
||
Placeholder for organisational unit name / logo

(edit in slide master via “View” > “Slide Master”)

A Physics-based Reduced Order Model with Machine 

Learning Boosted Hyper-Reduction

Vlachas Konstantinos*, David Najera-Flores**, Carianne Martinez#, Adam R. Brink#, Prof. Dr. Eleni Chatzi*

*Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Stefano-Franscini-Platz-5, 8093,Zurich, Switzerland, chatzi@ibk.baug.ethz.ch

** University of California, San Diego & ATA Engineering, San Diego, California

#Applied Machine Intelligence, Sandia National Laboratories, Albuquerque, New Mexico

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of 

Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

05.01.2021 1Konstantinos Vlachas

SAND2022-1356CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

mailto:chatzi@ibk.baug.ethz.ch


||
Placeholder for organisational unit name / logo

(edit in slide master via “View” > “Slide Master”)
05.01.2021 2

Problem Statement
Virtualization of nonlinear dynamical systems

2

Reference system

(real-life)

HFM features:

Complex dynamics

Nonlinear behaviour

Parametric dependencies on:

• Geometric features

• Material properties

• EOPs:

Environmental conditions

Operational conditions

• Excitation 

High Fidelity Model
(finite element model)

physics-based

parametric Reduced Order Model
(low-order, equivalent model)

Low-order representation that:

Captures underlying dynamics

Reproduces physical behaviour

Retains parametric dependencies 

Computationally efficient

Konstantinos Vlachas

Virtual representation

( Digital-Twin )
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Virtual representation

( Digital-Twin )

Projection-based reduction enables:
• Representation of the full response of 

the HFM (displacements, velocities, 

accelerations, stresses).

• the use of the ROM for making 

predictions, thus creating the potential 

for a higher level SHM system.
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Vector of parameters p
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Approach conceptualization
Framework components

Sample parametric realizations

=> Full-order HFM evaluations

High Fidelity Model
(finite element model)

Parametric dependencies
(structural properties & excitation traits)

Projection-based reduction via POD

Latin Hypercube Sampling design

on realizations of vector p

Projection on governing equations of motion:

Mass matrix

Response time history

Internal forces 

(nonlinear)
External excitation

Reference system

(real-life)
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Approach conceptualization
Framework components

Sample parametric realizations

=> Full-order HFM evaluations

High Fidelity Model
(finite element model)

Parametric dependencies
(structural properties & excitation traits)

Latin Hypercube Sampling design

on realizations of vector p

Projection on governing equations of motion:

Projection (Reduced-Order) Basis

Projection-based reduction via POD

Reference system

(real-life)



||
Placeholder for organisational unit name / logo

(edit in slide master via “View” > “Slide Master”)

Vector of parameters p

05.01.2021 6Konstantinos Vlachas

Approach conceptualization
Framework components

Sample parametric realizations

=> Full-order HFM evaluations

High Fidelity Model
(finite element model)

Parametric dependencies
(structural properties & excitation traits)

Latin Hypercube Sampling design

on realizations of vector p

Approximate reduced subspace via the Proper 

Orthogonal Decomposition* on response data

*Proper Orthogonal Decomposition

POD modes

Projection-based reduction via POD

Reference system

(real-life)
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Approach conceptualization
Framework components

Sample parametric realizations

=> Full-order HFM evaluations

High Fidelity Model
(finite element model)

Reference system

(real-life)

Parametric dependencies
(structural properties & excitation traits)

Local ROMs MAC-based clustering

For each sample, a POD subspace that 

captures local dynamic behavior is assembled

• Modal Assurance Criterion indirectly relates POD 

modes that capture local effects

• Enables dynamics-based clustering

& adaptive sampling

Projection-based reduction via POD
Approximate reduced subspace via the Proper 

Orthogonal Decomposition* on response data
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Approach conceptualization
Framework components

Sample parametric realizations

=> Full-order HFM evaluations

High Fidelity Model
(finite element model)

Parametric dependencies
(structural properties & excitation traits)

Local ROMs
MAC-based

clustering

Projection-based reduction via POD

Reference system

(real-life)

Physics-based parametric 

Reduced Order Model

• A subspace for each sample via Proper 

Orthogonal Decomposition* on response data

• Form clusters on parametric domain based on 

local dynamics => POD subspaces similarity

• Validation sample uses POD basis of assigned 

cluster for projection & ROM integration
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Approach conceptualization
Framework components

Sample parametric realizations

=> Full-order HFM evaluations

High Fidelity Model
(finite element model)

Parametric dependencies
(structural properties & excitation traits)

Local ROMs MAC-based clustering

Projection-based reduction via POD

Reference system

(real-life)

Physics-based parametric 

Reduced Order Model

Virtual representation

( Digital-Twin )
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Modal Assurance Criterion 

• Measure of consistency between modeshapes Φ

• System Identification: 

A form of confidence factor when evaluating modal 

vectors from different sources.

