

A Physics-based Reduced Order Model with Machine Learning Boosted Hyper-Reduction

Vlachas Konstantinos*, David Najera-Flores**, Carianne Martinez#, Adam R. Brink#, Prof. Dr. Eleni Chatzi*

*Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Stefano-Francini-Platz-5, 8093 Zurich, Switzerland, chatzi@ibk.baug.ethz.ch

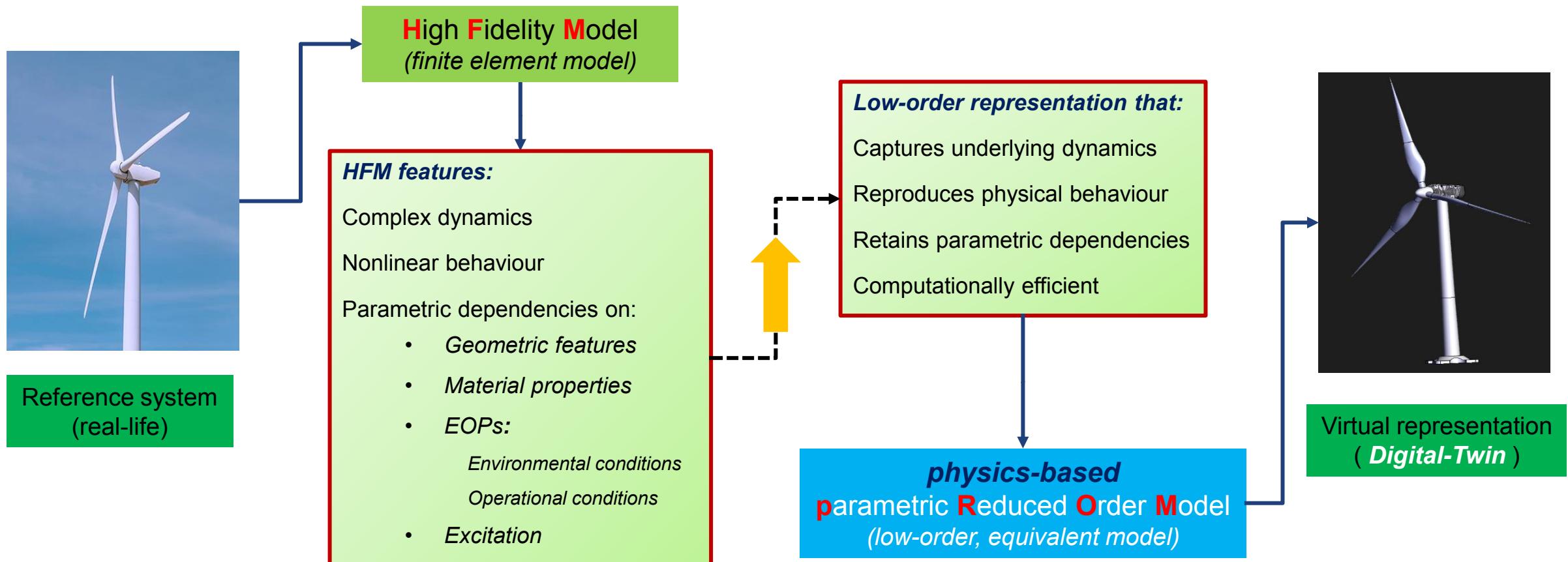
** University of California, San Diego & ATA Engineering, San Diego, California

#Applied Machine Intelligence, Sandia National Laboratories, Albuquerque, New Mexico

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Problem Statement

Virtualization of nonlinear dynamical systems



Problem Statement

Virtualization of nonlinear dynamical systems

Reference system
(real-life)

High Fidelity Model
(finite element model)

Projection-based reduction enables:

- Representation of the **full response of the HFM** (displacements, velocities, accelerations, stresses).
- the use of the ROM for **making predictions**, thus creating the potential for a **higher level SHM** system.

Low-order representation that:

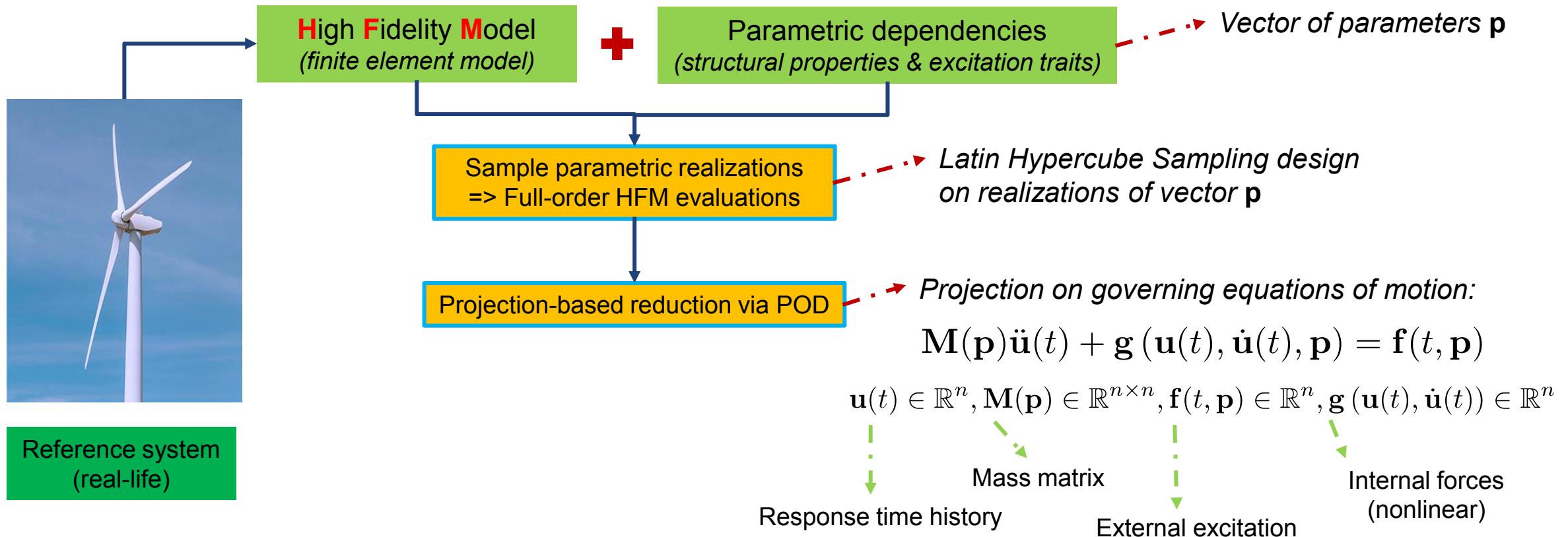
- Captures underlying dynamics
- Reproduces physical behaviour
- Retains parametric dependencies
- Computationally efficient

Virtual representation
(*Digital-Twin*)

physics-based
parametric **Reduced Order Model**
(low-order, equivalent model)

