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What is Motion Magnification?

Overview of Motion Magnification
> Magnifying 1D signals
> Analogies to the FFT Shift Theorem
o Construction of Complex Filters
> Filtering and Reconstruction
> Magnifying 2D Signals

Applications of Motion Magnification

Review



What is Motion
Magnification”?




Deformations are generally pretty small in structural
dynamics

Many structural dynamics tests result in images with incredibly small motions
o Typically 0.01 to 0.1 pixels for a modal test
From the test engineer’s perspective the all images in a test look identical

Generally need specialized software to extract motions from test images
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Why do Motion Magnification?

Gain an intuition that isn’t possible with stick models

o Can see the entire surface, not just positions you have
measurement points

Lower noise floor than other optical techniques

o Literature has shown that using Motion Magnification as a
pre-processor to DIC can lower the noise floor

Communicate test results with non-technical people
o Almost anyone looking at it understands what’s going on
> Motivate studies, get money

Plus it’s just really cool




Overview of Motion
Magnification




How is Motion Magnification Performed?

Phase-based Motion Magnification utilizes local complex filters to extract phase
information from an image that can be magnified and used to reconstruct magnified
motions on an image.

> The reference and deformed images are filtered by a bank of complex filters
> Phase quantities are computed at each pixel in each image for each filter

> Phase changes are computed by subtracting phases from deformed images from those from
the reference image

> These phase changes can be scaled by some amplification factor, and the image can then be
reconstructed.

See paper #12641 — Motion Magnification Tutorial for Structural Dynamics in the
conference proceedings for complete code to perform these operations

Wadhwa, N.; Rubinstein, M.; Durand, F. & Freeman, W. T. Phase-based Video Motion Processing
ACM Trans. Graph., ACM, 2013, 32, 80:1-80:10



Starting Small — One-dimensional magnification

Say we have a signal consisting of two moving pulses that we would like to magnify.
> Pulses move left and right in time, similar to how a feature might move throughout an image

o Make sure you understand that we aren’t magnifying or scaling the signal itself, we are
magnifying motions in the signal
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Understanding moving signals via phase modification

The Fourier Shift Theorem is often used in signal processing to translate a signal in time.

The Fourier Shift Theorem says that if we multiply the Frequency-Domain representation of a signal
by a linear phase term, the Signal-Domain representation of the signal is shifted by the slope of that

linear phase term.
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However, we cannot use this to magnify motions!

Given the previous slide, one might expect that if we compute the change in phase of
the FFT between some deformed and reference signal, we could magnify that phase
change to magnify the difference between the deformed and reference signal.

The issue is that the basis functions used in the FFT (sine waves) span the entire length

of the signal.

By adjusting the phase of the sine wave, we can either move the entire sine wave left or

right. We cannot mov
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Better basis functions for magnification

The FFT can very precisely identify frequency, but it cannot identify were in time that
frequency occurs

> Ability to localize frequency, but not time

However, if we window the sinusoid, this now lets us localize in time

Frequency representation becomes broader due to time/frequency uncertainty principal

> Note we still need some localization in frequency, so we cannot collapse our window down to a
Dirac delta
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Construction of Complex
Filters




Creating a set of filters for motion processing

Note that for the FFT to construct a signal from sine waves,
we needed all frequency bins to be covered.

Similar arguments must be made for these filters:
o Filters now span multiple frequency bins

o Rather than having one filter per frequency bin, the summation of
all filters must sum-square to a constant value

o Filters will overlap

Wadhwa paper uses constructs cosine-shaped octave filters
in the frequency domain
o See paper #12641 — Motion Magnification Tutorial for Structural

Dynamics in the conference proceedings for complete code to
construct these filters

Note these filters form band-pass filters. We also need to
include a low-pass and high-pass filter to sum-square across
the entire frequency domain

Wadhwa, N.; Rubinstein, M.; Durand, F. & Freeman, W. T. Phase-based Video Motion Processing
ACM Trans. Graph., ACM, 2013, 32, 80:1-80:10
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What do these filters look like?

Note:
> Where the frequency of the filter matches the signal, the signal can pass through

> Where the frequency of the filter does not match the signal, the signal is attenuated

> As the frequency representations of the filters get bigger (higher frequencies) the time
representations get smaller
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Reconstructing the signal from the various filters

Filters sum-square to 1, meaning if we filter the signal twice (e.g. multiply by the
frequency representation squared) and sum contributions from each filter, we will exactly
reconstruct our original signal.
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Where's the phase?

Up to this point, we have:
o Generated real-valued signals

o Filtered them with real-valued filters symmetric about the zero frequency
o Obtained real-valued filtered signals

We have been discussing phases and complex filter banks, so how do we obtain those?



