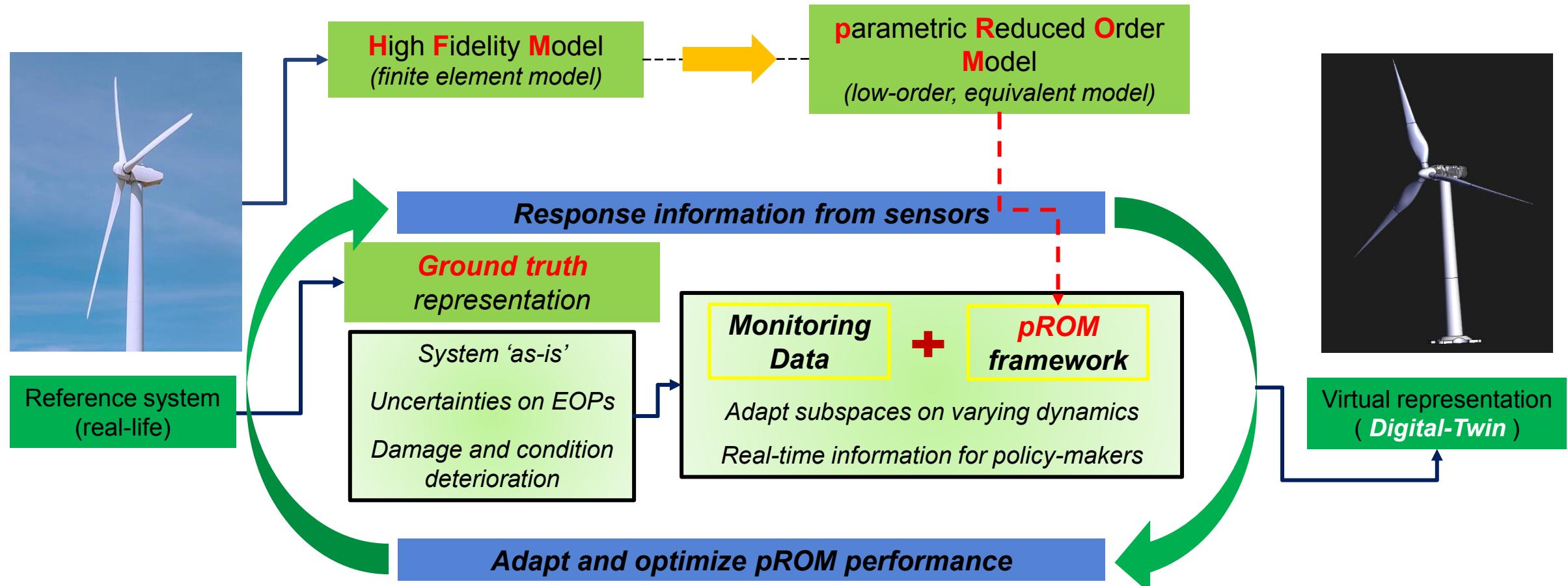
Problem Statement

Virtualization of nonlinear dynamical systems



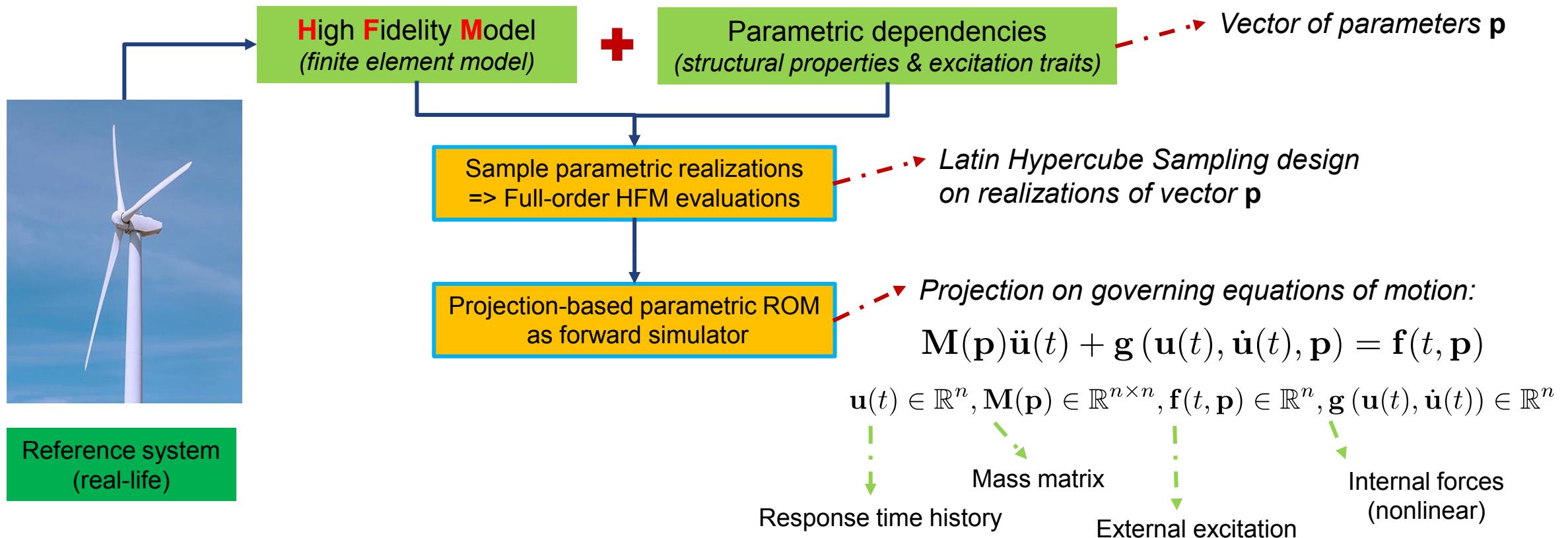
Problem Statement

Condition deterioration or damage during operation



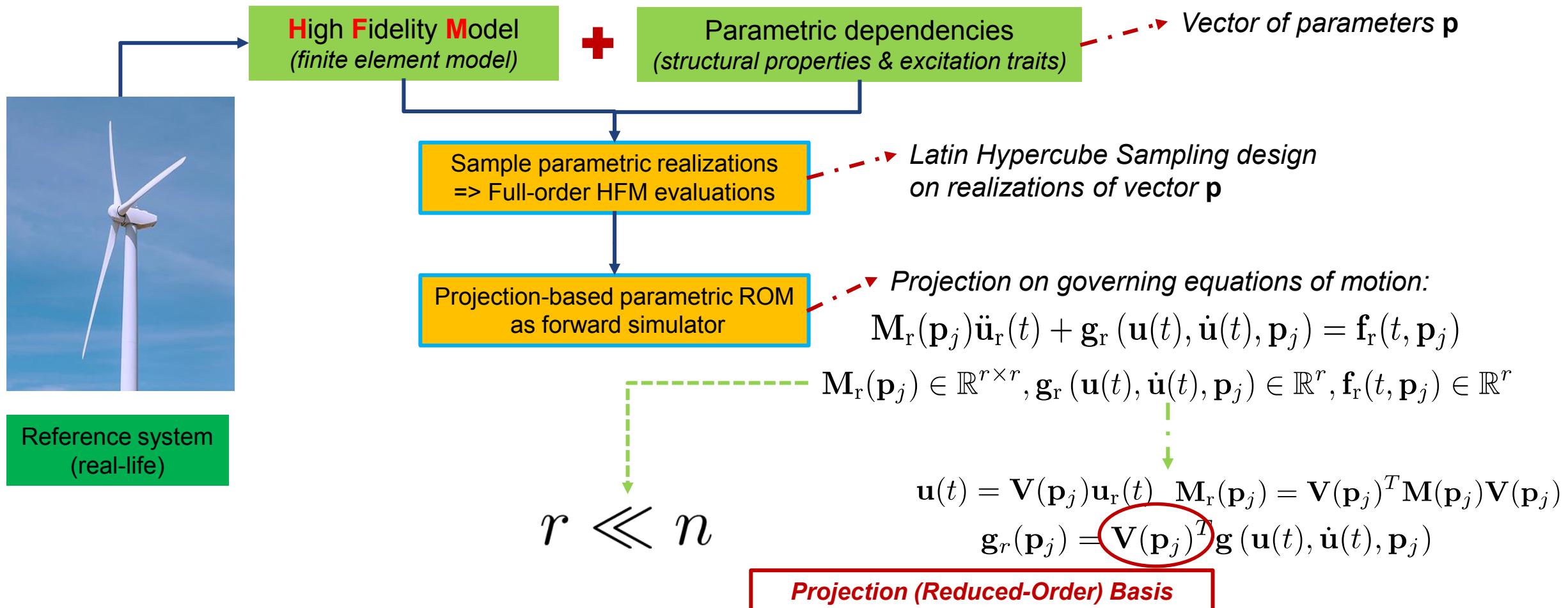
Approach conceptualization

Framework components



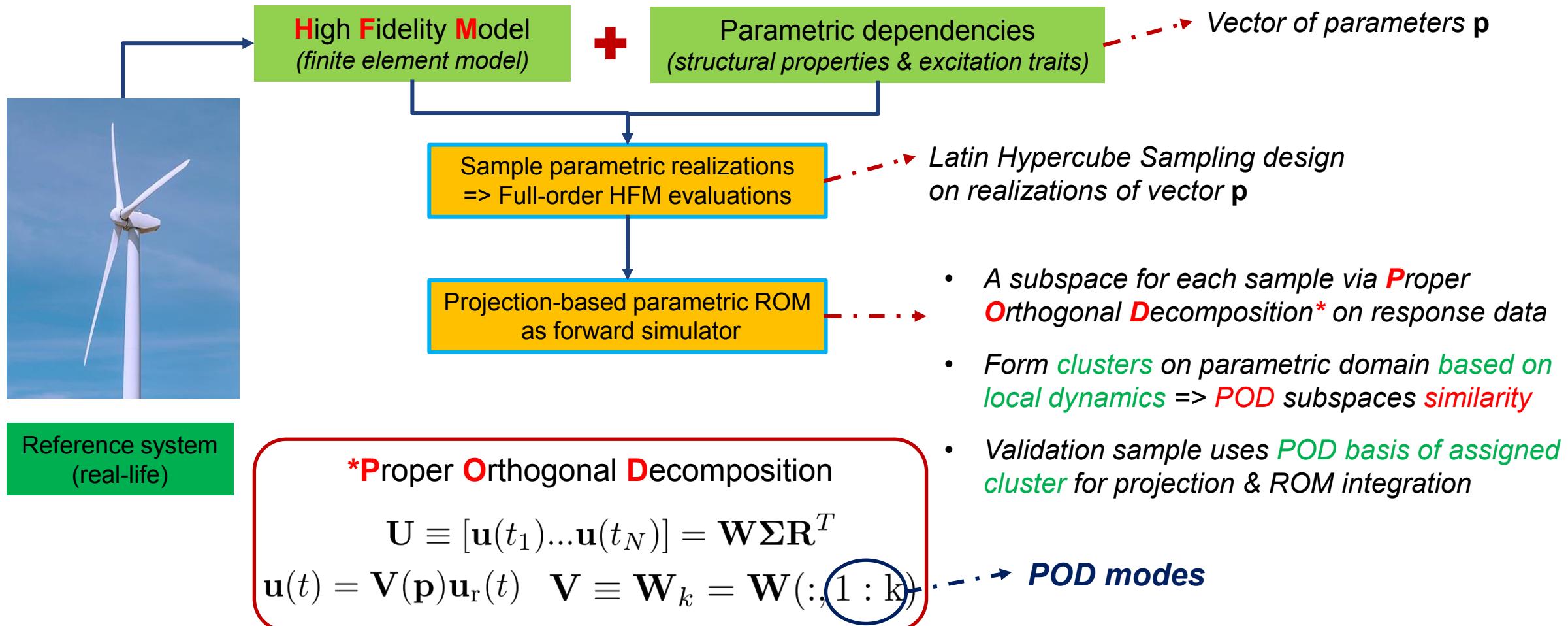
Approach conceptualization

Framework components



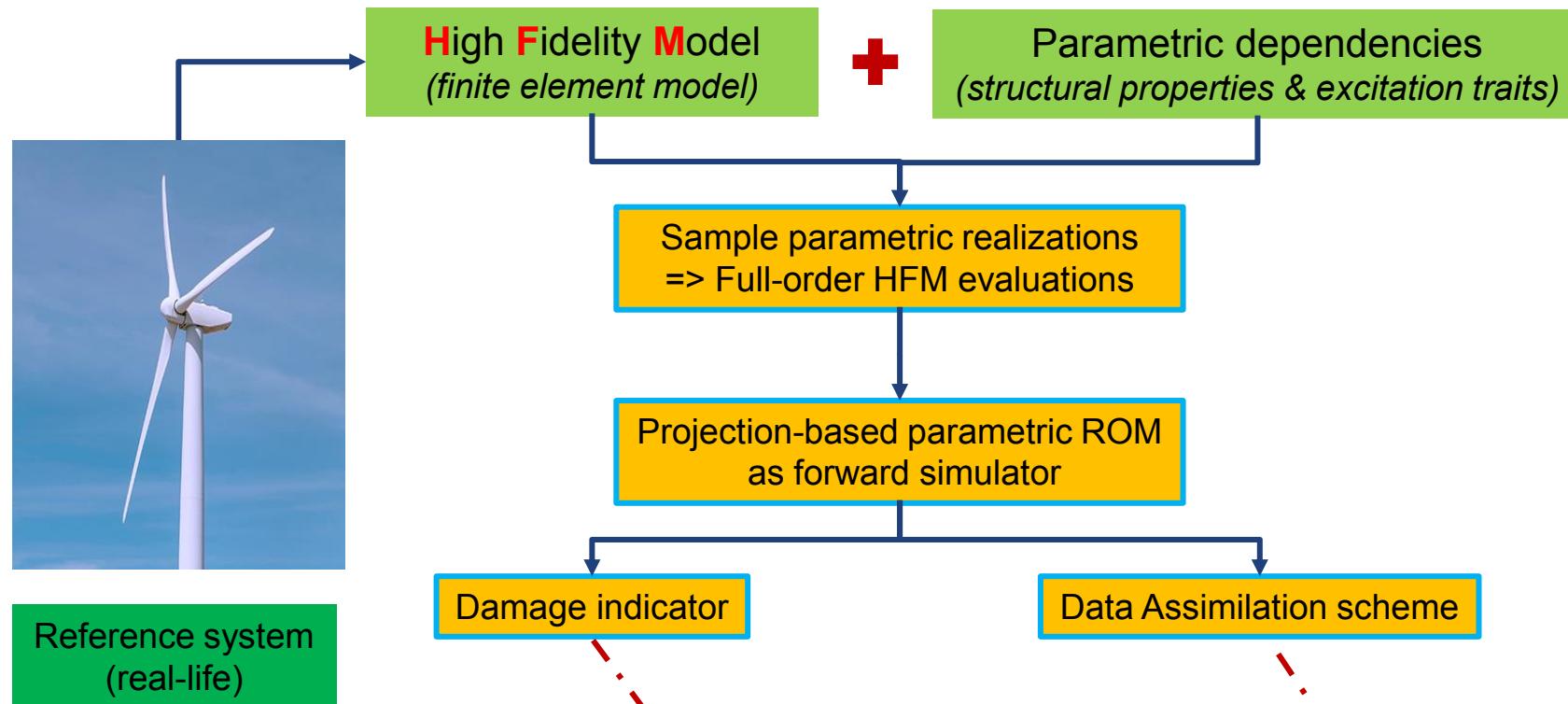
Approach conceptualization

Framework components



Approach conceptualization

Framework components

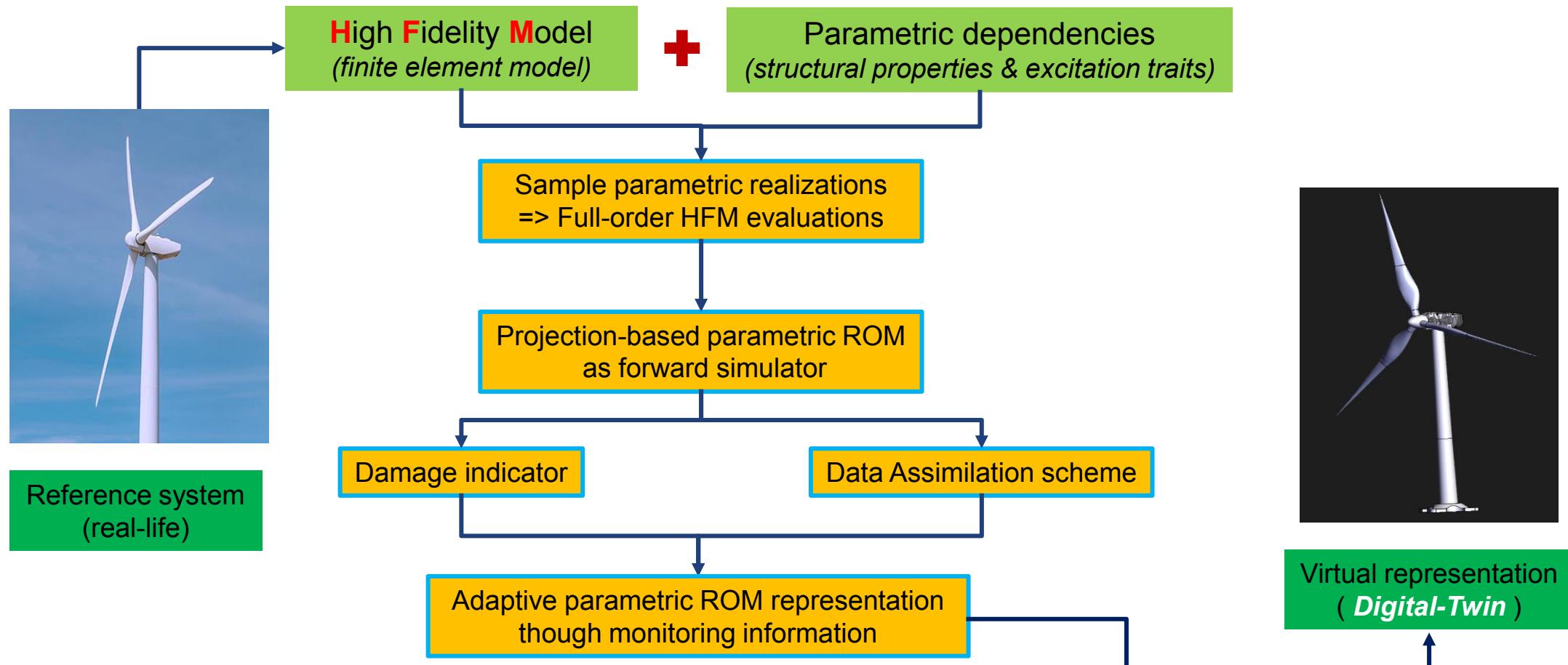


Relying on *response comparison* between *ROM estimation* and *monitoring data*

- Receives response *data* and current *ROM response estimation* on *monitored nodes*
- **Approximates** the *correction* of the *ROM estimation* on *all system nodes*

Approach conceptualization

Framework components



Approach conceptualization

Adaptive pROM for robust Structural Health Monitoring

(Initial) parametric ROM framework

- *Projection-based approach relying on POD subspaces*
- *Propagates dynamics forward in time in reduced coordinates*
- *Utilizes local ROMs through clustering to retain dependencies throughout domain of operation*