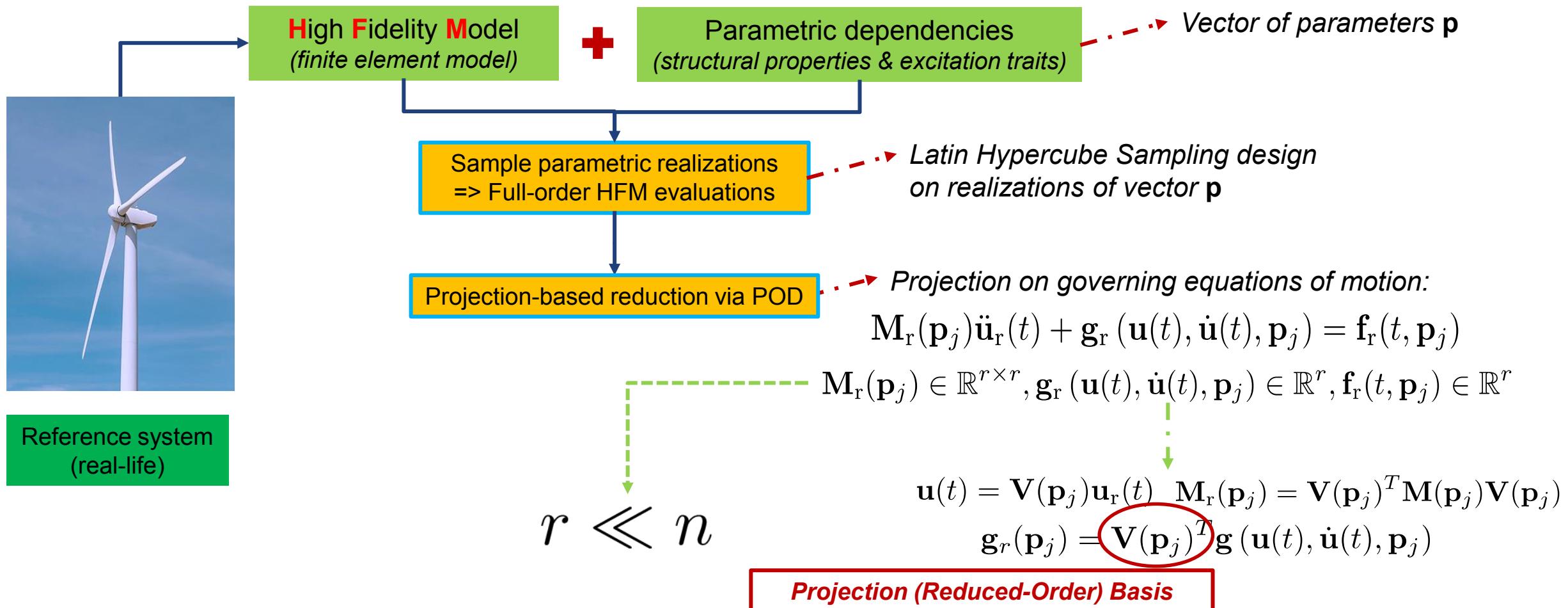
Approach conceptualization

Framework components



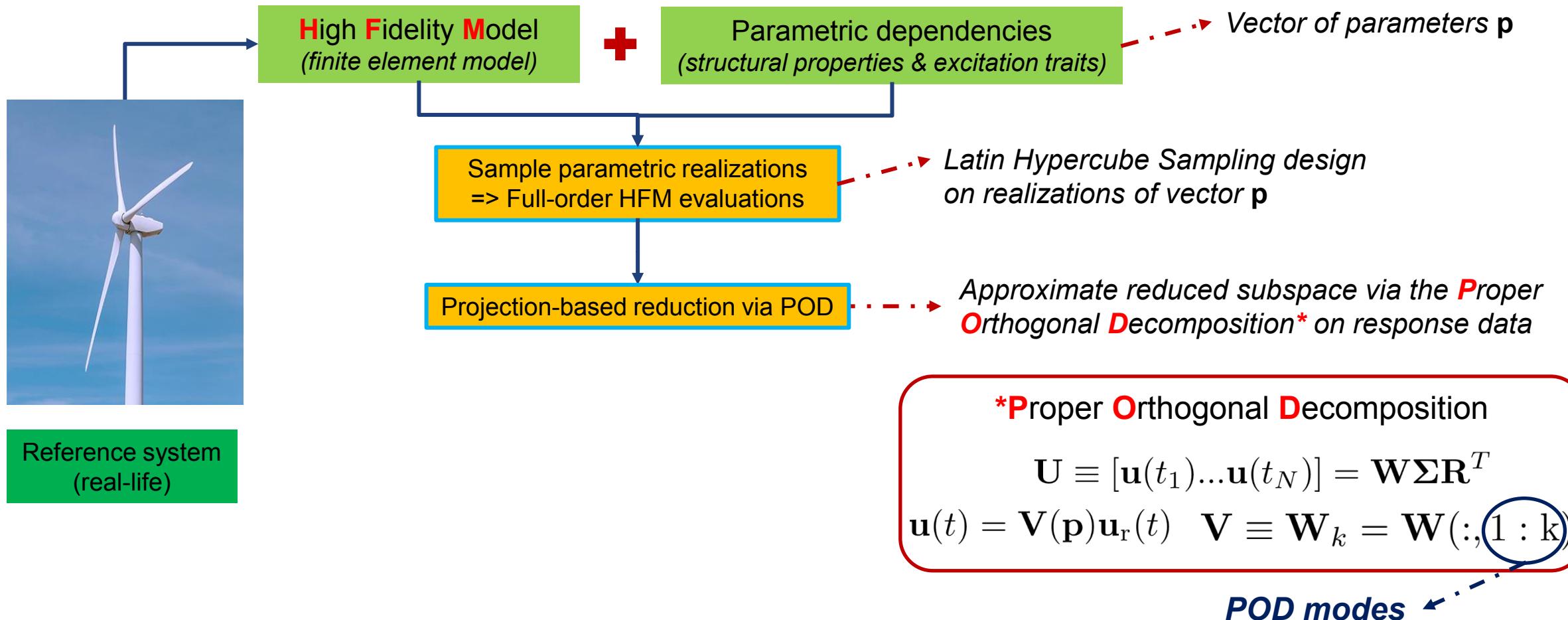
Approach conceptualization

Framework components



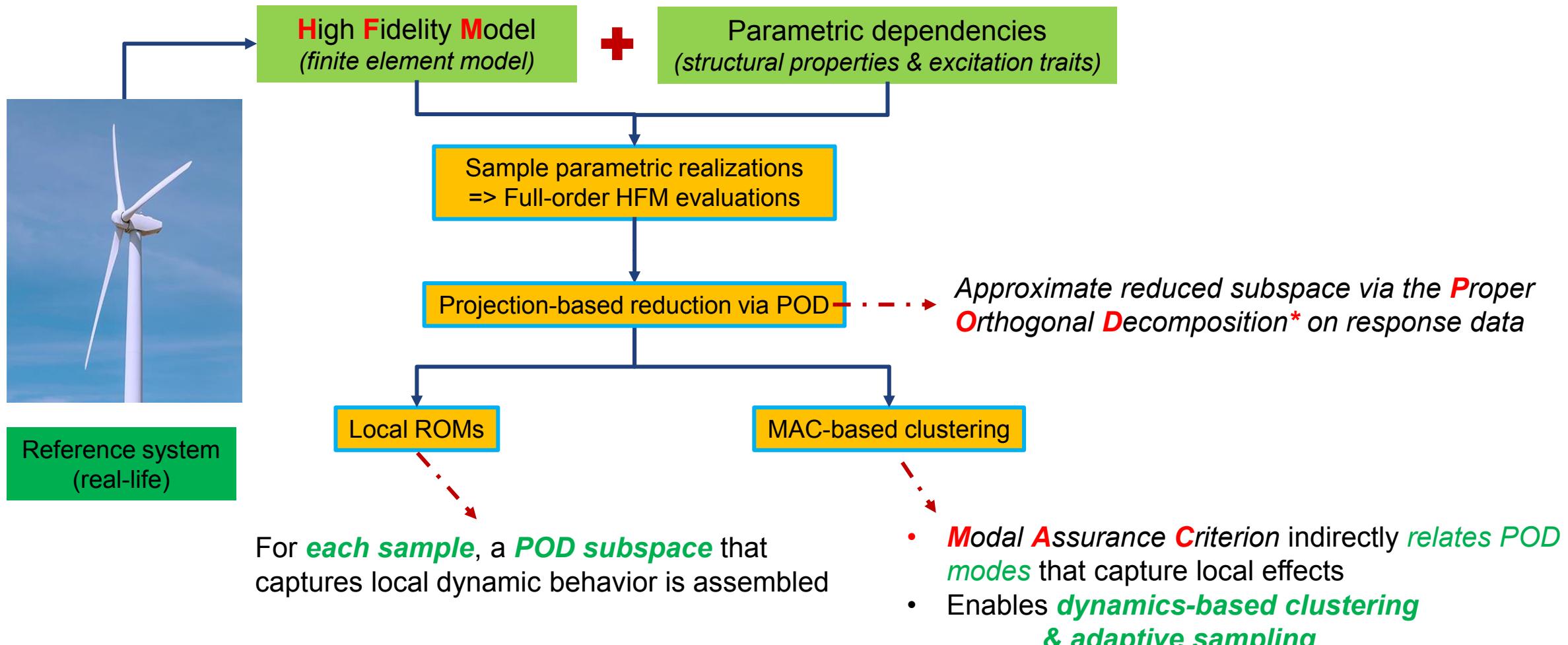
Approach conceptualization

Framework components



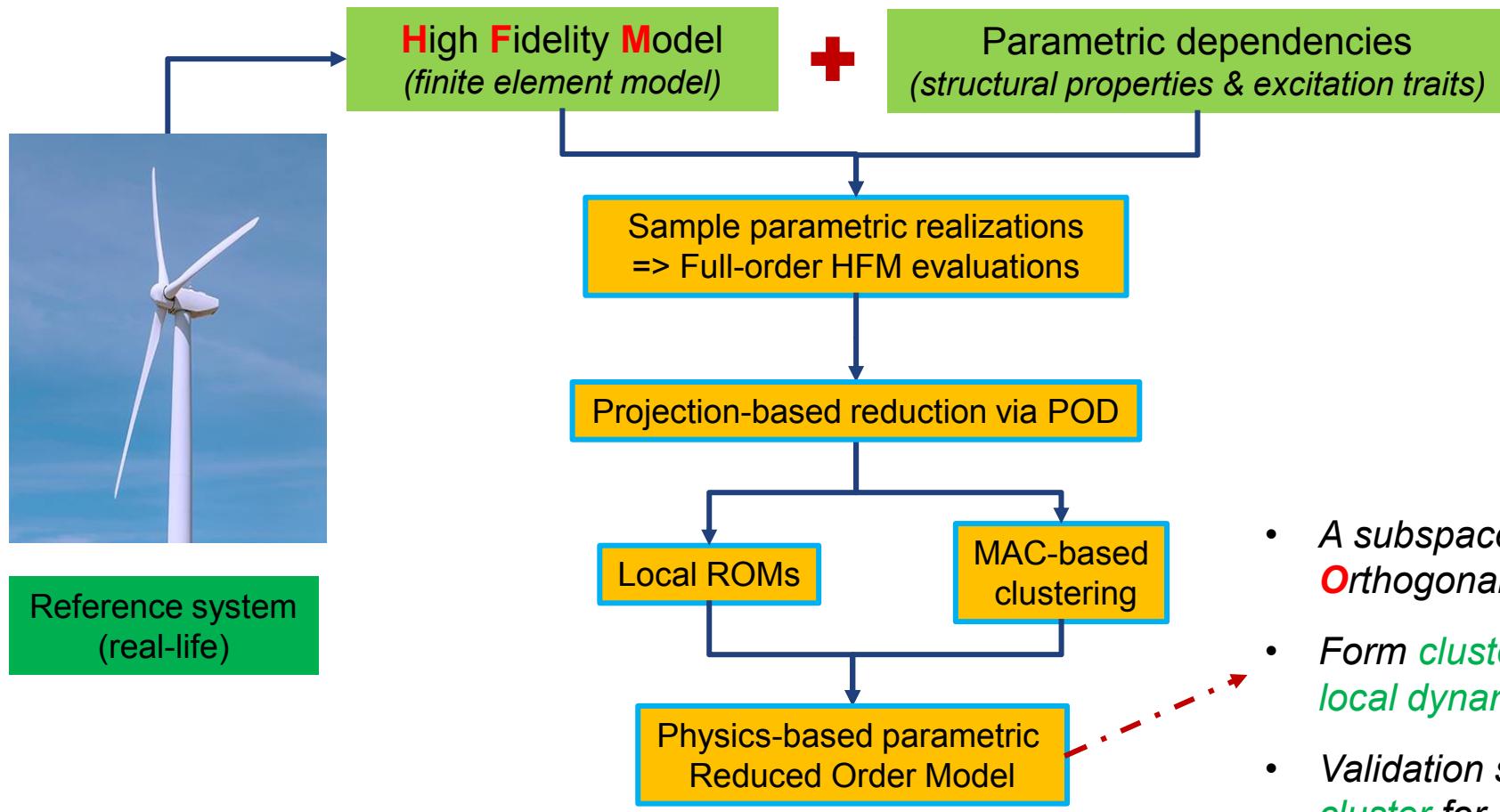
Approach conceptualization

Framework components



Approach conceptualization

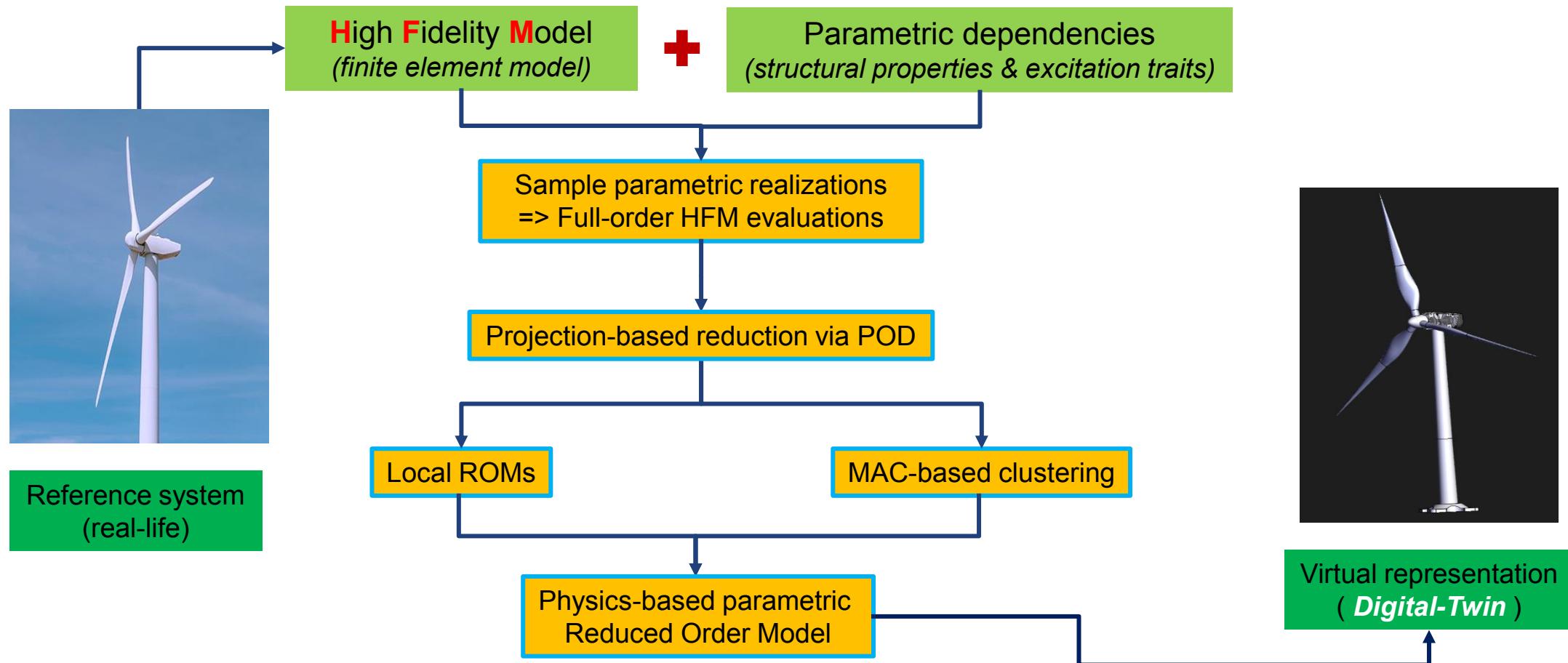
Framework components



- A subspace for each sample via **Proper Orthogonal Decomposition*** on response data
- Form **clusters** on parametric domain based on **local dynamics** => **POD** subspaces **similarity**
- Validation sample uses **POD basis of assigned cluster** for projection & ROM integration

Approach conceptualization

Framework components



Framework Components - Explanation

Modal Assurance Criterion-guided clustering/sampling

Modal Assurance Criterion

$$\text{MAC}(\phi_r, \phi_s) = \frac{|\phi_r^T \phi_s|^2}{(\phi_r^T \phi_r)(\phi_s^T \phi_s)}$$

- Measure of **consistency between modeshapes Φ**
- System Identification:
A form of confidence factor when evaluating modal vectors from different sources.
- Local POD projection bases
=> POD modes capturing localized behavior
- **MAC between POD modes**
=> Relate subspace eigenvectors
=> Dynamics-based clustering
=> Define sampling rate adaptively

Framework Components - Explanation

Modal Assurance Criterion-guided clustering/sampling

Modal Assurance Criterion

$$\text{MAC}(\phi_r, \phi_s) = \frac{|\phi_r^T \phi_s|^2}{(\phi_r^T \phi_r)(\phi_s^T \phi_s)}$$

Advantages / Implications

- MAC assumes functionality of error indicator
- *Enables adaptive sampling (coarse rate to finer)*
=> Reduces training cost/resources
- *Physics-based interpretability*
=> MAC relates local dynamics

Framework Components – Limitations

Projection-based parametric ROM bottleneck

POD - Projection-based Reduction

Assemble POD Basis

Proper Orthogonal Decomposition

$$\mathbf{u}(t) = \mathbf{V}(\mathbf{p})\mathbf{u}_r(t) \quad \mathbf{U} \equiv [\mathbf{u}(t_1) \dots \mathbf{u}(t_N)] = \mathbf{W}\boldsymbol{\Sigma}\mathbf{R}^T$$

$$\mathbf{V} \equiv \mathbf{W}_k = \mathbf{W}(:, 1:k)$$

Limitations:

