

Sandia
National
Laboratories

Exceptional service in the national interest

William & Mary
Graduate Arts & Sciences

Cyclic GCP-CPAPR Hybrid

Feb. 26, 2022

Jeremy M. Myers^{1, 2}

Daniel M. Dunlavy¹

¹ Sandia National Laboratories, Albuquerque, NM & Livermore, CA

² Department of Computer Science, College of William and Mary, Williamsburg, VA

SIAM Conference on Parallel Processing for Scientific Computing (PP22)
MS71 Parallel Algorithms for Tensor Computations and their Applications

SANDXXXX-XXXXXX

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Task

- Fit low-rank CP tensor model to Poisson-distributed nonnegative integer data.
- Nonlinear, non-convex optimization problem
- Approach: Use **local method** for maximum likelihood estimation from many initial guesses ("**multi-start**").
 - Current local methods converge to **maximum likelihood estimator (MLE)** only a fraction of solves.
 - Previous work: Examine trade-offs between several state-of-the-art local methods.[†]

Our Contributions

- Leverage trade-offs between multiple methods CP Poisson tensor decomposition in a hybrid fashion.
- Preliminary result: hybrid approach can **minimize approximation error** & **reduce computational cost** on synthetic data.

[†]Jeremy M. Myers and Daniel M. Dunlavy. *Using computation effectively for scalable Poisson tensor factorization: Comparing methods beyond computational efficiency*. In 2021 IEEE High Performance Extreme Computing Conference, HPEC 2021, Waltham, MA, USA, September 20-24, 2021, pages 1–7. IEEE, 2021.

Low-Rank CP Poisson Tensor Decomposition

- Let \mathcal{X} be a d -way tensor of size $n_1 \times \dots \times n_d$ of Poisson-distributed non-negative integers.
- A low-rank CP Poisson tensor decomposition can be computed by estimating the parameters \mathcal{M}_i that minimizes the negative log-likelihood function (NLL):

$$\min_{\mathcal{M}} f(\mathcal{X}, \mathcal{M}) = \sum_i \mathcal{M}_i - \mathcal{X}_i \log(\mathcal{M}_i),$$

where i is a tuple over the tensor entries (multi-index), \mathcal{M} is a rank- R CP tensor model, and $A_k, k \in \{1, \dots, d\}$ defined as:

$$\mathcal{M} = \sum_{r=1}^R \lambda_j A_1(:, r) \circ \dots \circ A_d(:, r).$$

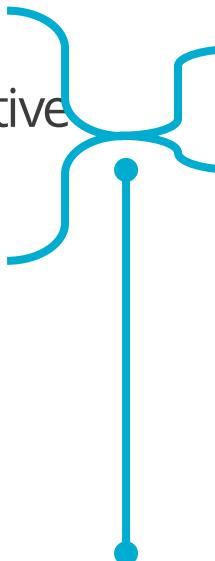
- The maximum likelihood estimator, \hat{M}^* , estimates the global optimizer.
- Applications
 - network analysis
 - term-document analysis
 - email analysis
 - link prediction
 - geospatial analysis
 - web page analysis

Generalized CP (GCP)

- General loss function framework.
- All-at-once, gradient descent
- Variant to consider: *GCP with Adam optimization (GCP-Adam)*.
 - stochastic gradient descent
 - **linear convergence**
 - **scalable**: uses sampling for objective function estimation and gradient computations
 - **lower fraction of multi-starts converge** to MLE

CP Alternating Poisson Regression (CPAPR)

- Specialized framework for Poisson loss with identity link.
- Alternating, block-coordinate descent
- Variant to consider: *Multiplicative Updates (MU)*.
 - fixed-point iteration
 - **sublinear convergence**
 - **performant**: rich in dense matrix operations
 - **higher fraction of multi-starts converge** to MLE



Goal: a hybrid method that leverages these advantages

Inspired by Simulated Annealing[†]

- Model solution space as thermodynamic system & move to a state with the lowest possible energy/temperature.