Earthquake induced damage / System deterioration

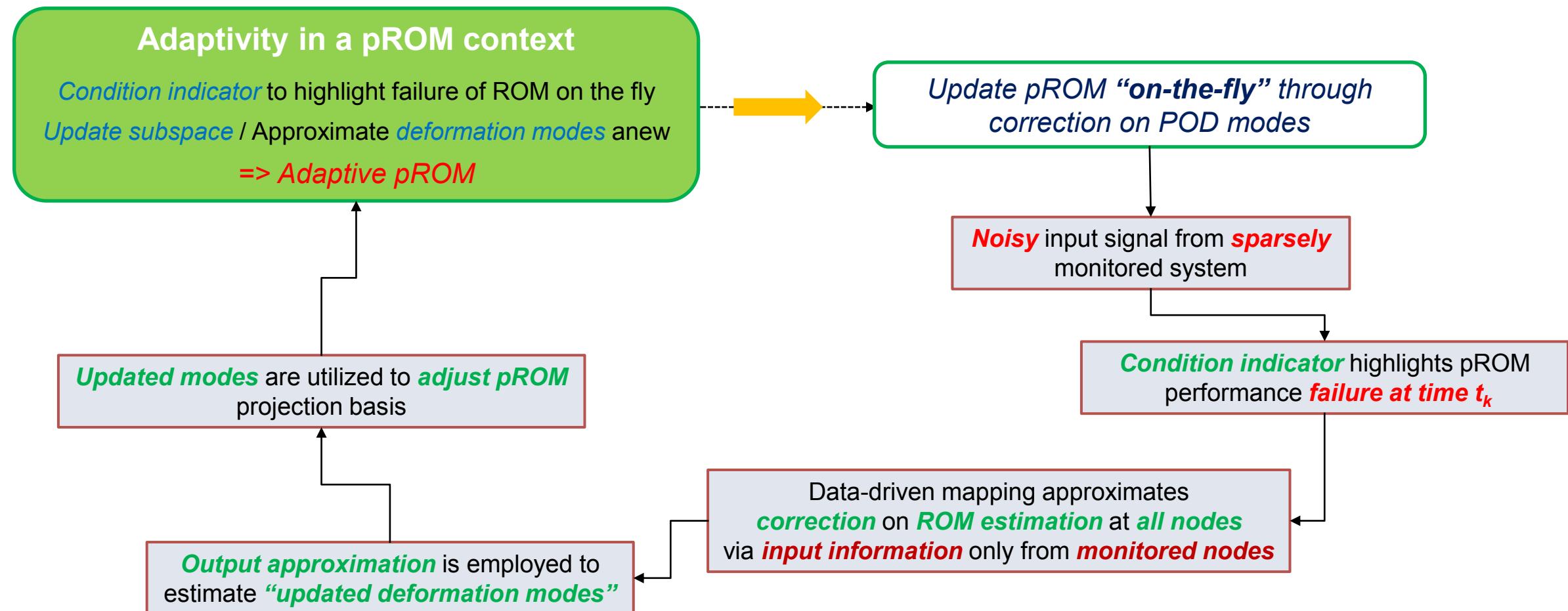
The pROM is no longer able to perform estimation tasks accurately
Subspaces on training set do not sufficiently capture occurring phenomena
=> *Performance bottleneck*

Adaptivity in a pROM context

Condition indicator to highlight failure of ROM on the fly
Update subspace / Approximate *deformation modes* anew
=> *Adaptive pROM*

Approach conceptualization

Adaptivity through data assimilation



Approach conceptualization

Adaptive pROM framework based on data assimilation

Offline / Training Strategy:

- ✓ Derive initial **pROM as forward simulator**:

Examples:

- **Initial linear state & nonlinearities** during operation **to represent damage**
- **Initial nonlinear state & deterioration effects** during operation

- ✓ Assemble **Damage Indicator**:

- **Deterministic nature** based on **response comparison** metrics between ROM estimation and response data from monitored nodes
- Relies on **limited nodal measurements**
- Includes input noise / exploit **noise statistics to define activation threshold**

- ✓ **Gaussian Process Regression (GPR)**

- Estimates **correction on ROM prediction** based on **residual between ROM and response data** on monitored nodes
- GPR **trained on pool of snapshots**, without compromising efficiency

Examples:

- GPR trained on certain parametric states representing damage

The **enrichment mode** as defined:

- ✓ represents an approximation of the “true” system deformed configuration
- ✓ **On the monitoring nodes** assumes values approx. **equal to the actual** deformation (**monitoring data**)
- ✓ **On the rest of the nodes** **estimates** the deformation via the **GPR scheme**

Online / During Operation:

- Track **residual on monitored nodes** only:
 - ✓ **Residual response** = **Monitoring data - pROM approximation**
- **If indicator signals** “ROM Performance Deteriorates/Fails”:
 - ✓ Employ **GPR** to **approximate ROM correction** and reconstruct full residual state **on all system nodes**
 - ✓ **Enrichment mode** = **pROM approximation + GPR output**
 - ✓ **Enrich pROM** by using corrected modes in POD Basis

Implementation details

Damage indicator and GPR-scheme

Damage Indicator

- Deterministic nature based on response comparison metrics
⇒ **Mahalanobis distance (MD) measure**
(between ROM prediction and response data on monitoring nodes)
- Relies on **limited nodal measurements** (5-10% nodal output measured)
- Includes input **noise** (3%) / exploit noise statistics to define activation threshold
⇒ **Alert threshold from Chi-Square** distribution (0.01% significance level)

Gaussian Process Regression (GPR)

- Trained based on **residual response** between monitoring data and pROM
- GPR **trained on pool of snapshots**, without compromising online efficiency
- **Input**: Response information from monitoring channels
Output: Additive correction on full coordinate space
- Leverage **local** and **physical degree-of-freedom correlations**
- **Software**: **gpytorch** implementation with MultitaskGPModel and RBFKernel()

Measurement Data $\mathbf{d}_k \in \mathbb{R}^{n_d}$

Vector of random values $\mathbf{r}_k \in \mathbb{R}^{n_d}$

St. Dev. of
measurement signals $\sigma_\delta \in \mathbb{R}^{n_d \times n_d}$

Noise level δ

Noisy measurement data

$$\tilde{\mathbf{d}}_k = \mathbf{d}_k + \delta \sigma_d \mathbf{r}_k$$

Damage Indicator

Input $\in \mathbb{R}^{N_{channels} \times 2 \times 1}$

Response on monitoring channels (displacements & rotations)

Output => Performance failure alert signal

Implementation details

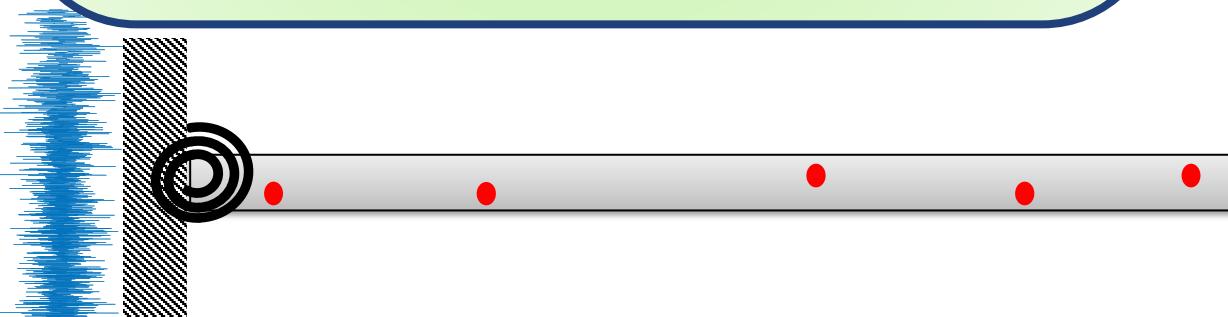
Configurations and scenarios

Cantilever Beam Case Study

- Stochastic **ground motion excitation**
- Parametrized Boundary => **Nonlinear rotational spring**
- **Limited number** of nodes monitored

Damage Scenario:

- ✓ Derive **ROM based on “design”** case study
- ✓ Induce **damage** by **activating parametric boundary**
- ✓ Use **indicator to detect** failure
- ✓ Employ **GPR-based scheme** to assemble deformed modes
- ✓ **Refine** POD-Basis



Hysteretic spring model

➤ **Total restoring force:**

$$\mathbf{R} = \mathbf{R}_{\text{linear}} + \mathbf{R}_{\text{hysteretic}} = \alpha k \mathbf{u} + (1 - \alpha) k \mathbf{z}$$

➤ **Bouc-Wen equation with degradation/deterioration effects:**

$$\dot{\mathbf{z}} = \frac{A \dot{\mathbf{u}} - \nu(t) (\beta |\dot{\mathbf{u}}| \mathbf{z} |\mathbf{z}|^{w-1} - \gamma \dot{\mathbf{u}} |\mathbf{z}|^w)}{\eta(t)}$$

$$\nu(t) = 1.0 + \delta_\nu \epsilon(t), \quad \eta(t) = 1.0 + \delta_\eta \epsilon(t), \quad \epsilon(t) = \int_0^t \mathbf{z} \dot{\mathbf{u}} \delta t$$

Characteristics of the Bouc-Wen links:

β, γ, A, w : Control smoothness and shape of hysteresis

δ_ν, δ_η : **Degradation/Deterioration** effects

a, k : **Linear/Hysteretic** contribution weighting

Implementation details

Configurations and scenarios

Cantilever Beam Case Study

- Stochastic **ground motion excitation**
- Parametrized Boundary => **Nonlinear rotational spring**
- **Limited number** of nodes monitored

Damage Scenario:

- ✓ Derive **ROM based on “design”** case study
- ✓ Induce **damage** by **activating parametric boundary**
- ✓ Use **indicator to detect** failure
- ✓ Employ **GPR-based scheme** to assemble deformed modes
- ✓ **Refine** POD-Basis

Scenario B:

- **Initial** “design” case study is **nonlinear**
- **Damage** is represented through **degradation / deterioration** effects during **operation**