- **POD is a linear operator**
Linearization in neighbourhood of stable points is assumed to address nonlinearities
- **Accuracy** for new parametric states *relies on clustering or interpolation between POD bases*

*Ongoing research
Not addressed in this contribution*

Framework Components – Limitations

Projection-based parametric ROM bottleneck

Training / Offline Phase

Step 1: Parametric input states

$$\forall \mathbf{p}_k, k \in [1, N_s]$$

Step 2: Time Integration of Full Model

$$\forall t_i, i \in [0, N_t]$$

For each parametric state:

- Assemble **system matrices**
(*stiffness K / mass M / damping C / Excitation f*)
- Evaluate the **time domain response** (integration)

Notation:

n : Full-order dimension
 N_s : Number of training samples
 N_t : Number of simulated timesteps
 \mathbf{M} : Mass matrix
 \mathbf{f} : External forcing
 \mathbf{u} : Response solution

The full-order, high fidelity finite element model **depends on a parametric input state**.

The parametric states are first sampled. The respective **parameters may represent**:

- **system properties**: yield stress, hysteretic damping coeffs.
- **excitation traits**: amplitude of ground motion, frequency content

Framework Components – Limitations

Projection-based parametric ROM bottleneck

Training / Offline Phase

Step 1: Parametric input states
 $\forall \mathbf{p}_k, k \in [1, N_s]$

Notation:
 N_s : Full-order dimension
 n : Number of training samples
 N_t : Number of simulated timesteps
 \mathbf{M} : Mass matrix
 \mathbf{f} : External forcing
 \mathbf{u} : Response solution

Step 2: Time Integration of Full Model

$$\forall t_i, i \in [0, N_t]$$

Step 3: Assemble matrices and evaluate Equations of Motion

$$\mathbf{M}(\mathbf{p})\ddot{\mathbf{u}}(t_i) + \mathbf{g}_i(\mathbf{u}(t_i), \dot{\mathbf{u}}(t_i), \mathbf{p}) - \mathbf{f}(t_i, \mathbf{p}) = \mathbf{0}$$

$\mathbf{u}(t) \in \mathbb{R}^n, \mathbf{M}(\mathbf{p}) \in \mathbb{R}^{n \times n}, \mathbf{f}(t, \mathbf{p}) \in \mathbb{R}^n, \mathbf{g}(\mathbf{u}(t), \dot{\mathbf{u}}(t)) \in \mathbb{R}^n$

Nonlinear terms

Step 4: Compute Residual and “predict” correction

$$if \quad \mathbf{R}_i(\mathbf{u}_r(t_i)) > tol \Rightarrow \tilde{\mathbf{u}}(t_i)$$