While (not converged)

“Heat” the system to rise above local minima via stochastic search.

“Cool” the system toward global minimum via deterministic search.

- Heating & cooling steps often follow a *strategy*---some parameterization of stochastic and deterministic search.

Cyclic GCP-CPAPR Hybrid Approach

For $l = 1, \dots, L$

Perform **heating step** via GCP according to some strategy.

Perform **cooling step** via CPAPR according to some strategy.

- Possibly update strategy for each value of l (i.e., for each *cycle*).

[†]S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. *Optimization by simulated annealing*. SCIENCE, 220 (4598): 671–680, 1983.

Numerical Experiments

- **Synthetic tensor \mathcal{X} :** $1000 \times 1000 \times 1000$, $R = 20$, 0.01% dense, 10% of nonzeros are noisy
- **Out-of-sample validation set**
 - Run GCP-Adam & CPAPR-MU separately to convergence with very high precision & very large number of epochs (GCP) or iterations (CPAPR).
 - Repeat for $N = 10,000$ random starting points for each method.
 - Set MLE $\hat{M}^* :=$ CP Poisson tensor model among all 20,000 approximations with lowest NLL value.
- **Cyclic GCP-CPAPR Hybrid experiment**
 - Fix $W = 100$, a *work budget* for all experiments.
 - Repeat for $n = 100$ random starting points.

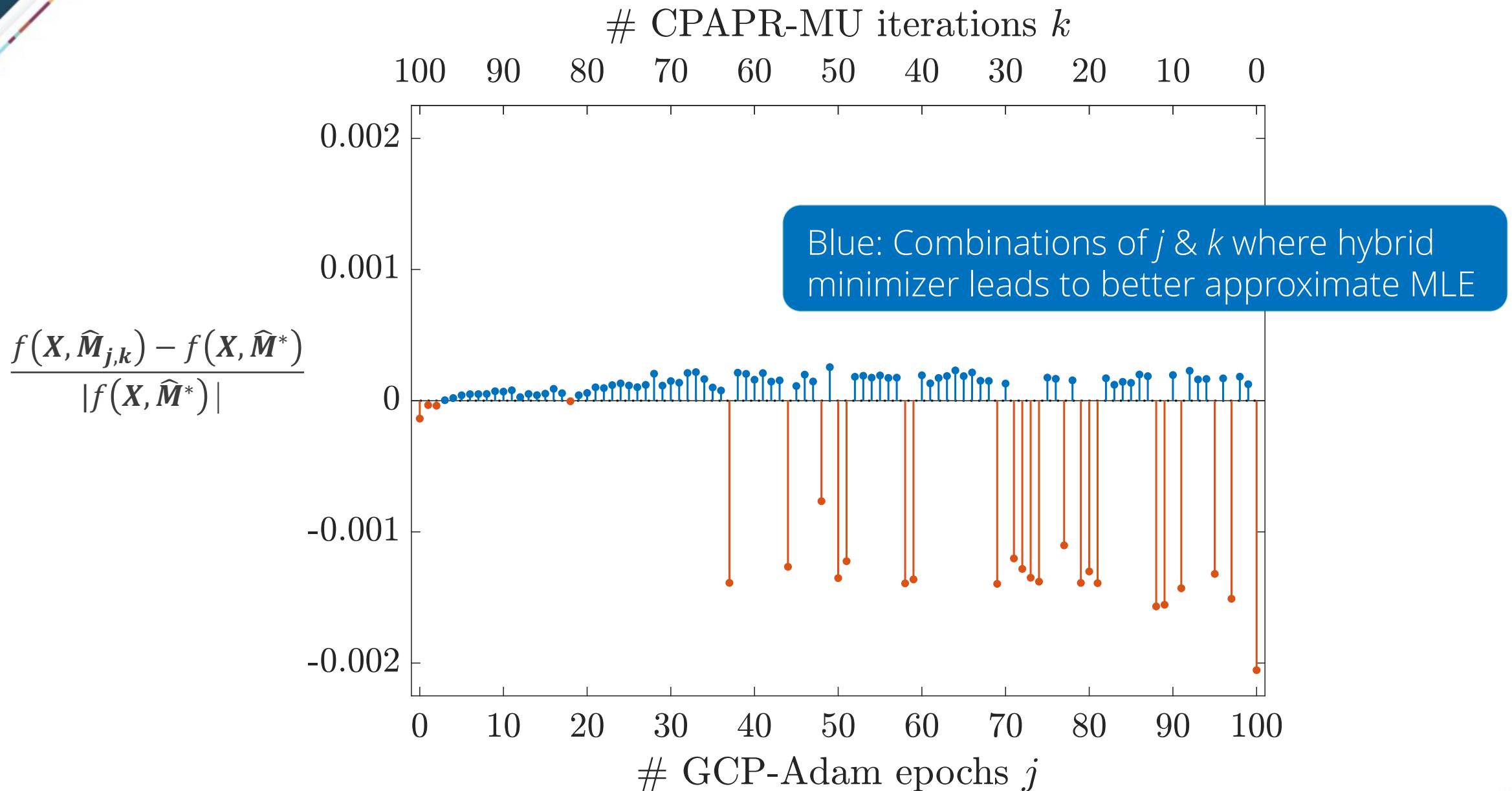
```
for j = 0, ..., W,  
  k = W - j  
  run GCP-Adam starting with random  $\hat{M}$  for maximum j epochs ->  $\hat{M}_1$   
  run CPAPR-MU starting with  $\hat{M}_1$  for maximum k iterations ->  $\hat{M}_2$   
  Set  $\hat{M}_{j,k} = \hat{M}_2$  as the current estimator
```


