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Low-Rank Canonical Polyadic (CP) Poisson Tensor Decomposition
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Task
• Fit low-rank CP tensor model to Poisson-distributed nonnegative integer data.
• Nonlinear, non-convex optimization problem
• Approach: Use local method for maximum likelihood estimation from many initial guesses (”multi-

start”).
• Current local methods converge to maximum likelihood estimator (MLE) only a fraction of solves.
• Previous work: Examine trade-offs between several state-of-the-art local methods.†

Our Contributions
• Leverage trade-offs between multiple methods CP Poisson tensor decomposition in a hybrid fashion.
• Preliminary result: hybrid approach can minimize approximation error & reduce computational 

cost on synthetic data.

† Jeremy M. Myers and Daniel M. Dunlavy. Using computation effectively for scalable Poisson tensor factorization: Comparing methods beyond computational efficiency. In 2021 IEEE High 
Performance Extreme Computing Conference, HPEC 2021, Waltham, MA, USA, September 20-24, 2021, pages 1–7. IEEE, 2021. 



Low-Rank CP Poisson Tensor Decomposition
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• Let 𝒳 be a 𝑑-way tensor of size 𝑛!×⋯×𝑛" of Poisson-distributed non-negative integers.
• A low-rank CP Poisson tensor decomposition can be computed by estimating the parameters ℳi

that minimizes the negative log-likelihood function (NLL):
min
ℳ

𝑓(𝒳,ℳ) = ∑iℳi − 𝒳ilog(ℳi), 

where i is a tuple over the tensor entries (multi-index), ℳ is a rank-𝑅 CP tensor model, 
and 𝐴$, 𝑘 ∈ 1, … , 𝑑 defined as:

ℳ = ∑%&!' 𝜆( 𝐴! : , 𝑟 ∘ ⋯ ∘ 𝐴" : , 𝑟 .

• The maximum likelihood estimator, >𝑀∗, estimates the global optimizer.

• Applications
• network analysis
• term-document analysis
• email analysis

• link prediction
• geospatial analysis
• web page analysis



Low-Rank CP Poisson Tensor Decomposition – Two Local methods
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Generalized CP (GCP)
• General loss function framework.
• All-at-once, gradient descent
• Variant to consider: GCP with Adam 

optimization (GCP-Adam).
• stochastic gradient descent
• linear convergence
• scalable: uses sampling for objective 

function estimation and gradient 
computations

• lower fraction of multi-starts 
converge to MLE

CP Alternating Poisson Regression (CPAPR)
• Specialized framework for Poisson loss with identity 

link.
• Alternating, block-coordinate descent
• Variant to consider: Multiplicative Updates (MU).
• fixed-point iteration
• sublinear convergence
• performant: rich in dense matrix operations
• higher fraction of multi-starts converge to MLE

Goal: a hybrid method that leverages these advantages



Cyclic GCP-CPAPR Hybrid
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Inspired by Simulated Annealing†
• Model solution space as thermodynamic system & move to a state with the lowest possible 

energy/temperature.
While (not converged)

“Heat” the system to rise above local minima via stochastic search.
“Cool” the system toward global minimum via deterministic search.

• Heating & cooling steps often follow a strategy---some parameterization of stochastic 
and deterministic search.

Cyclic GCP-CPAPR Hybrid Approach
For 𝑙 = 1, … , 𝐿

Perform heating step via GCP according to some strategy.
Perform cooling step via CPAPR according to some strategy.

• Possibly update strategy for each value of 𝑙 (i.e., for each cycle).
† S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. SCIENCE, 220 (4598): 671–680, 1983.



Numerical Experiments
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• Synthetic tensor 𝒳: 1000 x 1000 x 1000, R = 20, 0.01% dense, 10% of nonzeros are noisy
• Out-of-sample validation set

• Run GCP-Adam & CPAPR-MU separately to convergence with very high precision & very large number of 
epochs (GCP) or iterations (CPAPR).

• Repeat for N = 10,000 random starting points for each method.
• Set MLE  '𝑀∗ ≔ CP Poisson tensor model among all 20,000 approximations with lowest NLL value.

• Cyclic GCP-CPAPR Hybrid experiment
• Fix W = 100, a work budget for all experiments.
• Repeat for n = 100 random starting points.

for j = 0, …, W, 
k = W - j
run GCP-Adam starting with random '𝑀 for maximum j epochs -> '𝑀"

run CPAPR-MU starting with '𝑀" for maximum k iterations -> '𝑀#

Set '𝑀$,& = '𝑀# as the current estimator



Results for Numerical Experiments

7

• Recall: Problem is non-convex, so we use multi-start to estimate MLE (global optimizer).

• A𝑃*(𝜖): estimates probability from our numerical experiments that method A converges to solution 
with NLL value in radius-𝜖 ball of the MLE.

𝜖 "𝑷𝑮𝑪𝑷-𝑨𝒅𝒂𝒎 "𝑷𝑪𝑷𝑨𝑷𝑹-𝑴𝑼 "𝑷𝒉𝒚𝒃𝒓𝒊𝒅 Best hybrid pair (j,k)

10-: 1.00 1.00 1.00 all
10-; 0.27 0.69 0.65 (0,100)
10-< 0 0.05 0.16 (1,99)
10-= 0 < 0.01 0.13 (4,96)
10-> 0 0 0.03 (8,92)
10-? 0 0 0.01 (8,92)



Results for Numerical Experiments

𝑓 𝑿, '𝑴𝒋,𝒌 − 𝑓 𝑿, '𝑴∗
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Blue: Combinations of j & k where hybrid 
minimizer leads to better approximate MLE 
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Results for Numerical Experiments
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Factor match score (FMS) †: a cosine similarity-like score in [0,1]

† Eric C. Chi and Tamara G. Kolda. On Tensors, Sparsity, and Nonnegative Factorizations. SIAM Journal on Matrix Analysis and Applications, 33 (4): 1272–1299, January 2012. (Appendix E)
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Results for Numerical Experiments
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Factor match score (FMS) †: a cosine similarity-like score in [0,1]

† Eric C. Chi and Tamara G. Kolda. On Tensors, Sparsity, and Nonnegative Factorizations. SIAM Journal on Matrix Analysis and Applications, 33 (4): 1272–1299, January 2012. (Appendix E)
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Conclusions and Future Work
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Preliminary Conclusions regarding GCP-CPAPR Hybrid
• Can lead to better approximate MLEs (than using either method separately)
• Can be more computationally efficient (by using fewer multi-starts)

Ideas for Future Work
• Extend idea with L > 1 cycles
• Adaptive updates to strategies with L > 1 cycles
• Compare to black-box methods
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Thank you!

Questions?

Jeremy Myers:    jmmyers@cs.wm.edu, jermyer@sandia.gov
Danny Dunlavy: dmdunla@sandia.gov

mailto:jmmyers@cs.wm.edu
mailto:jermyer@sandia.gov
mailto:dmdunla@sandia.gov