Step 5: Employ updated solution to re-assemble nonlinear terms & matrices

$$\tilde{\mathbf{u}}(t_i) \Rightarrow \mathbf{g}_i(\tilde{\mathbf{u}}(t_i), \dot{\tilde{\mathbf{u}}}(t_i), \mathbf{p})$$

Framework Components – Limitations

Projection-based parametric ROM bottleneck

ROM Evaluation / Online Phase

Step 1: Parametric input states
 $\exists \mathbf{p}_v, v \notin [1, N_s]$

Step 2: Time Integration of ROM
 $\forall t_i, i \in [0, N_t]$

Step 3: Assemble matrices and evaluate Equations of Motion
 $\mathbf{M}_r(\mathbf{p})\ddot{\mathbf{u}}_r(t_i) + \mathbf{g}_{ri}(\mathbf{u}(t_i), \dot{\mathbf{u}}(t_i), \mathbf{p}) - \mathbf{f}_r(t_i, \mathbf{p}) = \mathbf{0}$
 $\mathbf{M}_r(\mathbf{p}_j) \in \mathbb{R}^{r \times r}, \mathbf{g}_r(\mathbf{u}(t), \dot{\mathbf{u}}(t), \mathbf{p}_j) \in \mathbb{R}^r, \mathbf{f}_r(t, \mathbf{p}_j) \in \mathbb{R}^r$

**Nonlinear terms
still scale with full dimension**

Step 4: Compute Residual on Equations and “predict” correction

if $\mathbf{R}_i(\mathbf{u}_r(t_i)) > tol \Rightarrow \tilde{\mathbf{u}}_r(t_i)$

Step 5: Employ updated solution to re-assemble nonlinear terms & matrices

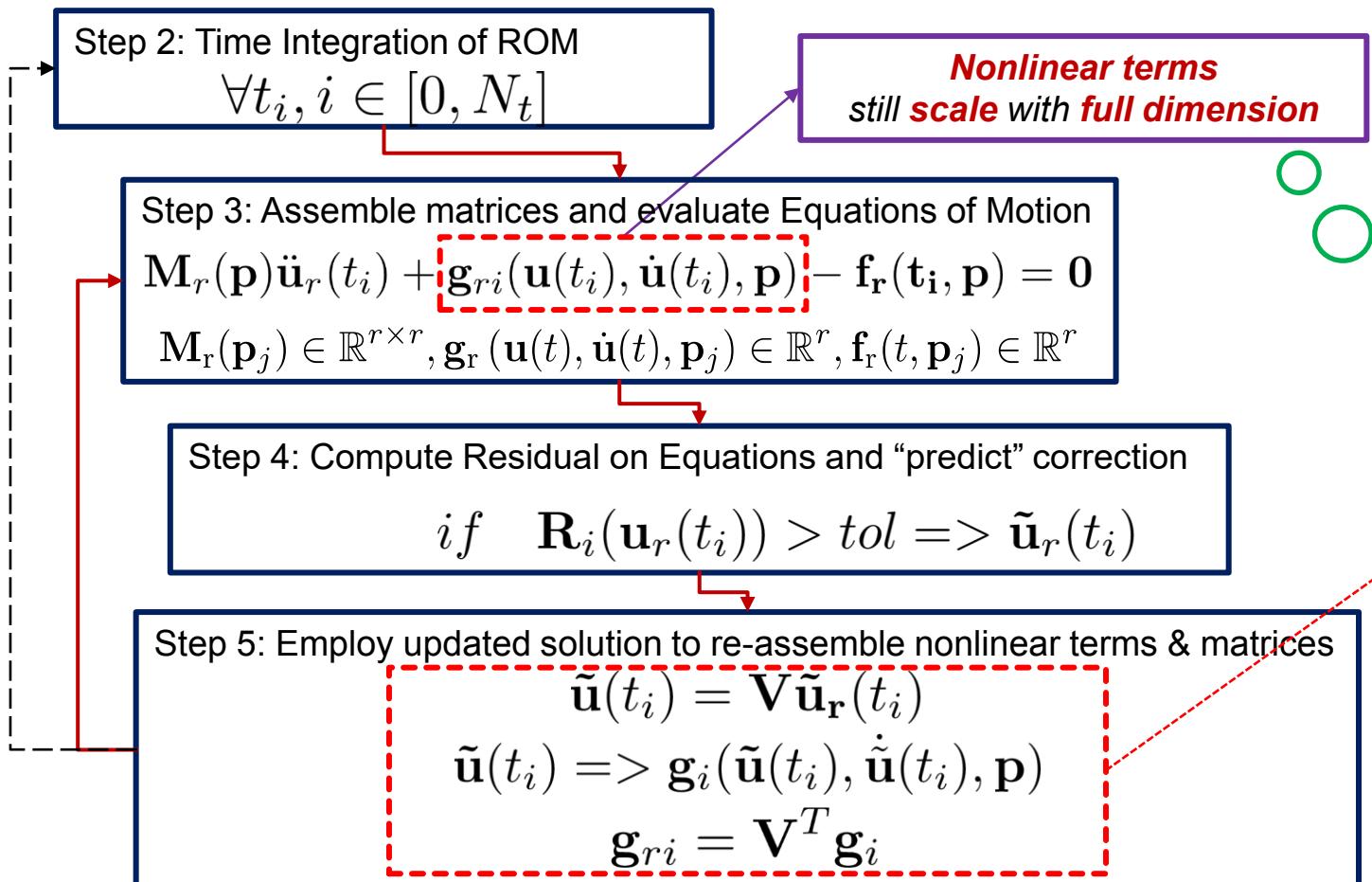
$$\tilde{\mathbf{u}}(t_i) = \mathbf{V}\tilde{\mathbf{u}}_r(t_i)$$

$$\tilde{\mathbf{u}}(t_i) \Rightarrow \mathbf{g}_i(\tilde{\mathbf{u}}(t_i), \dot{\tilde{\mathbf{u}}}(t_i), \mathbf{p})$$

$$\mathbf{g}_{ri} = \mathbf{V}^T \mathbf{g}_i$$

Framework Components – Limitations

Projection-based parametric ROM bottleneck



- The evaluation of the nonlinear terms still **scales with the full order dimension**.
- For every solution increment we need to:
 - **Project** displ./vel. **back to full-order**
 - Evaluate nonlinear terms
 - **Update** forces and stiffness matrix
 - **Project** updated matrices **back to reduced-order** coordinates.

*This **back-and-forth projection** is a major computational bottleneck.*

Especially in large scale systems where time integration savings cannot outweigh the projection & evaluation.

*To address this, we rely on **hyper-reduction**: A second-tier approximation of the nonlinear contributions.*

Machine Learning Boosted pROM

Hyper-Reduction surrogate through ML

- Back & forth projection to update nonlinear terms compromises efficiency
- Hyper-reduction is introduced
 - Several alternatives available (ECSW, DEIM, GNAT, EQM)
 - ✓ Hyper-reduction is essential for efficiency
 - ❖ Introduces an **additional source of error** that outweighs the POD reconstruction error
- => **Bottleneck for the parametric ROM**

Step 5: Employ updated solution to re-assemble nonlinear terms & matrices

$$\begin{aligned}\tilde{\mathbf{u}}(t_i) &= \mathbf{V}\tilde{\mathbf{u}}_r(t_i) \\ \tilde{\mathbf{u}}(t_i) &\Rightarrow \mathbf{g}_i(\tilde{\mathbf{u}}(t_i), \dot{\tilde{\mathbf{u}}}(t_i), \mathbf{p}) \\ \mathbf{g}_{ri} &= \mathbf{V}^T \mathbf{g}_i\end{aligned}$$

✓ **N3-PROM**

- Replaces hyper-reduction with NARX-NN surrogate
- Learns nonlinear mapping directly in ROM coordinates
- Every iteration contributes nonlinear mapping training data
=> A single training realization has thousands of datapoints
- Potential **superiority in efficiency** => **Real-time evaluations**

Nonlinear force terms

$$f_g(\mathbf{u}_r^{t_{k-w}:t_k}, \mathbf{g}_r^{t_{k-w}:t_k}) \rightarrow \mathbf{g}_r^{t_k}$$

Nonlinear stiffness terms

$$f_K(\mathbf{u}_r^{t_{k-w}:t_k}, \mathbf{K}_r^{t_{k-w}:t_k}) \rightarrow \mathbf{K}_r^{t_k}$$

Machine Learning Boosted pROM

Network implementation details

Neural Network Details

Hyperparameter	Value
Time lag parameter	{4}
Number of hidden layers	{10}
Size of hidden layers	{16}
Activation of layers	Hyperbolic tangent functions $\tanh(\cdot)$
Activation of output neuron	Linear
Input/Output data scaling	Min-Max in [0, 1]
Batch size	{64}
Optimizer	Adam
Initial learning rate	{0.001}
Loss function	MSE loss

✓ N3-PROM

- **Replaces hyper-reduction** with NARX-NN surrogate
- Learns **nonlinear mapping directly in ROM coordinates**
- Every iteration contributes nonlinear mapping training data
=> A single training realization has thousands of datapoints
- Potential **superiority in efficiency** => **Real-time evaluations**

✓ NARX-NN training process

- **High fidelity simulations on training samples**
- **Local ROMs assembly and MAC-guided clustering**
- **For every cluster train a separate NN mapping**
- The **mapping data on the ROM coordinates** are produced for each sample **based on the cluster's projection basis**
- 90% of samples are used for NN training, 10% for testing
- **All datapoints of the time history response are used** for training/testing respectively