Hysteretic Bouc-Wen spring model

➤ **Total restoring force:**

$$\mathbf{R} = \mathbf{R}_{\text{linear}} + \mathbf{R}_{\text{hysteretic}} = \alpha k \mathbf{u} + (1 - \alpha) k \mathbf{z}$$

➤ **Bouc-Wen equation with degradation/deterioration effects:**

$$\dot{\mathbf{z}} = \frac{A \ddot{\mathbf{u}} - \nu(t)(\beta |\dot{\mathbf{u}}| \mathbf{z} |\mathbf{z}|^{w-1} - \gamma \dot{\mathbf{u}} |\mathbf{z}|^w)}{\eta(t)}$$

$$\nu(t) = 1.0 + \delta_\nu \epsilon(t), \quad \eta(t) = 1.0 + \delta_\eta \epsilon(t), \quad \epsilon(t) = \int_0^t \mathbf{z} \dot{\mathbf{u}} \delta t$$

Characteristics of the Bouc-Wen links:

β, γ, A, w : Control smoothness and shape of hysteresis

δ_ν, δ_η : **Degradation/Deterioration** effects

a, k : **Linear/Hysteretic** contribution weighting

Scenario A:

- **Initial** “design” case study is **linear**
- **Nonlinear spring** is activated during **operation**

Implementation details

Configurations and scenarios

Plane Frame Case Study

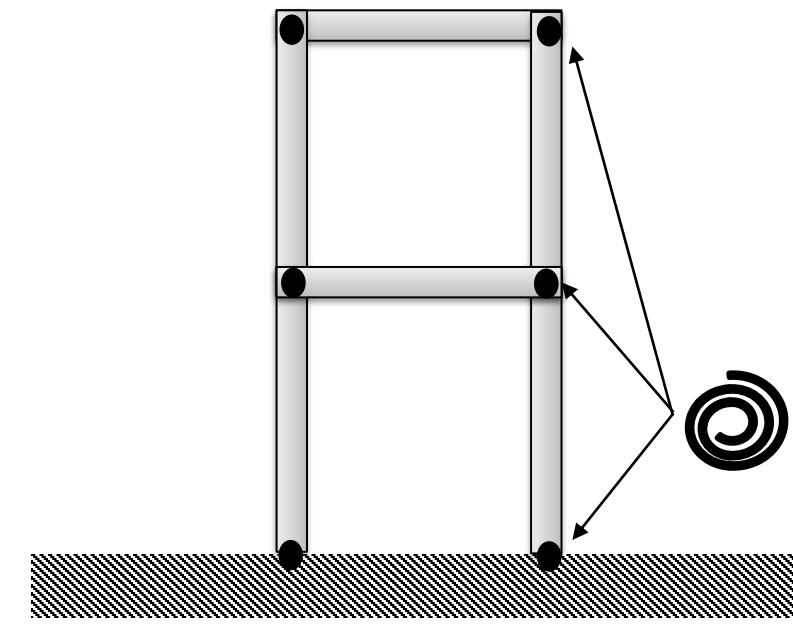
- Stochastic **parametrized** ground motion **excitation (Amplitude)**
- **Nonlinear** parametric rotational **spring on all nodal connections**
- **Limited number** of nodes monitored

Damage Scenario:

- ✓ Derive **ROM** based on “design” case study
- ✓ Induce **damage** by **activating parametric springs**
- ✓ Use **indicator to detect** failure
- ✓ Employ **GPR-based scheme** to assemble deformed modes
- ✓ **Refine** POD-Basis

Scenario C:

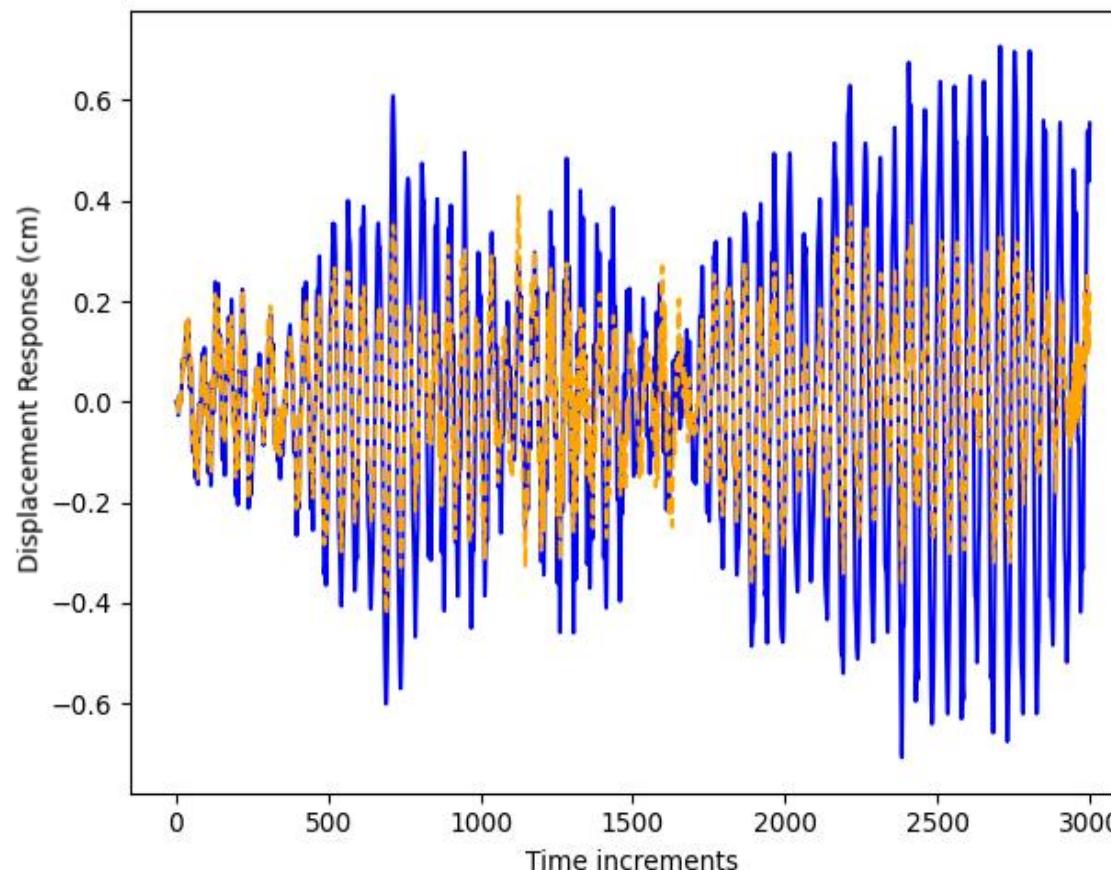
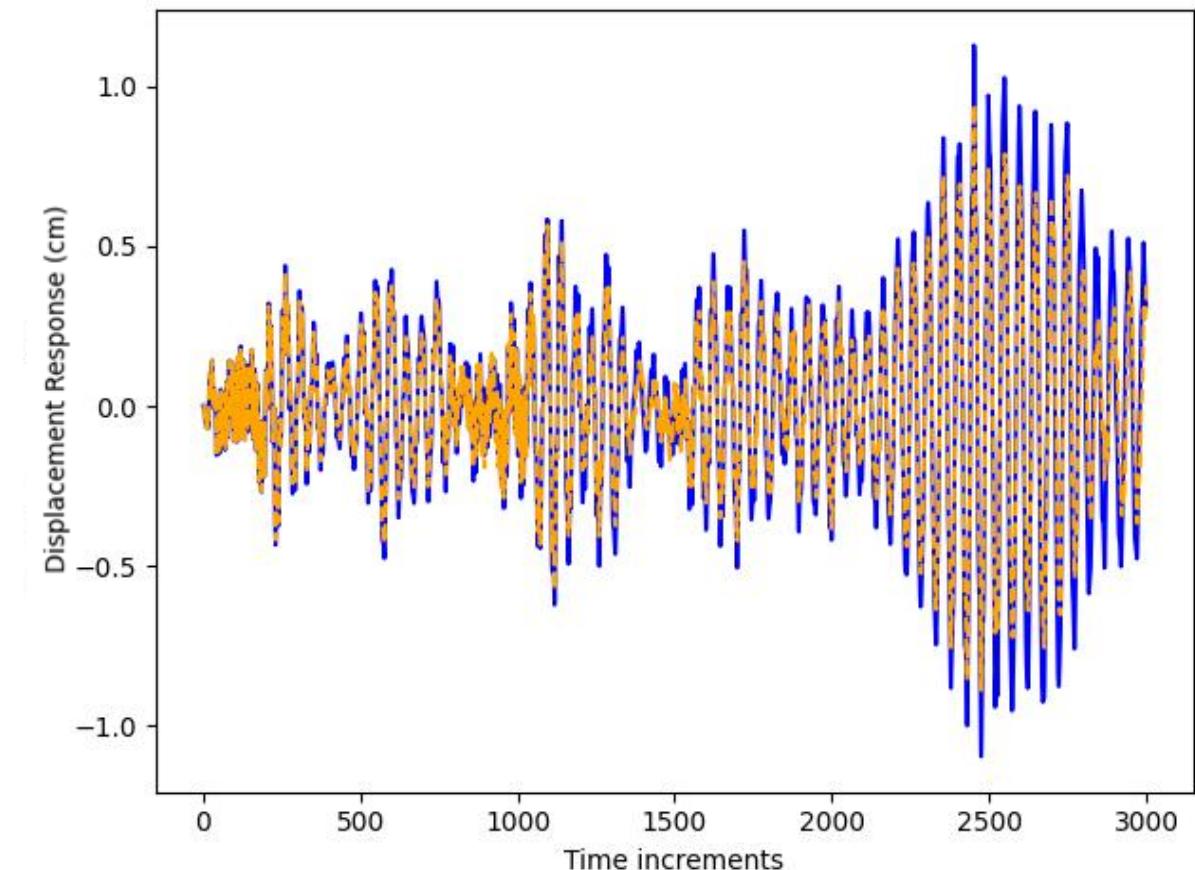
- **Initial** “design” case study is **linear**
- **Nonlinear spring** is activated during **operation**
- Evaluation earthquake not included in training set



