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Problem Statement
Virtualization of nonlinear dynamical systems

High Fidelity Model
(finite element model)

l Low-order representation that:
Captures underlying dynamics
HFM features:
~===p| Reproduces physical behaviour
Complex dynamics !

Retains parametric dependencies
Nonlinear behaviour

Computationally efficient

Parametric dependencies on:

«  Geometric features 1

*  Material properties

» EOPs:
Environmental conditions parametric Reduced Order
Operational conditions Model .

. Excitation (low-order, equivalent model)
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Problem Statement
Condition deterioration or damage during operation

parametric Reduced Order

~=] Model
(low-order, equivalent model)

High Fidelity Model
(finite element model)

Ground truth :
representation \
: Monitoring -+ PROM
System ‘as-is’ Data framework
Uncertainties on EOPs _r

Adapt subspaces on varying dynamics

Digital-Twin

t

Damage and condition Real-time information for policy-makers
deterioration
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Approach conceptualization
Framework components

. High Fidelity Model o Parametric dependencies . — ¥ Vector of parameters p

-
(finite element model) (structural properties & excitation traits)

¥
Sample parametric realizations | . - " Latin H.ype.r cube Sampling design
=> Full-order HFM evaluations on realizations of vector p

Projection-based parametric ROM |_ - ¥ Projection on governing equations of motion:

as forward simulator M(p)u(t) +g (u(t), fl(t), p) — f(t, p)
u(t) e R", M(p) € R"*" f(t,p) € R", g (u(t),u(t)) € R"

Mass matrix Internal forces
Response time history (nonlinear)

External excitation
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Approach conceptualization
Framework components

. High Fidelity Model o Parametric dependencies . — ¥ Vector of parameters p

-
(finite element model) (structural properties & excitation traits)

¥
Sample parametric realizations | . - " Latin H.ype.r cube Sampling design
=> Full-order HFM evaluations on realizations of vector p

\ 4

Projection-based parametric ROM

asforward simutor [ M, (p; )i (1) + g (u(t), (1), pj) = £ (t,p)
Mr(pj) € RT’XT’ 8r (U(t), U(t), p]) € RT) fr(ta pj) eR"

¥ Projection on governing equations of motion:

u(t) = V(p;)u:(t) M,(p;) = V(p;)"M(p,;)V(p;,)

r<<n g (p;) =V (p,)De (u(t). u(t). p))

Projection (Reduced-Order) Basis
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Approach conceptualization
Framework components

,  High Fidelity Model S Parametric dependencies
(finite element model) (structural properties & excitation traits)

_ . -» Vector of parameters p

-

v
Sample parametric realizations |_ . — =¥ Latin H.ype.rcube Sampling design
=> Full-order HFM evaluations on realizations of vector p
— v _ » A subspace for each sample via Proper
Projection-based parametricROM |_ . _ ., orthogonal Decomposition* on response data
as forward simulator

Form clusters on parametric domain based on
local dynamics => POD subspaces similarity

-

" ~\ °* \Validation sample uses POD basis of assigned
“Proper Orthogonal Decomposition cluster for projection & ROM integration

U = [u(t)..u(ty)] = WER!
ut) =Vp)u) V=W, = w(;,@. - -~ POD modes

K
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Approach conceptualization
Framework components

Relying on response comparison between
ROM estimation and monitoring data

IMAC

v
A

(finite element model)

High Fidelity Model S Parametric dependencies
(structural properties & excitation traits)

v

Sample parametric realizations
=> Full-order HFM evaluations

\ 4

Projection-based parametric ROM

as forward simulator

v

v

Damage indicator

Data Assimilation scheme

\
\
<

\
|

* Receives response data and current ROM
response estimation on monitored nodes

« Approximates the correction of the ROM
estimation on all system nodes
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Approach conceptualization
Framework components

,  High Fidelity Model S Parametric dependencies
(finite element model) (structural properties & excitation traits)

I I
y

Sample parametric realizations
=> Full-order HFM evaluations

\ 4

Projection-based parametric ROM
as forward simulator

|
v v

Damage indicator Data Assimilation scheme

}

Adaptive parametric ROM representation
though monitoring information

Digital-Twin
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Approach conceptualization
Adaptive pROM for robust Structural Health Monitoring

4 )

( Initial ) parametric ROM framework

approach relying on

dynamics forward in time in reduced coordinates

« Utilizes through
\ throughout domain of operation /
& Earthquake induced damage / System deterioration A
The pROM is no longer able to perform estimation tasks accurately
Subspaces on training set do not sufficiently capture occurring phenomena
\_ => Performance bottleneck )
4 )