Numerical Validation

Case study description

Two-story shear frame with hysteretic links

Sinusoidal ground motion excitation

Parametric dependencies: Angle of ground motion & Amplitude factor

Hysteretic links response model

➤ *Total restoring force:*

$$\mathbf{R} = \mathbf{R}_{\text{linear}} + \mathbf{R}_{\text{hysteretic}} = \alpha k \mathbf{u} + (1 - \alpha) k \mathbf{z}$$

➤ *Bouc-Wen equation with degradation/deterioration effects:*

$$\dot{\mathbf{z}} = \frac{A \dot{\mathbf{u}} - \nu(t) (\beta |\dot{\mathbf{u}}| \mathbf{z} |\mathbf{z}|^{w-1} - \gamma \dot{\mathbf{u}} |\mathbf{z}|^w)}{\eta(t)}$$

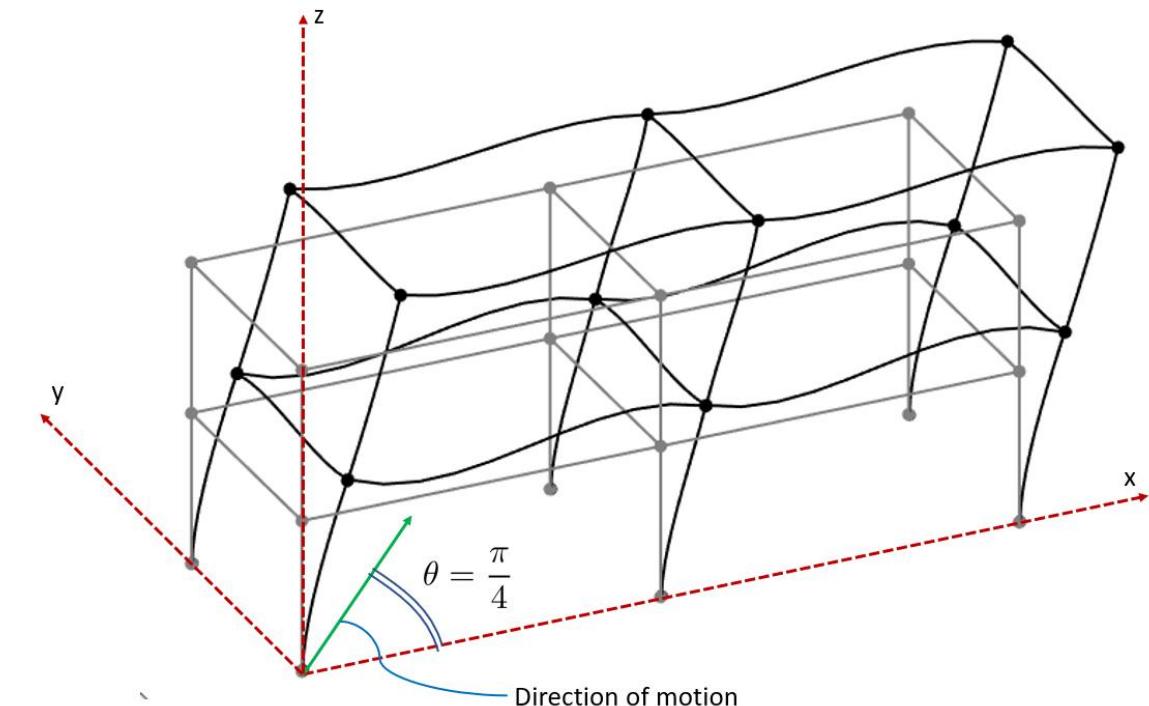
$$\nu(t) = 1.0 + \delta_\nu \epsilon(t), \quad \eta(t) = 1.0 + \delta_\eta \epsilon(t), \quad \epsilon(t) = \int_0^t \mathbf{z} \dot{\mathbf{u}} \delta t$$

Characteristics of the Bouc-Wen links:

β, γ, A, w : Smoothness and shape of hysteresis curve

δ_ν, δ_η : Degradation/Deterioration effects

a, k : Linear/Hysteretic contribution weighting

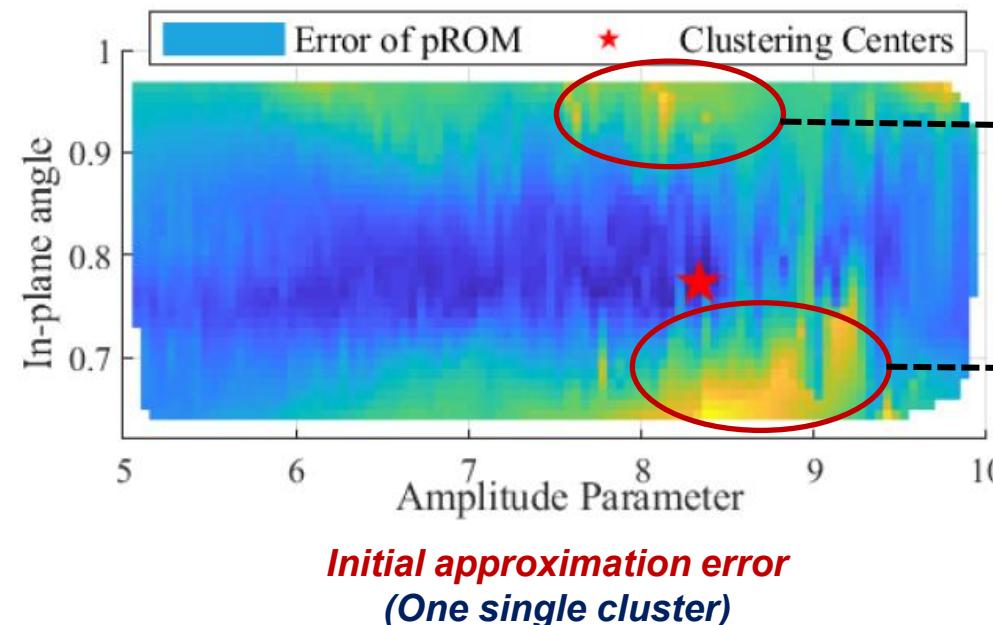
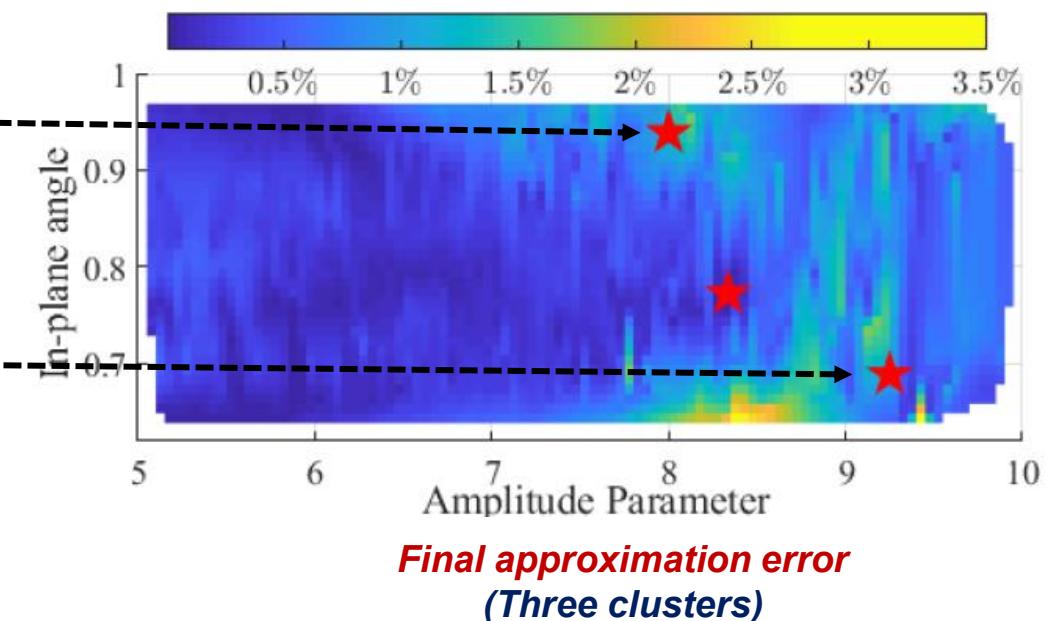


Benchmark example featured in:

- Vlachas K. et al. "A local basis approximation approach for nonlinear parametric model order reduction." *Journal of Sound and Vibration* 502 (2021): 116055.
- Vlachas K. et al. "Two-story frame with Bouc-Wen hysteretic links as a multi-degree of freedom nonlinear response simulator." 5th edition of Workshop on Nonlinear System Identification Benchmarks, <https://github.com/KosVla/NonlinearBoucWenFrameBenchmark.git>, 2021.