Implementation details

Configurations and scenarios

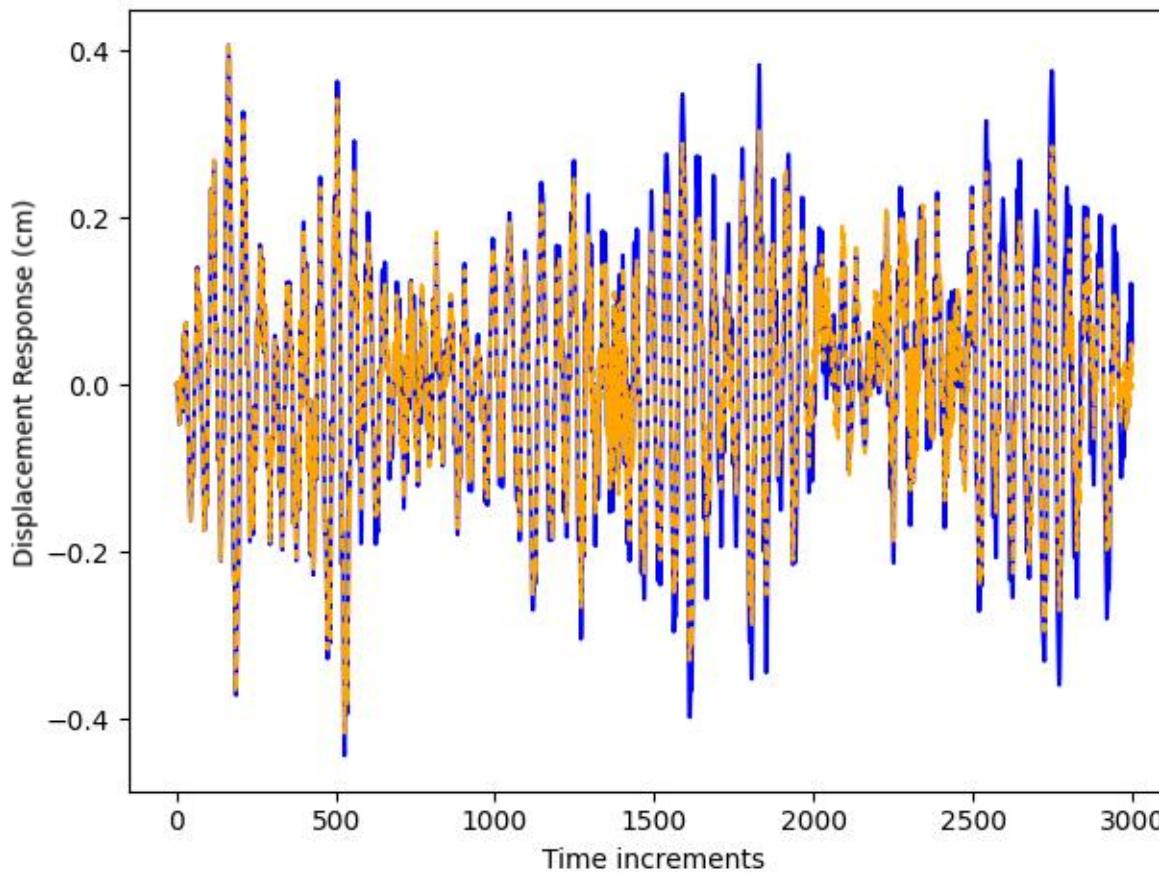
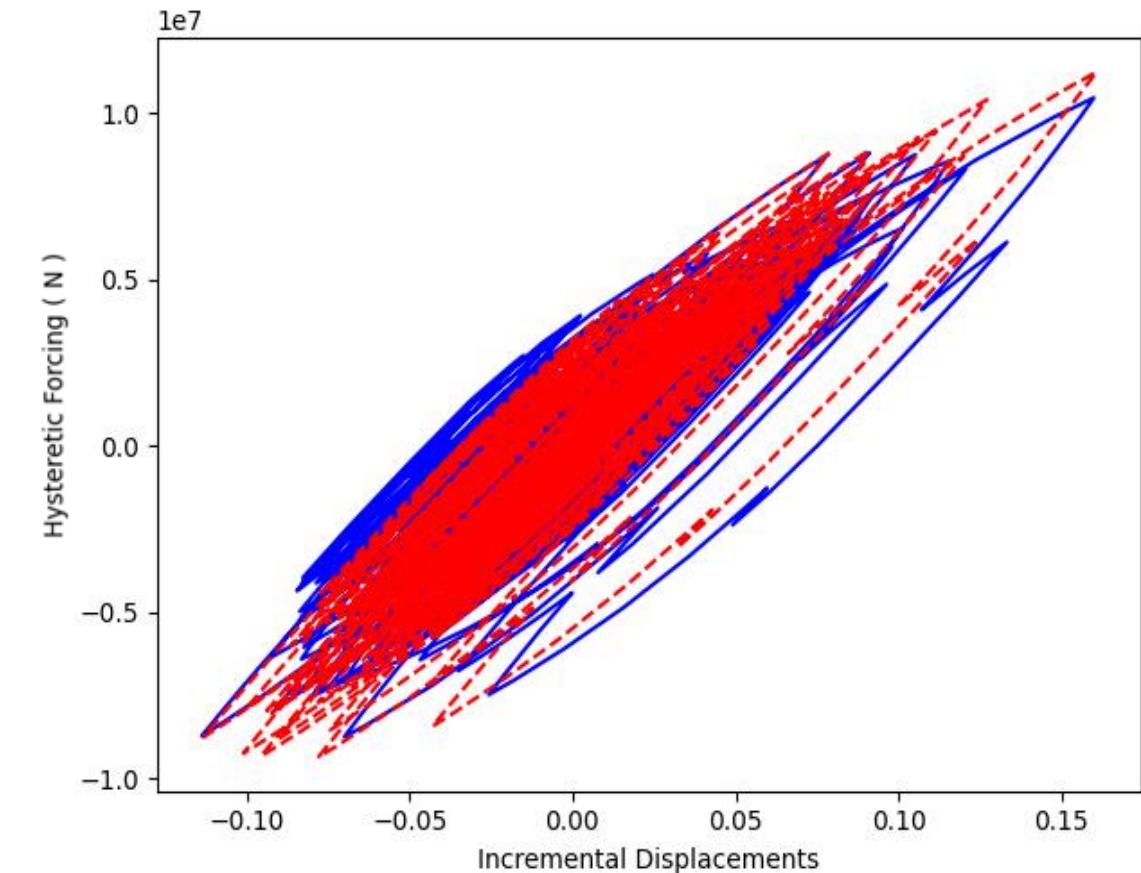
Linear vs Nonlinear response examples for *different Bouc-Wen activation parameters*