• Local POD projection bases

=> POD modes capturing localized behavior

• MAC between POD modes

=> Relate subspace eigenvectors 

=> Dynamics-based clustering

=> Define sampling rate adaptively

Konstantinos Vlachas

Framework Components - Explanation
Modal Assurance Criterion-guided clustering/sampling
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Advantages / Implications

• MAC assumes functionality of error indicator

• Enables adaptive sampling (coarse rate to finer)

=> Reduces training cost/resources

• Physics-based interpretability

=> MAC relates local dynamics

Modal Assurance Criterion 

Konstantinos Vlachas

Framework Components - Explanation
Modal Assurance Criterion-guided clustering/sampling
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POD - Projection-based Reduction

Konstantinos Vlachas

Proper Orthogonal DecompositionAssemble POD Basis

Limitations:

➢ POD is a linear operator
Linearization in neighbourhood of stable points is assumed to 

address nonlinearities

➢ Accuracy for new parametric states relies on clustering or 

interpolation between POD bases

Framework Components – Limitations
Projection-based parametric ROM bottleneck

Ongoing research

Not addressed in this contribution
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The full-order, high fidelity finite element model depends on a parametric input state.

The parametric states are first sampled. The respective parameters may represent:

• system properties: yield stress, hysteretic damping coeffs.

• excitation traits: amplitude of ground motion, frequency content

Step 1: Parametric input states

05.01.2021 13

Training / Offline Phase

Notation:

: Full-order dimension

: Number of training samples

: Number of simulated timesteps

: Mass matrix

: External forcing

: Response solution

Konstantinos Vlachas

Step 2: Time Integration of Full Model

For each parametric state:

➢ Assemble system matrices

(stiffness K / mass M / damping C / Excitation f

➢ Evaluate the time domain response (integration)

Framework Components – Limitations
Projection-based parametric ROM bottleneck
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Step 2: Time Integration of Full Model

Step 3: Assemble matrices and evaluate Equations of Motion

Step 4: Compute Residual and “predict” correction 

Step 5: Employ updated solution to re-assemble nonlinear terms & matrices

Nonlinear terms

Framework Components – Limitations
Projection-based parametric ROM bottleneck
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Step 1: Parametric input states
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ROM Evaluation / Online Phase

Konstantinos Vlachas

Step 2: Time Integration of ROM

Step 3: Assemble matrices and evaluate Equations of Motion

Step 4: Compute Residual on Equations and “predict” correction 

Step 5: Employ updated solution to re-assemble nonlinear terms & matrices

Framework Components – Limitations
Projection-based parametric ROM bottleneck

Nonlinear terms

still scale with full dimension
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Step 2: Time Integration of ROM

Step 3: Assemble matrices and evaluate Equations of Motion

Nonlinear terms

still scale with full dimension

Step 4: Compute Residual on Equations and “predict” correction 

Step 5: Employ updated solution to re-assemble nonlinear terms & matrices

➢ The evaluation of the nonlinear terms still 

scales with the full order dimension.

➢ For every solution increment we need to:

• Project displ./vel. back to full-order

• Evaluate nonlinear terms

• Update forces and stiffness matrix

• Project updated matrices back to 

reduced-order coordinates.

This back-and-forth projection is a major 

computational bottleneck.

Especially in large scale systems 

where time integration savings cannot outweigh

the projection & evaluation.

To address this, we rely on hyper-reduction:

A second-tier approximation of the nonlinear 

contributions.

Framework Components – Limitations
Projection-based parametric ROM bottleneck
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Step 5: Employ updated solution to re-assemble nonlinear terms & matrices
➢Back & forth projection to update nonlinear terms 

compromises efficiency

➢Hyper-reduction is introduced

• Several alternatives available 

(ECSW, DEIM, GNAT, EQM) 

✓ Hyper-reduction is essential for efficiency 

❖ Introduces an additional source of error

that outweighs the POD reconstruction error

=> Bottleneck for the parametric ROM

Machine Learning Boosted pROM
Hyper-Reduction surrogate through ML

✓ N3-PROM

➢ Replaces hyper-reduction with NARX-NN surrogate

➢ Learns nonlinear mapping directly in ROM coordinates

➢ Every iteration contributes nonlinear mapping training data

=> A single training realization has thousands of datapoints

➢ Potential superiority in efficiency => Real-time evaluations

Nonlinear force terms

Nonlinear stiffness terms
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Machine Learning Boosted pROM
Network implementation details