Condition indicator to highlight failure of ROM on the fly

Update subspace [ Approximate deformation modes anew
=> Adaptive pROM
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A

pproach conceptualization

Adaptivity through data assimilation

a

-

Condition indicator to highlight failure of ROM on the fly

N

Update subspace [ Approximate deformation modes anew

=> Adaptive pROM

___________ Update pROM “on-the-fly” through
correction on POD modes

4

Updated modes are utilized to adjust pPROM
projection basis

A

Output approximation is employed to

A

Noisy input signal from sparsely
monitored system

I
v
Condition indicator highlights pPROM
performance failure at time t,

Data-driven mapping approximates

estimate “updated deformation modes” |

A

correction on ROM estimation at all nodes
via input information only from monitored nodes
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Approach conceptualization

Adaptive pROM framework based on data assimilation

Offline / Training Strategy:

v' Derive initial pPROM as forward simulator :
Examples:
» Initial linear state & nonlinearities during operation to represent damage
> Initial nonlinear state & deterioration effects during operation

v' Assemble Damage Indicator :
» Deterministic nature based on response comparison metrics between
ROM estimation and response data from monitored nodes
» Relies on limited nodal measurements

» Includes input noise / exploit noise statistics to define activation
threshold

v' Gaussian Process Regression (GPR)

» Estimates correction on ROM prediction based on residual between
ROM and response data on monitored nodes

» GPR trained on pool of snapshots, without compromising efficiency
Examples:
* GPR trained on certain parametric states representing damage

* ITrack residual on monitored nodes only:

- |If indicator signals “ROM Performance Deteriorates/Fails”:

\ v Enrich pROM by using corrected modes in POD Basis /

The enrichment mode as defined:

v represents an approximation of the “true” system
deformed configuration

» v On the monitoring nodes assumes values approx.
equal to the actual deformation (monitoring data)

V' On the rest of the nodes estimates the deformation
via the GPR scheme

Olnline / During Operation: \

v Residual response = Monitoring data - pROM approximation

v Employ GPR to approximate ROM correction and reconstruct
full residual state on all system nodes

= PROM approximation + GPR output

Konstantinos Vlachas | 05.01.2021 | 11



Implementation details
Damage indicator and GPR-scheme

Damage Indicator "
Measurement Data d;. € R"¢

» Deterministic nature based on response comparison metrics

= Mahalanobis distance (MD) measure Vector of random values Iz - Rnd
( between ROM prediction and response data on monitoring nodes )

. L o St DeV Of o E Rnd)(nd
> Relies on limited nodal measurements ( 5-10% nodal output measured ) ) measurement signals
» Includes input noise ( 3% ) / exploit noise statistics to define activation threshold — Noise level 5

=> Alert threshold from Chi-Square distribution (0.01% significance level)

Gaussian Process Regression (GPR) Noisy measurement data

» Trained based on residual response between monitoring data and pROM dk = dk; + 50'drk

» GPR trained on pool of snapshots, without compromising online efficiency

> Input. Response information from monitoring channels Damage Indicator

Output. Additive correction on full coordinate space Input € RNehanners*2x1
> Leverage local and physical degree-of-freedom correlations Response on monitoring channels ( displacements & rotations)
> Software: gpytorch implementation with MultitaskGPModel and RBFKernel() Output => Performance failure alert signal
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Implementation details
Configurations and scenarios

/ Cantilever Beam Case Study \ Hysteretic spring model
» Stochastic ground motion excitation » Total restoring force:
» Parametrized Boundary => Nonlinear rotational spring R = Rlinear 4+ Rhysteretic — aku + (1 N a)kz

> Limited number of nodes monitored

Damage Scenario: » Bouc-Wen equation with degradation/deterioration effects:

Derive ROM based on “design” case study G — Au —v(t) (B|ﬁ|Z|Z|w_1 — yulz|¥)

Induce damage by activating parametric boundary n(t)

t

Use indicator to detect failure v(t) =1.04+6,¢e(t), n(t) =1.0+06,¢(t), €(t)= / zudt
0

Employ GPR-based scheme to assemble deformed modes

Refine POD-Basis / Characteristics of the Bouc-Wen links:

8,7, A, w :Control smoothness and shape of hysteresis

d,, 0, :Degradation/Deterioration effects

() a,k :Linear/Hysteretic contribution weighting
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Implementation details
Configurations and scenarios

/ Cantilever Beam Case Study \ Hysteretic Bouc-Wen spring model
» Stochastic ground motion excitation » Total restoring force:
» Parametrized Boundary => Nonlinear rotational spring R = Rlinear 4+ Rhysteretic — aku + (1 N a)kz

» Limited number of nodes monitored
» Bouc-Wen equation with degradation/deterioration effects:

Damage Scenario: . Au—v(t)(B|alz|z|v Tt — yalz[v)

v Derive ROM based on “design” case study S n(t)

v Induce damage by activating parametric boundary V(8 = 10+ 6,e(t), n(t) = 1O+ 6,e(t),  €(t) = /t .
v Use indicator to detect failure .