Implementation details

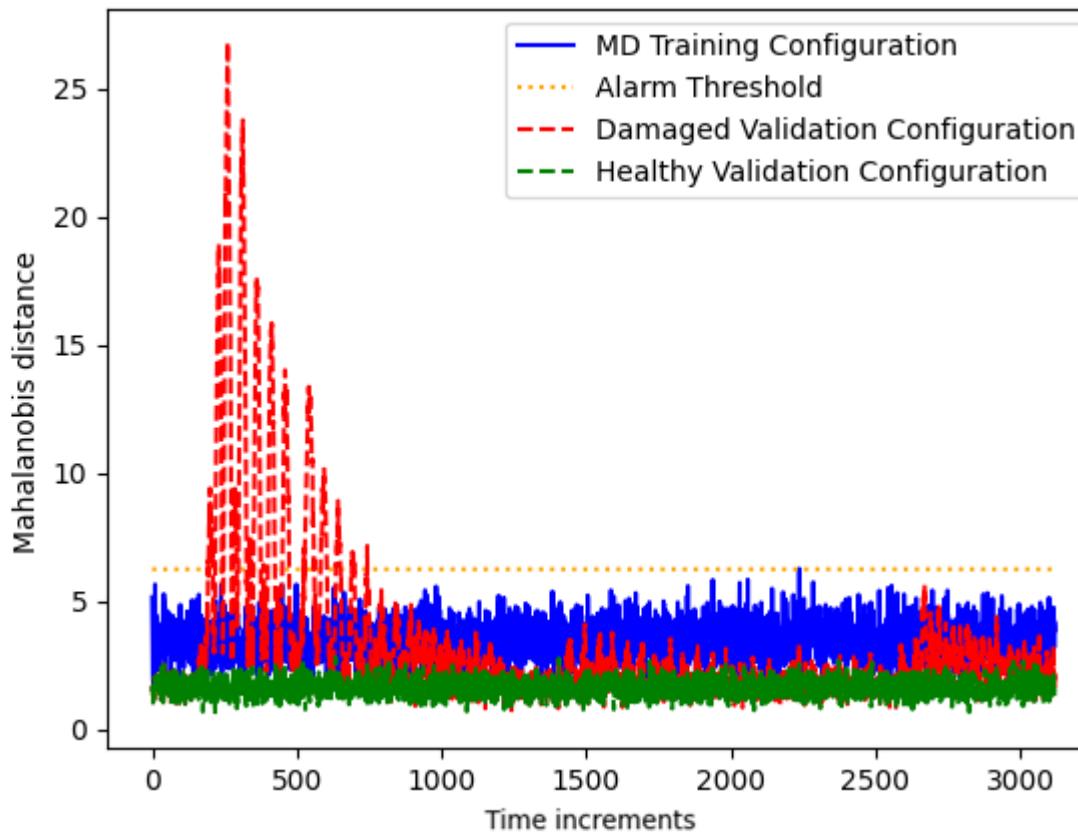
Configurations and scenarios

Response examples with **Bouc-Wen degradation phenomena** during operation

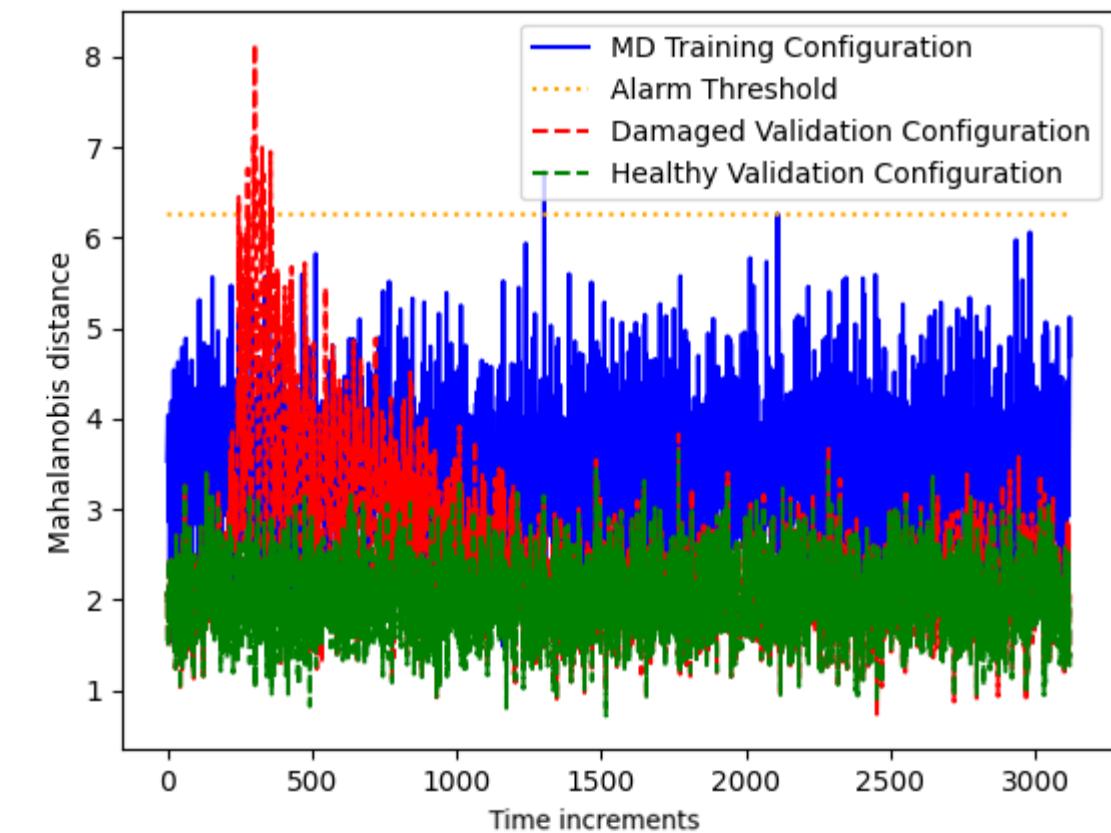


Implementation details

Damage indicator and GPR-scheme



Linear vs Nonlinear
response example (**Scenario A**)



Bouc-Wen degradation phenomena
during operation (**Scenario B**)

Implementation details

Damage indicator and GPR-scheme

Gaussian Process Regression (GPR)

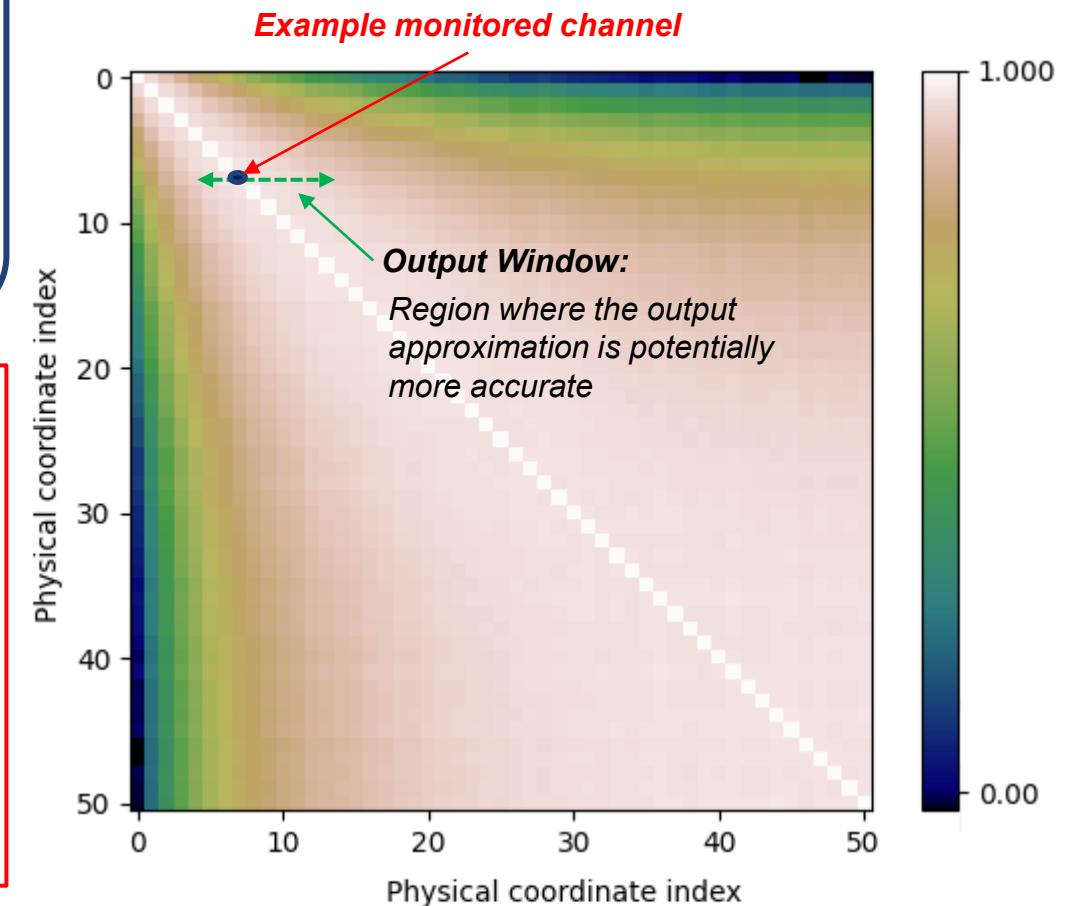
- **Input**: Response information in monitoring channels (displacements & rotations)
 $\text{Input} = \text{True response} - \text{pROM estimation (monitored nodes)}$
- **Output**: Response approximation through additive correction on full coordinate space
 $\text{Output} = \text{True response} - \text{pROM estimation (all coordinates)}$
 $\Rightarrow \text{pROM Basis Enrichment mode} = \text{pROM approximation} + \text{GPR output}$
- Leverage **local** and **physical degree-of-freedom correlations**

- ✓ Assemble matrix capturing **correlations** between the time history **response on physical coordinate** (coordinate = degree-of-freedom)
- ✓ Leverage correlation coefficients to **define an output window** for each monitored input channel

Thus:

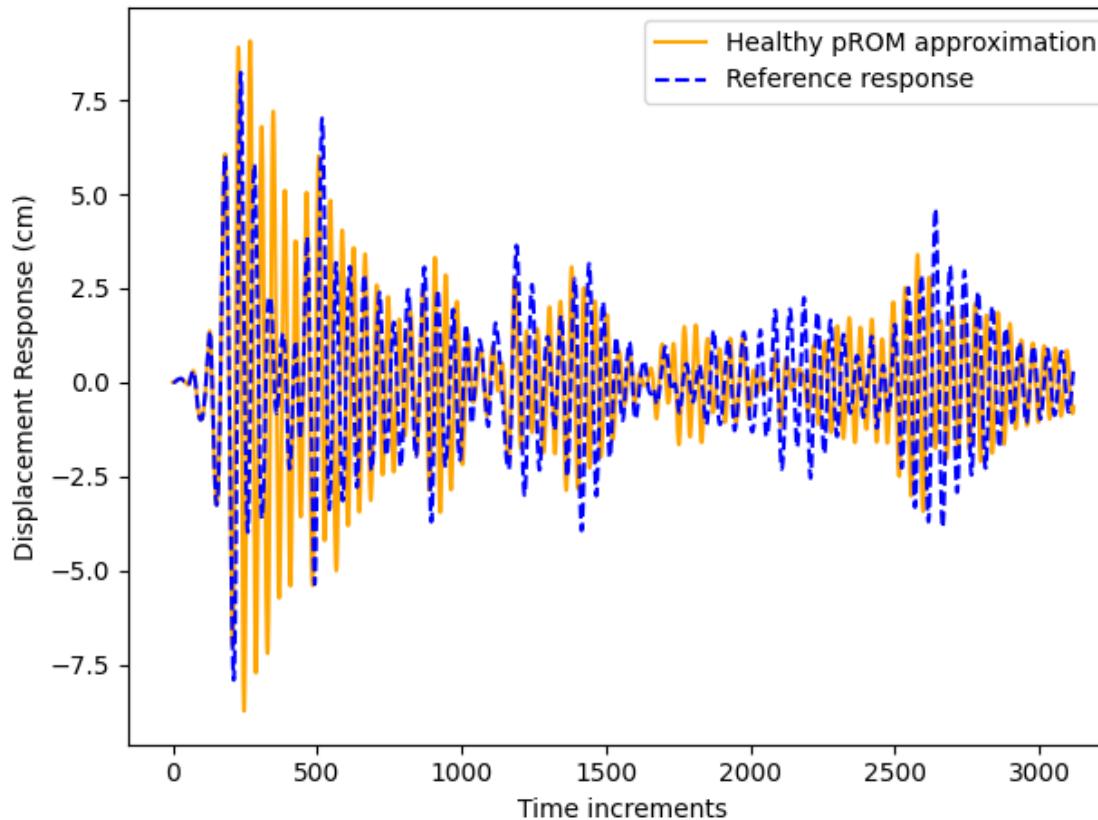
- ❖ **Not all** monitoring **channels** are used as **input at once**
- ❖ Instead, the **data from each channel** are employed as **input to approximate the response only on “correlated” coordinates** based on output window
- ❖ **Overlapping** to ensure quality of approximation