✓ N3-PROM

➢ Replaces hyper-reduction with NARX-NN surrogate

➢ Learns nonlinear mapping directly in ROM coordinates

➢ Every iteration contributes nonlinear mapping training data

=> A single training realization has thousands of datapoints

➢ Potential superiority in efficiency => Real-time evaluations

Neural Network Details

✓ NARX-NN training process

➢ High fidelity simulations on training samples

➢ Local ROMs assembly and MAC-guided clustering

➢ For every cluster train a separate NN mapping

➢ The mapping data on the ROM coordinates are produced for 

each sample based on the cluster’s projection basis

➢ 90% of samples are used for NN training, 10% for testing

➢ All datapoints of the time history response are used for 

training/testing respectively
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Numerical Validation
Case study description

Two-story shear frame with hysteretic links

Hysteretic links response model

➢ Total restoring force:

➢ Bouc-Wen equation with degradation/deterioration effects:

Characteristics of the Bouc-Wen links:
: Smoothness and shape of hysteresis curve
: Degradation/Deterioration effects
: Linear/Hysteretic contribution weighting

Benchmark example featured in:
• Vlachas K. et al. "A local basis approximation approach for nonlinear parametric model order

reduction." Journal of Sound and Vibration 502 (2021): 116055.

• Vlachas K. et al. " Two-story frame with Bouc-Wen hysteretic links as a multi-degree of freedom
nonlinear response simulator.“ 5th edition of Workshop on Nonlinear System Identification

Benchmarks, https://github.com/KosVla/NonlinearBoucWenFrameBenchmark.git, 2021.

Sinusoidal ground motion excitation

Parametric dependencies: Angle of ground motion & Amplitude factor
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Initial approximation error

(One single cluster)

Numerical Validation
Performance of MAC-guided clustering

Final approximation error

(Three clusters)
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Example Detailed Task Formulation

Input: 

• Reduced-Order Displacements in current iteration (and previous ones) 

• Reduced-Order Force terms in previous iteration(s)

• Reduced-Order Stiffness terms in previous iteration(s)

Output:

• Reduced-Order Force terms in current iteration

• Reduced-Order Stiffness terms in current iteration

✓ N3-PROM

➢ Replaces hyper-reduction with NARX-NN surrogate

➢ Learns nonlinear mapping directly in ROM coordinates

➢ Every iteration contributes nonlinear mapping training data

=> A single training realization has thousands of datapoints

➢ Potential superiority in efficiency => Real-time evaluations

Numerical Validation
Network mapping example
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Numerical Validation
Accuracy performance of the NARX-NN surrogate

Reduced internal forces approximation

(Coordinate d=1)
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Numerical Validation
Accuracy performance of the NARX-NN surrogate

Reduced internal forces approximation

(Coordinate d=4)
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Numerical Validation
Accuracy performance of the NARX-NN surrogate

Reduced stiffness terms approximation

(Coordinate d=3)
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Numerical Validation
Accuracy performance of the NARX-NN surrogate

Reduced stiffness terms approximation

(Coordinate d=15)
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Numerical Validation
Accuracy performance of the ML-boosted pROM

Reduced stiffness terms approximation

(Coordinate d=15)
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Numerical Validation
Performance Comparison

✓ Potential Improvements & Extensions

➢ Instabilities due to error propagation

✓ Use only displacement as input

✓ Don’t feed in previous predictions in closed loop

➢ Use temporal CNNs or other surrogates to improve accuracy
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Numerical Validation
Performance Comparison

✓ Potential Improvements & Extensions

➢ Instabilities due to error propagation

✓ Use only displacement as input

✓ Don’t feed in previous predictions in closed loop

➢ Use temporal CNNs or other surrogates to improve accuracy

Hyper-Reduction pROM

✓ N3-pROM exhibits superior efficiency

➢ Potentially enables real-time evaluations

➢ HpROM remains a more robust approx.

➢ Conception behind N3-pROM remains valid 

➢ Higher efficacy might be possible 

=> Outperform HpROM (?)
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Concluding remarks
Limitations and outlook

✓ Exhibits superior efficiency and potentially enables (near) real-time ROM evaluations

✓ Captures underlying dynamics and dependencies employing dynamics-based clustering

✓ Proposes a way to exploit machine learning tools to potentially enhance the performance of traditional projection-

based ROMs to deliver superior frameworks

✓ May be adapted as an approximative, online low-cost surrogate for Structural Health Monitoring applications

➢ Proof-of-concept case study, generalization and implementation on large 

numerical case studies is needed

➢ Instabilities due to error propagation in closed loop formulation

➢ Parametric dependencies on the nonlinear mapping level need to be addressed

➢ Hyper-Reduction pROM remains a more robust approximation

The proposed machine-learning boosted N3-pROM

Next short-term steps:

❖ Treat instabilities by modifying the surrogate so as not to rely on previous predictions

❖ Generalize implementation:

Improve surrogate accuracy by employing superior NN-based mappings

Treat dependencies on the nonlinear mapping level

Apply approach on large scale case studies

❖ Generalize machine-learning boosted pROM by addressing the POD projection limitation



||
Placeholder for organisational unit name / logo

(edit in slide master via “View” > “Slide Master”)

Question session
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