Results for Numerical Experiments

- Recall: Problem is non-convex, so we use multi-start to estimate MLE (global optimizer).
- $\hat{P}_A(\epsilon)$: estimates probability from our numerical experiments that method A converges to solution with NLL value in radius- ϵ ball of the MLE.

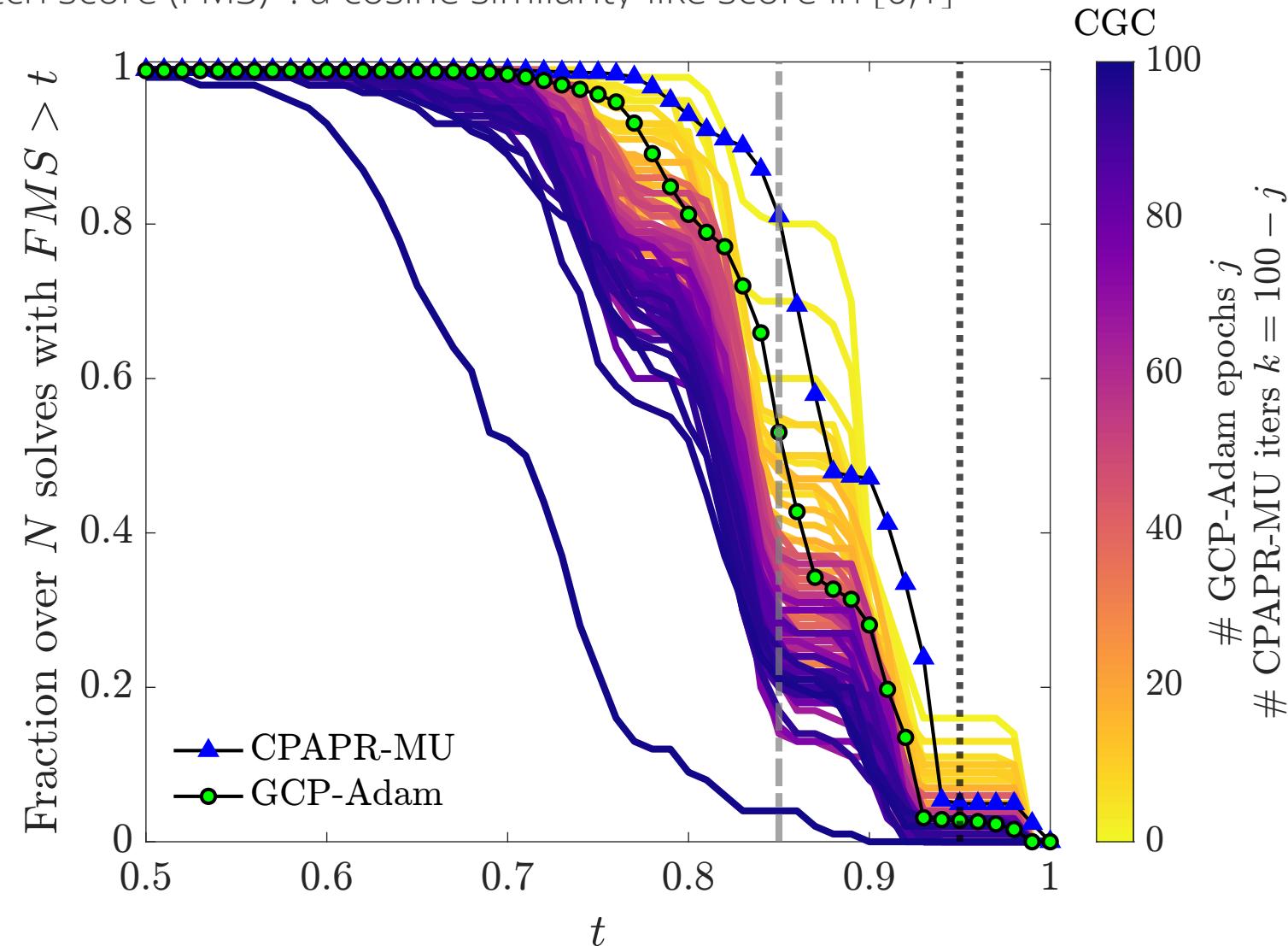
ϵ	$\hat{P}_{GCP-Adam}$	$\hat{P}_{CPAPR-MU}$	\hat{P}_{hybrid}	Best hybrid pair (j,k)
10^{-1}	1.00	1.00	1.00	all
10^{-2}	0.27	0.69	0.65	(0,100)
10^{-3}	0	0.05	0.16	(1,99)
10^{-4}	0	< 0.01	0.13	(4,96)
10^{-5}	0	0	0.03	(8,92)
10^{-6}	0	0	0.01	(8,92)