Matrix of correlation coefficients (Scenario A)

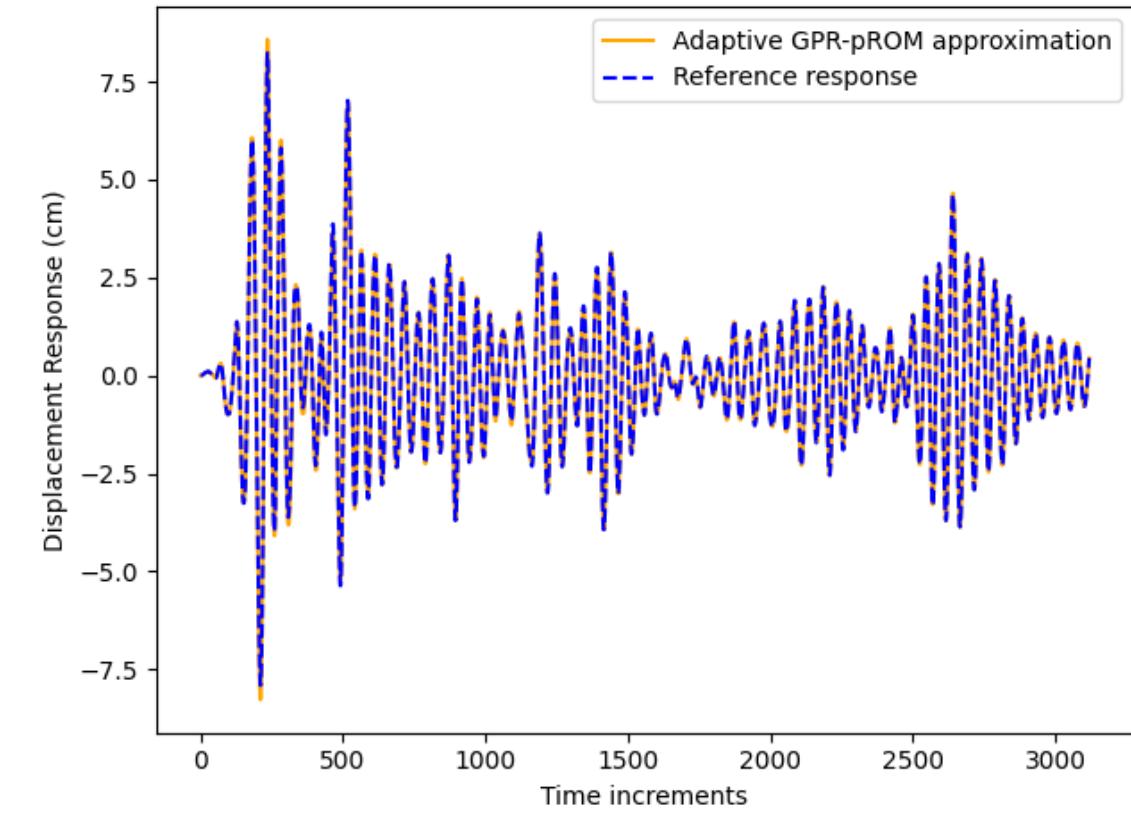


Case studies

Accuracy performance of the framework



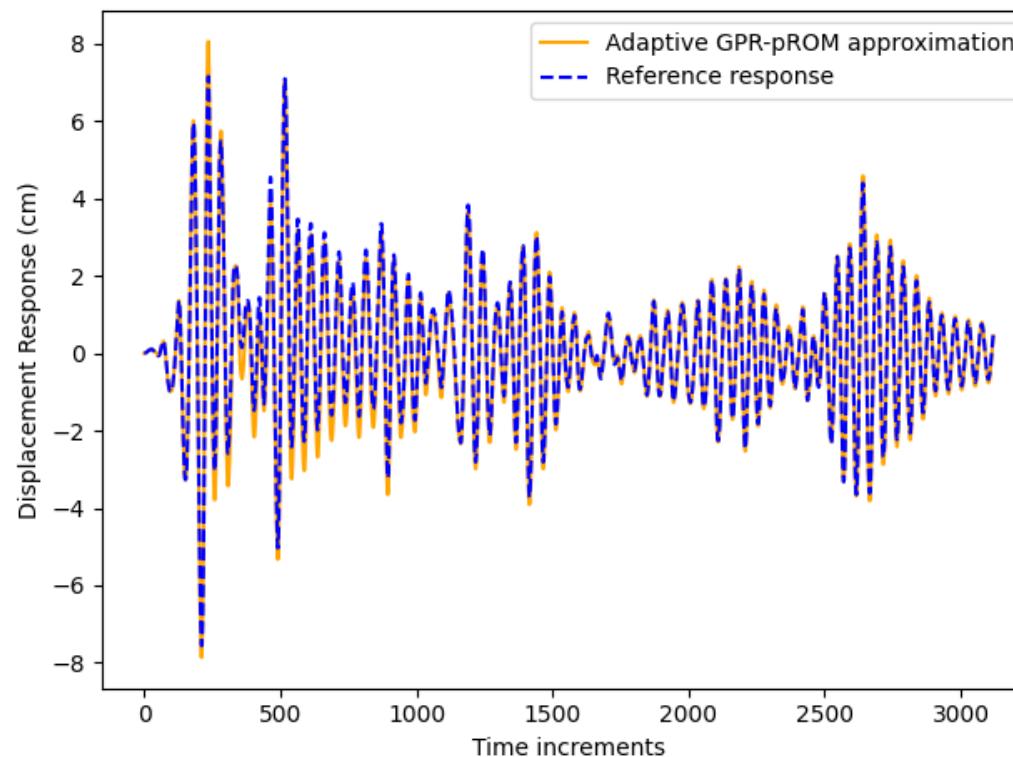
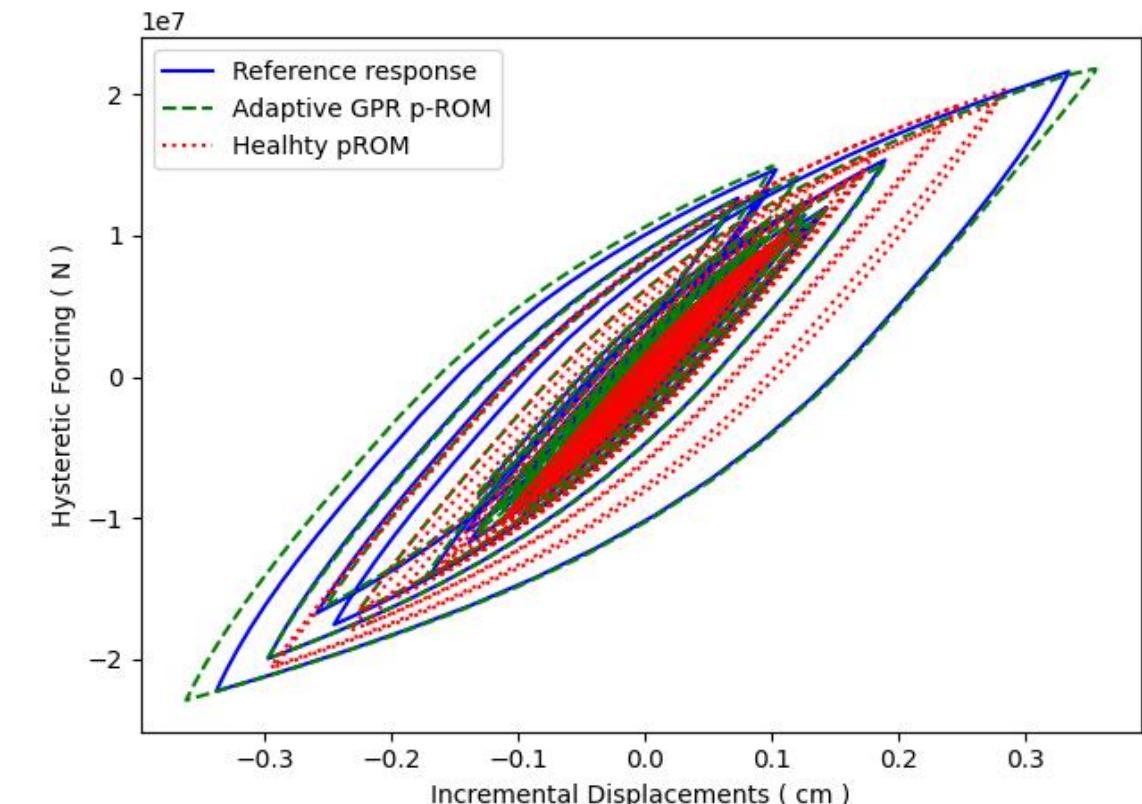
Healthy pROM uses
initial linear Basis (**Scenario A**)



GPR-pROM adapts
projection Basis (**Scenario A**)