Numerical Validation

Performance of MAC-guided clustering



Numerical Validation

Network mapping example

✓ **N3-PROM**

- *Replaces hyper-reduction* with NARX-NN surrogate
- Learns *nonlinear mapping directly in ROM coordinates*
- Every iteration contributes nonlinear mapping training data
=> A single training realization has thousands of datapoints
- Potential *superiority in efficiency* => *Real-time evaluations*

$$f_g(\mathbf{u}_r^{t_{k-w}:t_k}, \mathbf{g}_r^{t_{k-w}:t_k}) \rightarrow \mathbf{g}_r^{t_k}$$

$$f_K(\mathbf{u}_r^{t_{k-w}:t_k}, \mathbf{K}_r^{t_{k-w}:t_k}) \rightarrow \mathbf{K}_r^{t_k}$$

Example Detailed Task Formulation

Input:

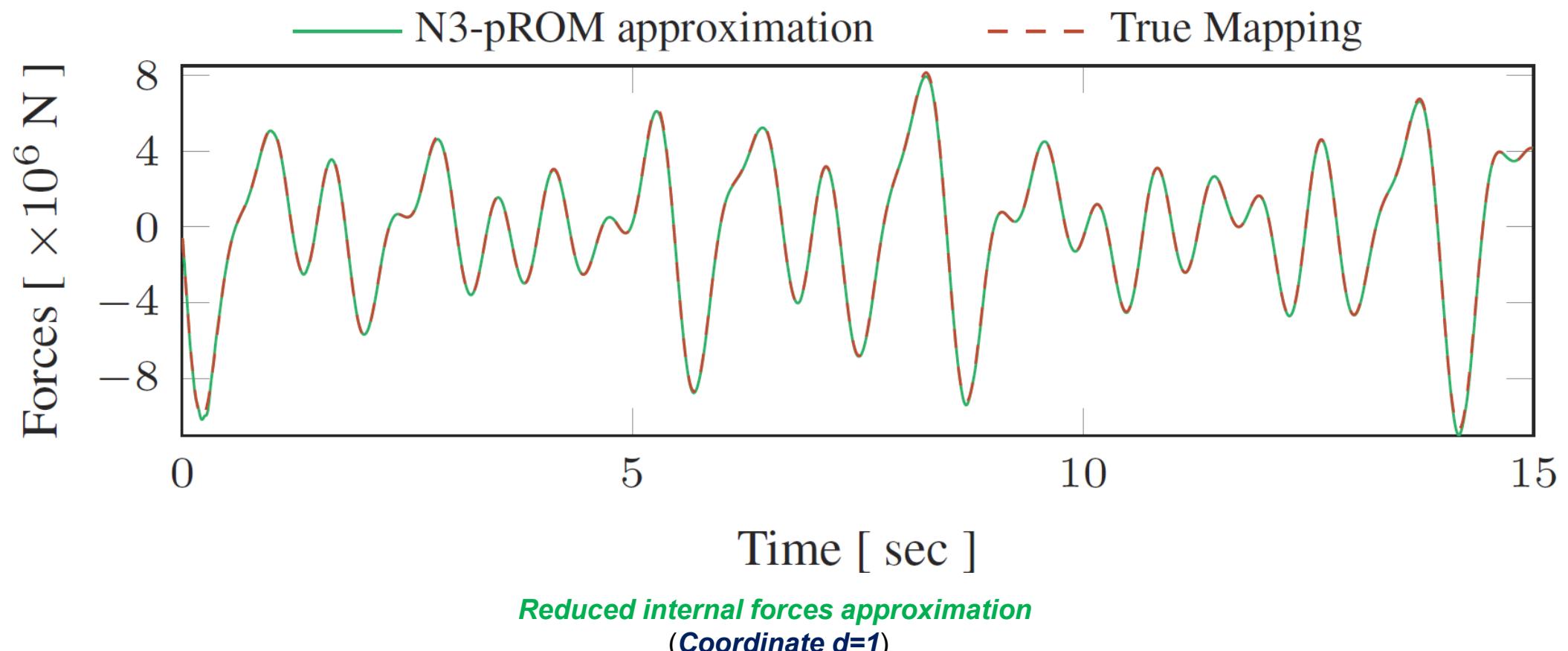
- *Reduced-Order Displacements in current iteration (and previous ones)* $\rightarrow \mathbf{U} \in \mathbb{R}^{4 \times (t_{k-w}:t_k)}$
- *Reduced-Order Force terms in previous iteration(s)* $\rightarrow \mathbf{g} \in \mathbb{R}^{4 \times (t_{k-w}:t_k)}$
- *Reduced-Order Stiffness terms in previous iteration(s)* $\rightarrow \mathbf{K} \in \mathbb{R}^{4 \times 4 \times (t_{k-w}:t_k)}$

Output:

- *Reduced-Order Force terms in current iteration* $\rightarrow \mathbf{K} \in \mathbb{R}^{4 \times 4 \times 1}$
- *Reduced-Order Stiffness terms in current iteration* $\rightarrow \mathbf{g} \in \mathbb{R}^{4 \times 1}$

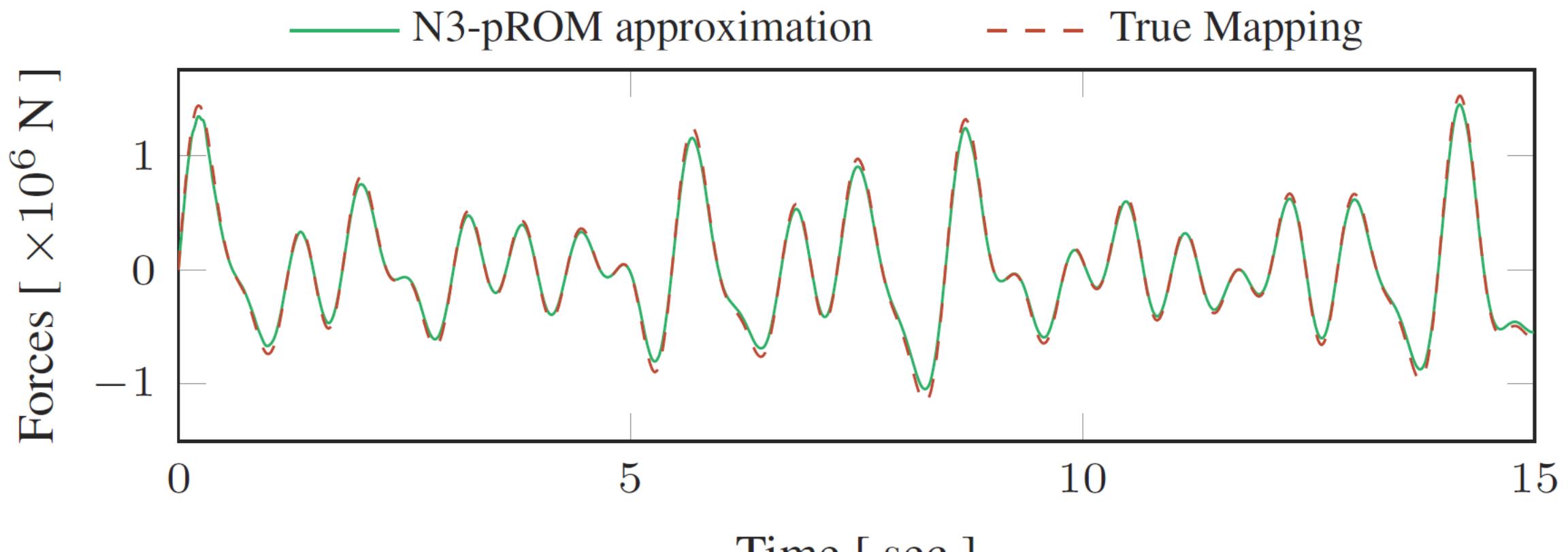
Numerical Validation

Accuracy performance of the NARX-NN surrogate



Numerical Validation

Accuracy performance of the NARX-NN surrogate

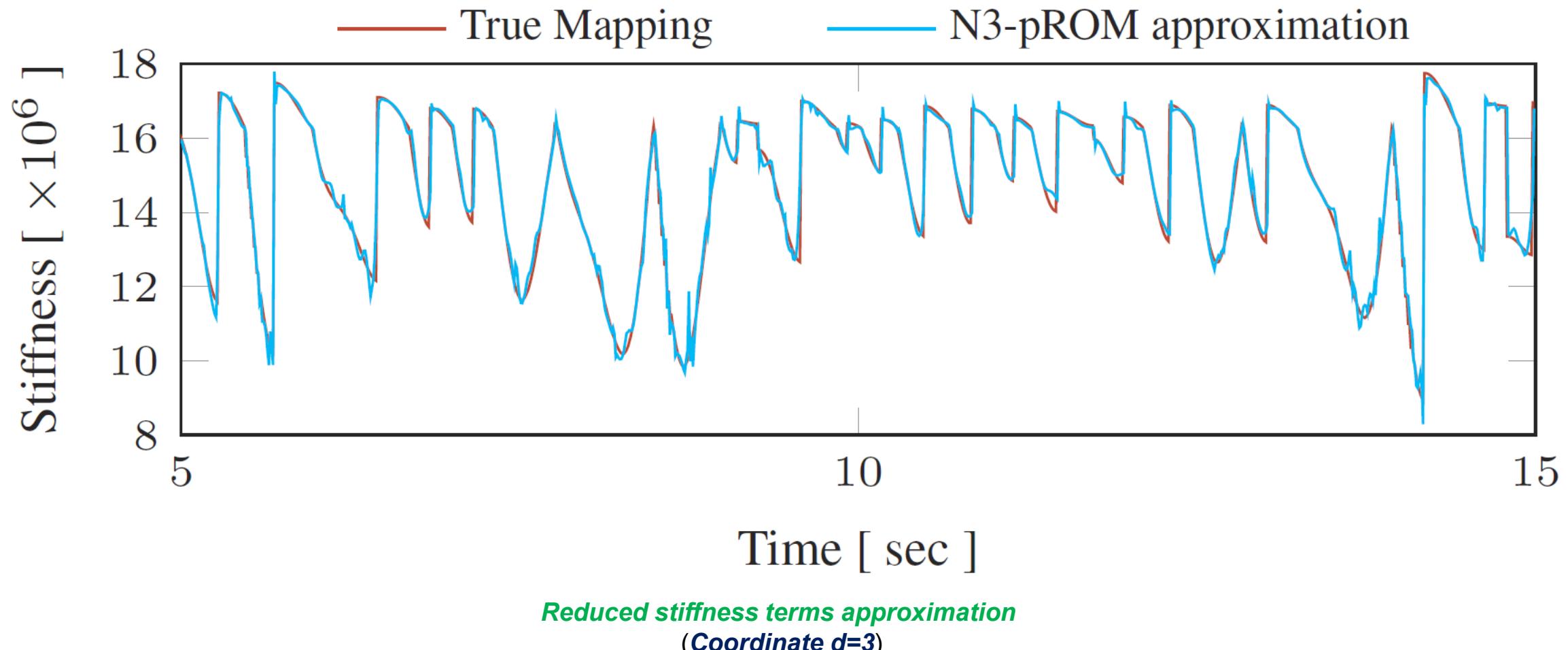


Reduced internal forces approximation

(Coordinate $d=4$)