Results for Numerical Experiments



Results for Numerical Experiments

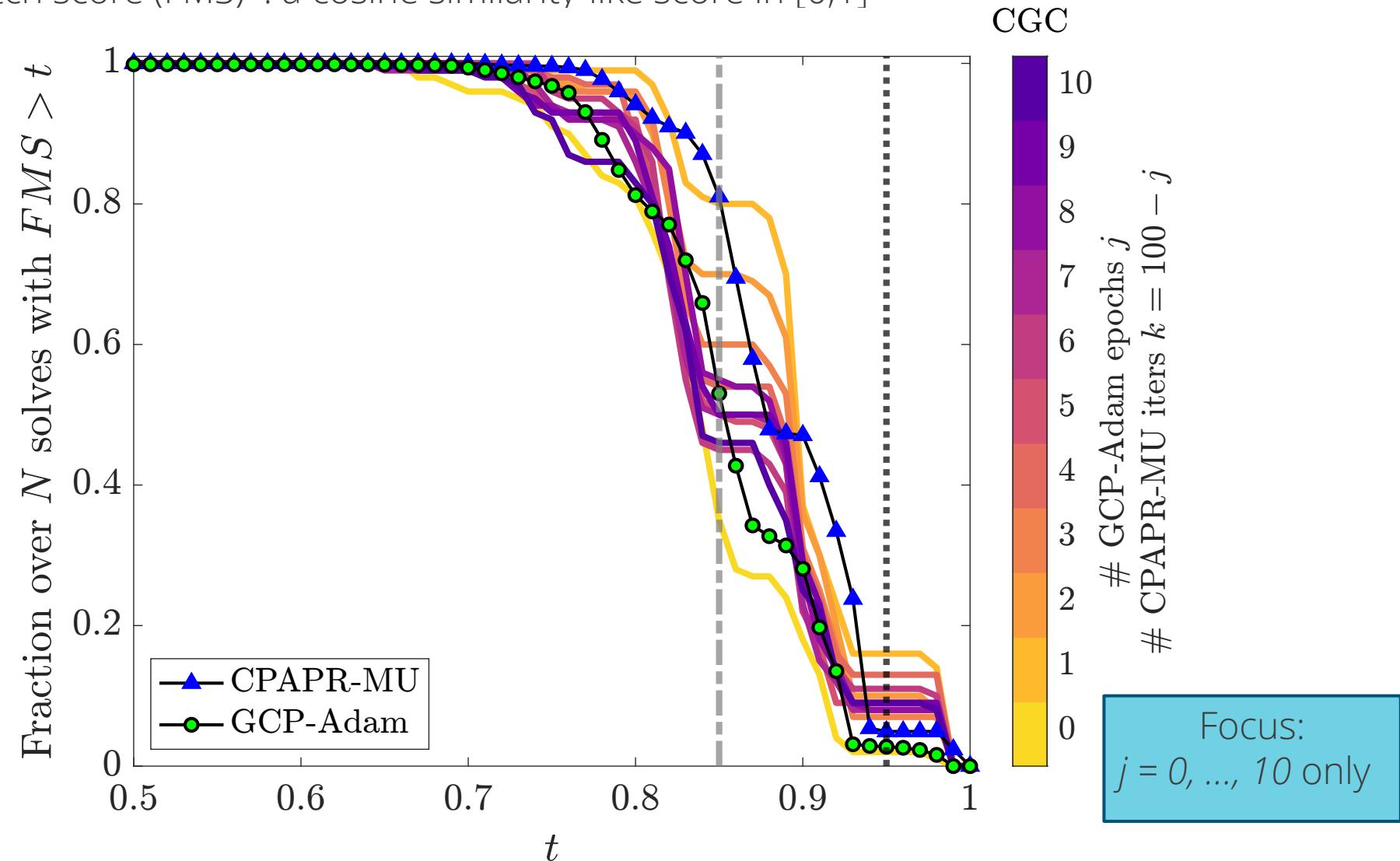
Factor match score (FMS)[†]: a cosine similarity-like score in [0,1]



[†] Eric C. Chi and Tamara G. Kolda. *On Tensors, Sparsity, and Nonnegative Factorizations*. SIAM Journal on Matrix Analysis and Applications, 33 (4): 1272–1299, January 2012. (Appendix E)

Results for Numerical Experiments

Factor match score (FMS)[†]: a cosine similarity-like score in [0,1]



[†] Eric C. Chi and Tamara G. Kolda. *On Tensors, Sparsity, and Nonnegative Factorizations*. SIAM Journal on Matrix Analysis and Applications, 33 (4): 1272–1299, January 2012. (Appendix E)

Conclusions and Future Work

Preliminary Conclusions regarding GCP-CPAPR Hybrid

- Can lead to better approximate MLEs (than using either method separately)
- Can be more computationally efficient (by using fewer multi-starts)

Ideas for Future Work

- Extend idea with $L > 1$ cycles
- Adaptive updates to strategies with $L > 1$ cycles
- Compare to black-box methods

Thank you!

Questions?

Jeremy Myers:

jmmyers@cs.wm.edu, jermyer@sandia.gov

Danny Dunlavy:

dmdunla@sandia.gov