Case studies

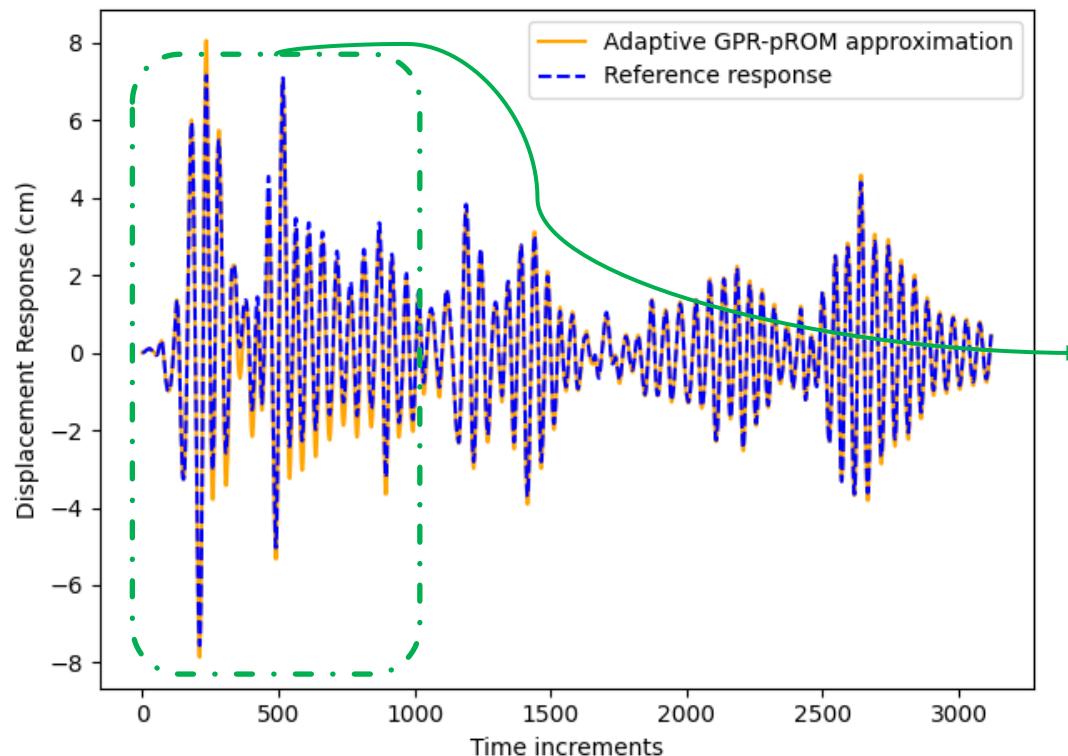
Accuracy performance of the framework



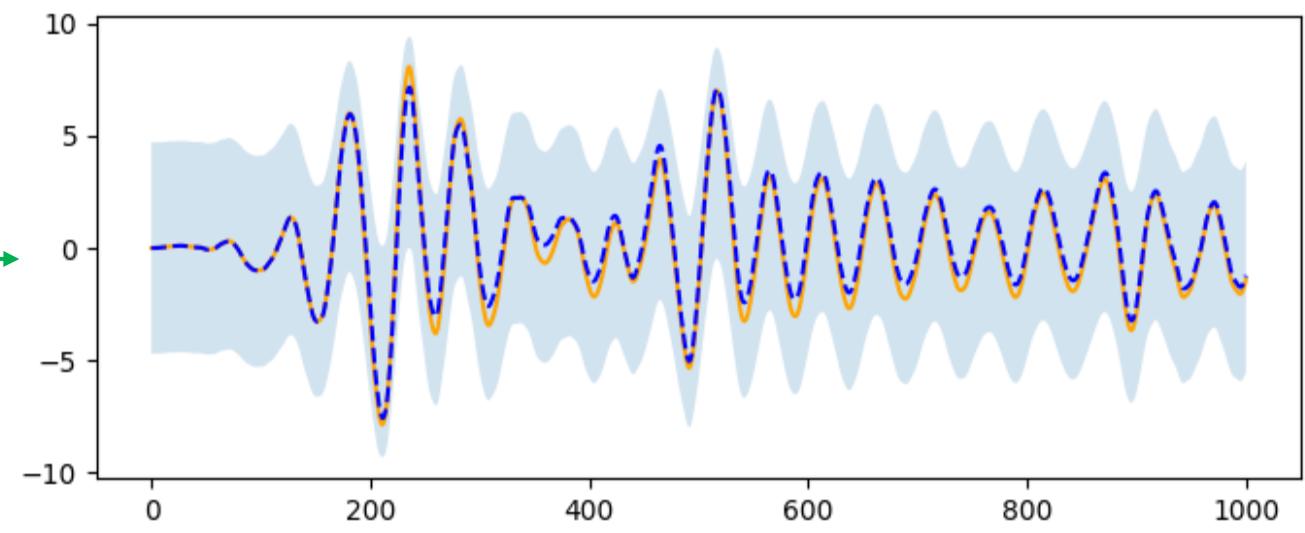
GPR-pROM adapts
projection Basis (**Scenario C**)

Case studies

Accuracy performance of the framework



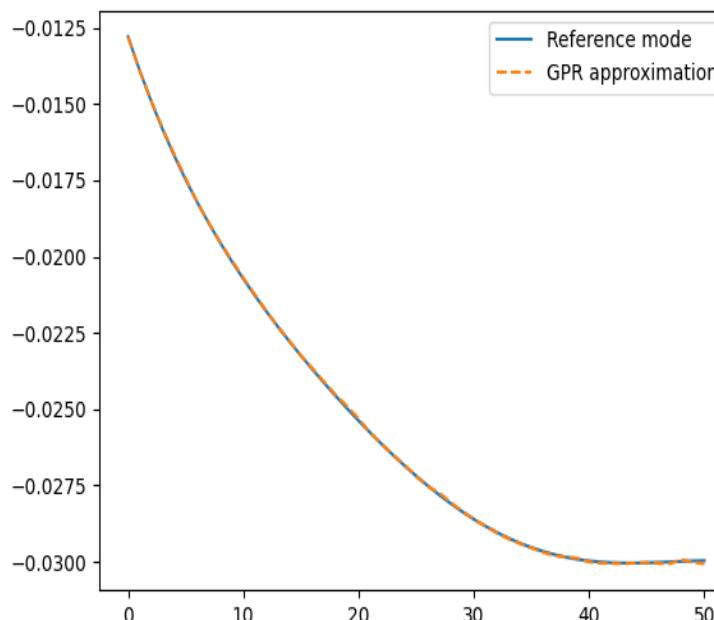
GPR-pROM adapts
projection Basis (**Scenario C**)



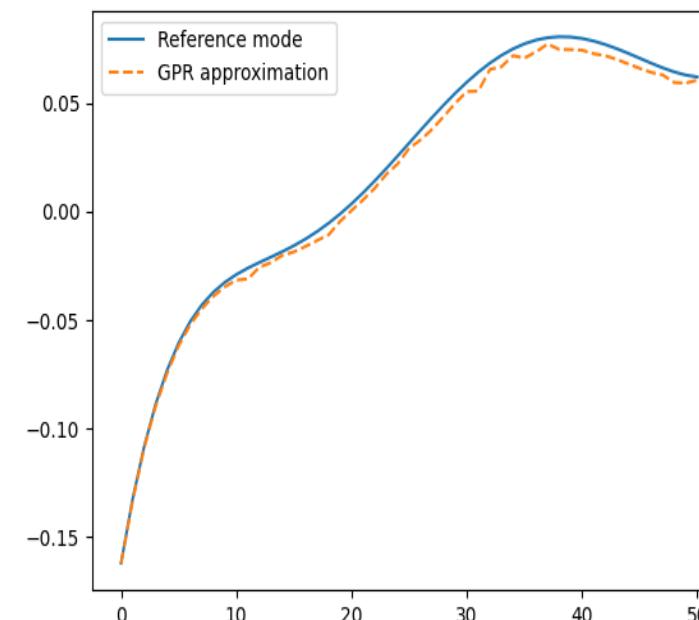
Case studies

Accuracy performance of the framework

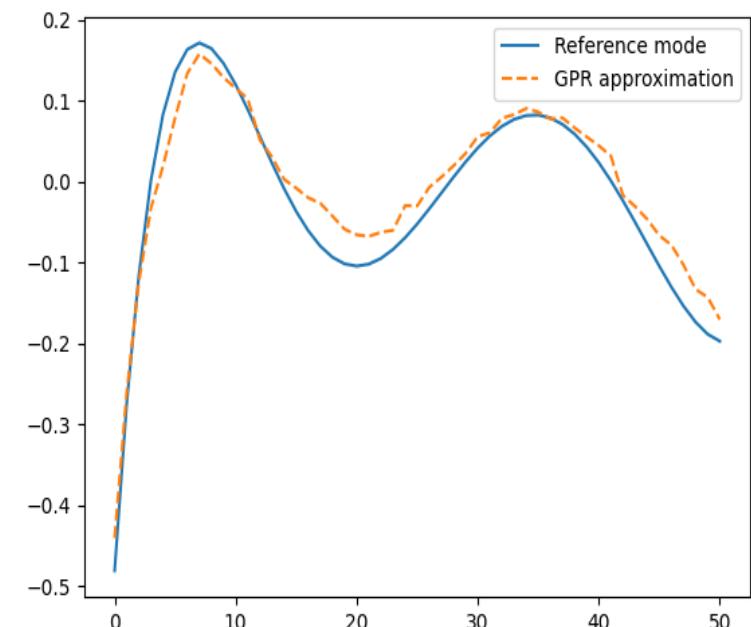
Reduced-order of pROM : 4 modes



GPR approximation
on **first mode (Scenario C)**



GPR approximation
on **fourth mode (Scenario C)**



GPR approximation
on **sixth mode (Scenario C)**

Concluding remarks

Limitations and outlook

The proposed adaptive GPR-pROM framework

- ✓ Extends performance range of traditional projection-based pROMs
- ✓ Captures underlying dynamics and dependencies *during damage or condition deterioration scenarios*
- ✓ Achieves **on the fly correction** of the pROM **based on sparse measurements**
- ✓ Provides confidence bounds for response estimation
- ✓ May be adapted as an **approximative, online low-cost surrogate** for Structural Health Monitoring applications

- Hyper-Reduction implications for additional efficiency need further investigation
- GPR approximation scheme fails to capture higher order modes
- GPR approximation performance is strongly dependent on noise level
- GPR input-output channels discretization needs to be automated and optimized

Next short-term steps:

- ❖ Generalize implementation – adjust overall scope:
Train pROM on earthquake database => Estimate damage in real-case scenarios
- ❖ Couple with filtering scheme to demonstrate potential on parameter/state/input estimation

Question session