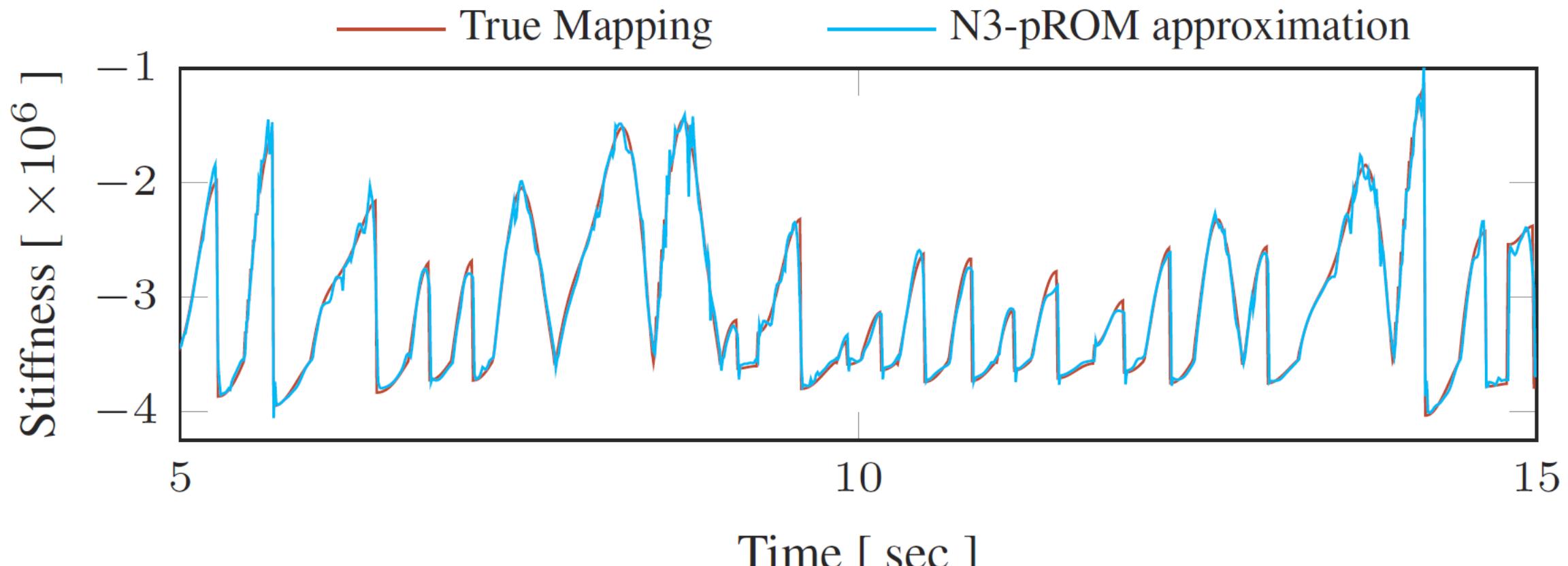
Numerical Validation

Accuracy performance of the NARX-NN surrogate



Numerical Validation

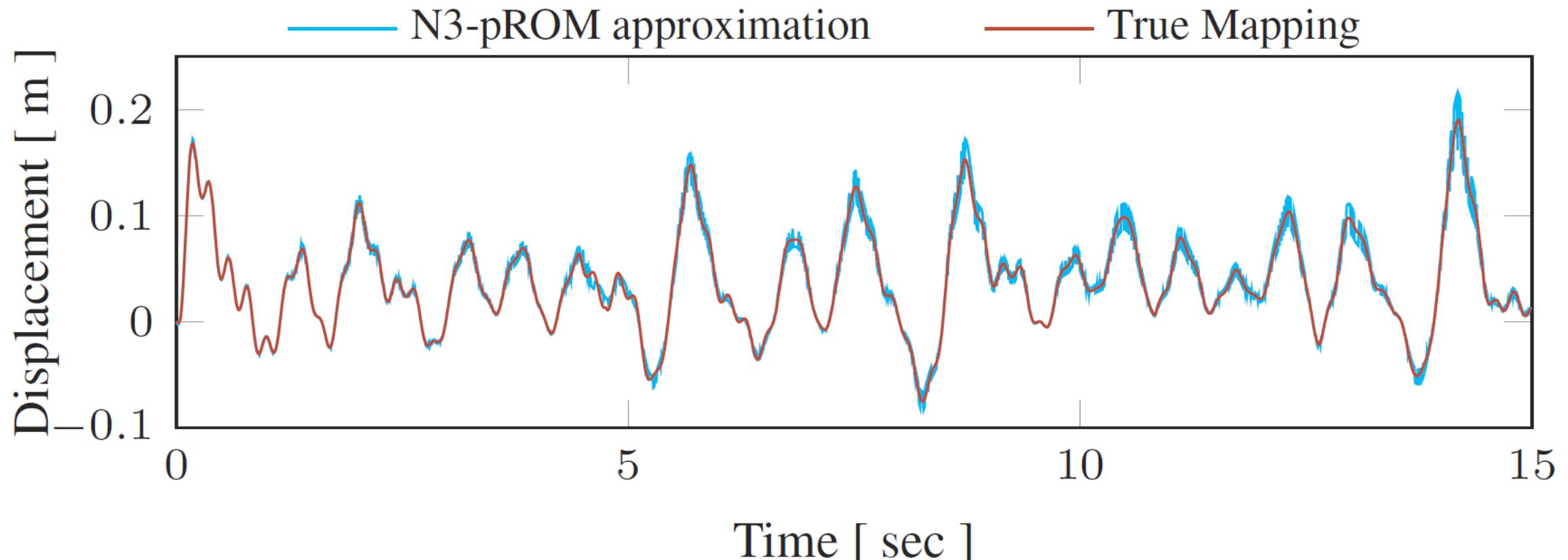
Accuracy performance of the NARX-NN surrogate



*Reduced stiffness terms approximation
(Coordinate d=15)*

Numerical Validation

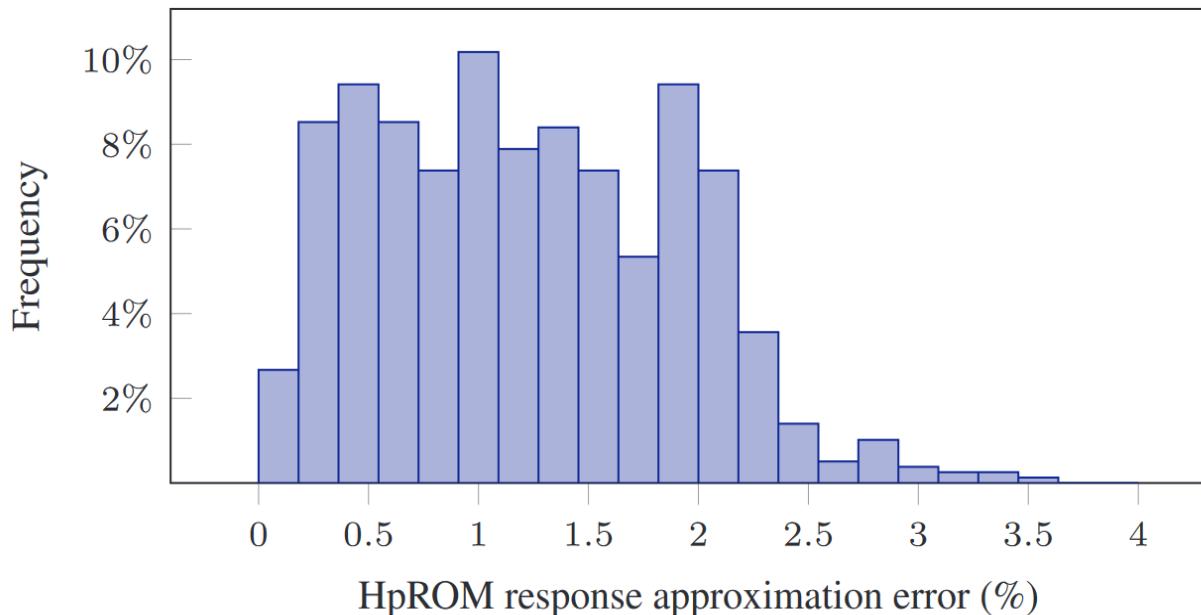
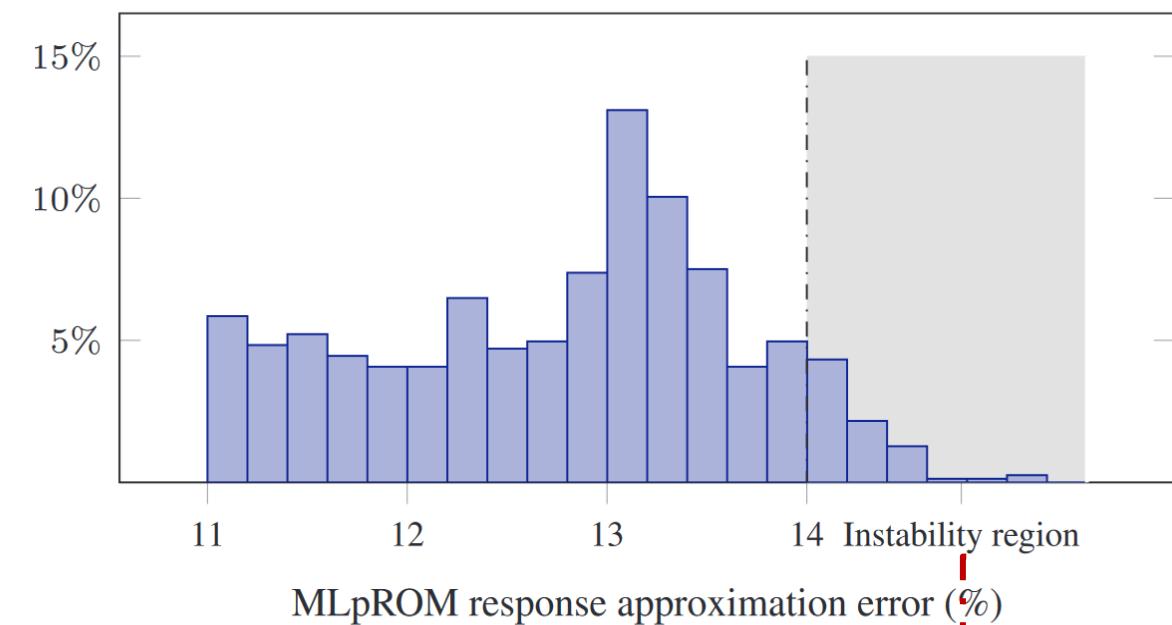
Accuracy performance of the ML-boosted pROM