v Employ GPR-based scheme to assemble deformed modes Characteristics of the Bouc-Wen links:

K Refine POD-Basis / 8,7, A, w :Control smoothness and shape of hysteresis

dv, 0y ) : Degradation/Deterioration effects

Scenario B: : Linear/Hysteretic contribution weighting
* Initial “design” case study is nonlinear y
« Damage is represented through degradation / Scenario A:
deterioration effects during operation - Initial “design” case study is linear
*  Nonlinear spring is activated during operation
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Implementation details
Configurations and scenarios

/ Plane Frame Case Study \

» Stochastic parametrized ground motion excitation ( Amplitude )

» Nonlinear parametric rotational spring on all nodal connections
» Limited number of nodes monitored

Damage Scenario:

v' Derive ROM based on “design” case study
v" Induce damage by activating parametric springs
v' Use indicator to detect failure

v" Employ GPR-based scheme to assemble deformed modes

K Refine POD-Basis /

Scenario C:
* Initial “design” case study is linear

Nonlinear spring is activated during operation

Evaluation earthquake not included in training set

©)

— \\WWW "

"
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Implementation details
Configurations and scenarios

Linear vs Nonlinear response examples for different Bouc-Wen activation parameters
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Implementation details

Configurations and scenarios

Response examples with Bouc-Wen degradation phenomena during operation
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Implementation details
Damage indicator and GPR-scheme

1 —— MD Training Configuration g I —— MD Training Configuration
25 I Alarm Threshold : Alarm Threshold
: ——- Damaged Validation Configuration 74 ! ——- Damaged Validation Configuration
i ——- Healthy Validation Configuration f ——- Healthy Validation Configuration
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Linear vs Nonlinear Bouc-Wen degradation phenomena
response example (Scenario A) during operation (Scenario B)

A
T
'\M‘, "“l | Konstantinos Viachas | 05.01.2021 | 18

ﬂW |




Implementation details
Damage indicator and GPR-scheme

/Gaussian Process Regression (GPR) \ Matrix of correlation coefficients (Scenario A)

> Input : Response information in monitoring channels (displacements & rotations) Example monitored channel

Input = True response - pPROM estimation (monitored nodes) 0 1.000

» Output. Response approximation through additive correction on full coordinate space
Output = True response - pROM estimation (all coordinates)
= pROM Basis Enrichment mode = pROM approximation + GPR output 10

\J> |Leverage local and ghgsical de%ree-of-freedom correlations I j

v' Assemble matrix capturing correlations between the time history
response on physical coordinate (coordinate = degree-of-freedom)

\ Output Window:

Region where the output
approximation is potentially
more accurate

20

v Leverage correlation coefficients to define an output window for each 30

monitored input channel

Thus:

X/

“ Not all monitoring channels are used as input at once

Physical coordinate index

40
s Instead, the data from each channel are employed as input to approximate

the response only on “correlated” coordinates based on output window 50 0.00

< Overlapping to ensure quality of approximation 0 10 20 30 40 20
Physical coordinate index

e
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Case studies
Accuracy performance of the framework

Healthy pROM approximation Adaptive GPR-pROM approximation
75 - --- Reference response 7.5 - -==- Reference response
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Case studies
Accuracy performance of the framework
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Case studies
Accuracy performance of the framework

8 U P . - Adaptive GPR-pROM approximation
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Case studies
Accuracy performance of the framework

Reduced-order of pPROM : 4 modes

0.2
-0.0125 7 —— Reference mode —— Reference mode — Reference mode
-=- GPR approximation -=-- GPR approximation -==- GPR approximation
~0.0150 0.05 - 0.17
-0.0175 0.0 +
0.00
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-0.0225 A 0057 -0.2 -
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~0.0300 1
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GPR approximation GPR approximation GPR approximation
on first mode (Scenario C) on fourth mode (Scenario C) on sixth mode (Scenario C)
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Concluding remarks
Limitations and outlook

The proposed adaptive GPR-pROM framework

( v' Extends performance range of traditional projection-based pROMs \
v' Captures underlying dynamics and dependencies during damage or condition deterioration scenarios
v' Achieves on the fly correction of the pPROM based on sparse measurements

v" Provides confidence bounds for response estimation

\\/ May be adapted as an approximative, online low-cost surrogate for Structural Health Monitoring applications )

Hyper-Reduction implications for additional efficiency need further investigation
GPR approximation scheme fails to capture higher order modes

GPR approximation performance is strongly dependent on noise level

YV V V VY

GPR input-output channels discretization needs to be automated and optimized

(" Next short-term steps: )

+ Generalize implementation — adjust overall scope:
Train pPROM on earthquake database => Estimate damage in real-case scenarios

X/

+ Couple with filtering scheme to demonstrate potential on parameter/state/input estimation

IMACK
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