*Reduced stiffness terms approximation
(Coordinate d=15)*

Numerical Validation

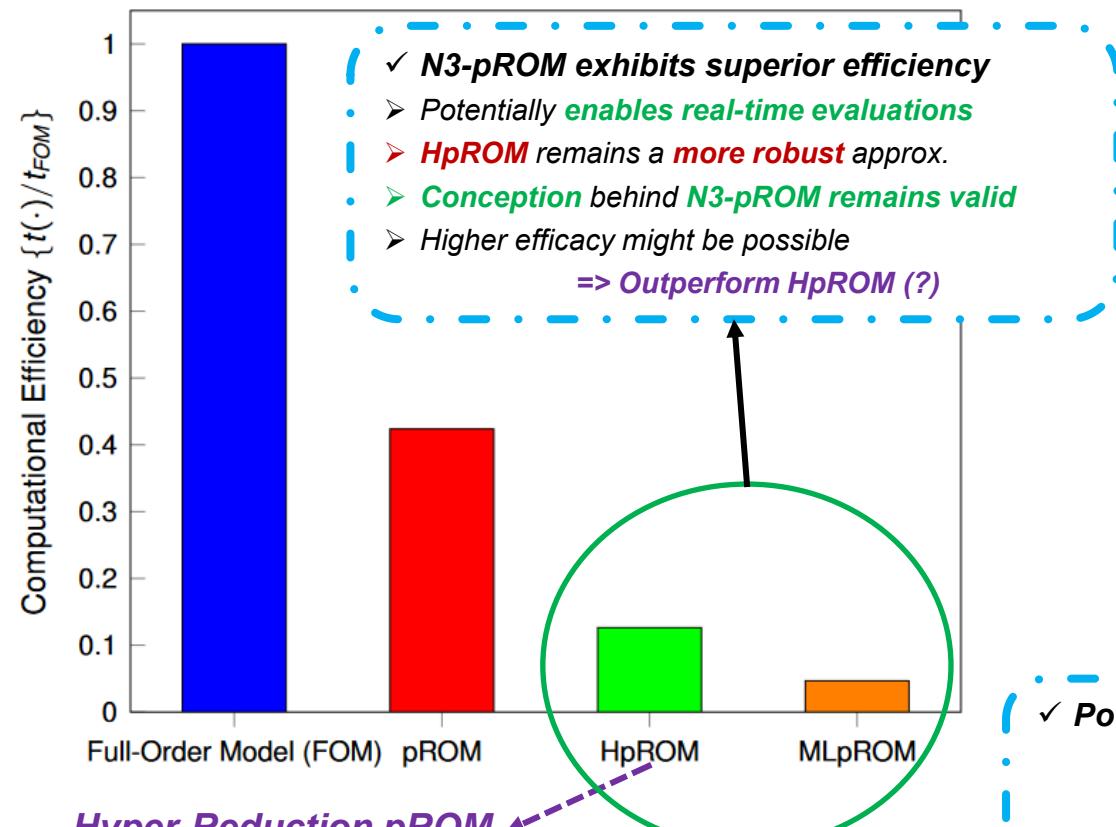
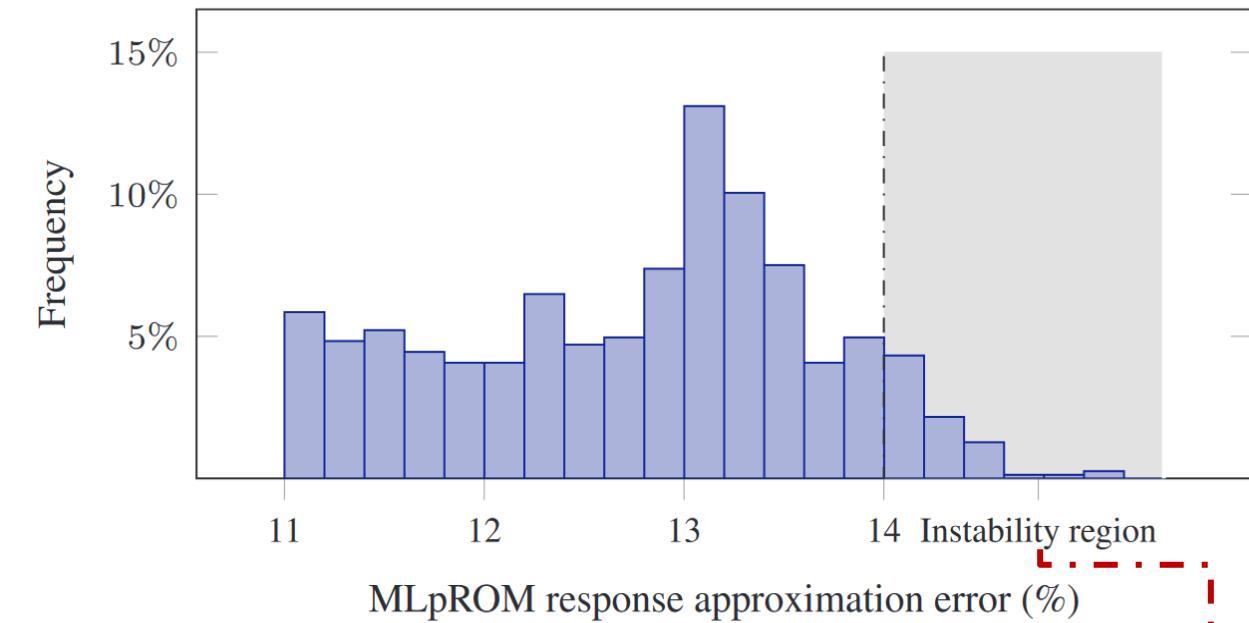
Performance Comparison



- ✓ **Potential Improvements & Extensions**
 - **Instabilities** due to error propagation
 - ✓ Use **only displacement as input**
 - ✓ **Don't feed in previous predictions in closed loop**
 - Use **temporal CNNs** or other surrogates to **improve accuracy**

Numerical Validation

Performance Comparison



- ✓ **Potential Improvements & Extensions**
 - **Instabilities** due to error propagation
 - ✓ Use **only displacement as input**
 - ✓ Don't feed in previous predictions in closed loop
 - Use **temporal CNNs** or other surrogates to **improve accuracy**

Concluding remarks

Limitations and outlook

The proposed machine-learning boosted N3-pROM

- ✓ Exhibits *superior efficiency* and potentially *enables (near) real-time ROM evaluations*
- ✓ *Captures underlying dynamics* and dependencies employing *dynamics-based clustering*
- ✓ Proposes a way to exploit machine learning tools to potentially *enhance the performance* of traditional projection-based ROMs to *deliver superior frameworks*
- ✓ May be adapted as an *approximative, online low-cost surrogate* for *Structural Health Monitoring* applications

- Proof-of-concept case study, *generalization* and implementation on large numerical case studies is needed
- *Instabilities* due to error propagation in closed loop formulation
- Parametric dependencies on the nonlinear mapping level need to be addressed
- Hyper-Reduction pROM remains a *more robust* approximation

Next short-term steps:

- ❖ *Treat instabilities* by modifying the surrogate so as not to rely on previous predictions
- ❖ *Generalize implementation:*
 - Improve surrogate accuracy by employing superior NN-based mappings
 - Treat dependencies on the nonlinear mapping level
 - Apply approach on large scale case studies
- ❖ Generalize machine-learning boosted pROM by *addressing the POD projection limitation*

Question session