Creating and Filtering with Complex Filters

By setting the negative frequency components of a 2-sided FFT to zero and taking the
IFFT, we get a complex signal where the real part is 90 degrees out of phase with the
imaginary part.

Note that we have halved the amplitude of the bandpass filter response by removing half
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Performing Motion Magnification

With the filter banks constructed, we can now perform

motion magnification: | | Amplification: 0.01x
|. Filter reference and deformed signals with complex filter 401
banks -
2. Subtract deformed phases from reference phases (wrap
from —1T to ) . ”
3. Scale phases by an amplification factor 54
4. Muluply filtered reference signal by a complex number with & lire

unit amplitude and amplified phase

5. Filter signal with filters a second time (sum-squared of
filter contributions equals to 1, equivalent to filtering twice). _101 H

0. Sum low-pass filtered signal with 2x each band-passed
filtered signal to reconstruct the magnitied images (high-
pass 1s ignored) 0.0 0.2 0.4 0.6 0.8 1.0
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Some notes on motion magnification breakdown

Higher frequency signal tends to break down first
o Already lost significant amplitude of the left pulse by 10x magnification

> Right pulse still looks very good at 10x magnification

Ability to magnify motion depends on the width of the impulse response of the filter
o Sharper filters in the frequency domain will have broader impulse responses, more magnification

o Be aware, broader filters have limited ability to localize motions, and are more computationally

intensive

o In the limit that the filters become one frequency bin large, we have recanctriicted the FFT
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Extending to 2D
Magnification




Magnifying Motions in an Image

For a 1D case, the distance a feature moves completely defines its motion

For a 2D case, a feature’s motion must be defined not only by a distance but also by a
direction.

We will need to set up our filters such that they isolate not only the frequency of the
motion, but also the direction of the motion
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‘ Aside: Review of FFT in 2D

Most modal engineers are intimately familiar with the 1D FFT, but not so much with the
2D FFT

Signals can be decomposed into a sum of sine waves

10 T

-10

i i i i i L i i i
o 0 0z 03 04 05 08 07 o8 08 1

2
(i]8
-3 i i i i i i i i i
o o1 02 03 04 05 08 0¥V 08 08 1 s
+
e
5 T T T T T T T T T g
i
ot o
_5 i i i i i i i i i
o 01 02 03 04 05 08 07 08 08 1
+
5 T T T T T r T T
-5

i i i i i i i i i
o 01 02 03 04 05 06 07 08 09 1



Aside: Review of FFT in 2D

This can be generalized to 2 dimensions

> Image is simply a 2D signal where the intensity, brightness, color, etc. is the dependent
variable.

> A 2D image can still be decomposed into a sum of sine waves, but not instead of the waves

only having a frequency, they also have a direction.
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Aside: Review of FFT in 2D

The 2D FFT reveals amplitude and phase of the sine wave corresponding to each
frequency and direction

Radius from DC or zero frequency represents the frequency, angle represents direction




Can we really create a complex image from sums of sine
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Example 2D FFTs of Images

Image of three boxes

Frequency content shows strong amplitudes along
the axes of the image

Very little off-axis content, which is due to the
boxes being aligned with the image

Log Magnitude of FFT

Irmage

Angle of FET




Example 2D FFTs of Images

Sandia Thunderbird drawn with a laser vibrometer
on a patterned table

Strong frequency content in the direction of the
wood grain pattern

Log Magnitude of FFT




Example 2D FFTs of Images

Panorama view from the highest peak in Colorado

Image doesn’t have a lot of structure; FFT
amplitudes also don’t show much structure.

Log Magnitude of FFT Angle of FFT




Example 2D FFTs of Images

Black speckles on a white background

FFT has strong radial symmetry, likely due to the °

circular speckles having no preferred direction in ) A

the image :,'.-..' o
L

Log Magnitude of FFT Angle of FFT




Low Pass Filters

Low pass filters can be created by keeping the portion of the FFT that is near the origin (DC) of
the FFT

These can be useful for noise reduction and image softening or bluring
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High Pass Filters

High pass filters can be created by keeping the portion of the FFT that is far from the origin of
the FFT

These can be useful for finding sharp features and edge detection

Fillered Image
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Band Pass Filters

Band pass filters can be created by keeping the portion of the FFT that is a specific distance from
the origin of the FFT

These can be useful for isolating specific spatial frequencies

Band-pass Filter Log Magnitude of Filtersd FFT




Directional Filters
Directional filters can be created by keeping portions of the FFT along a specific angle

These will select edges oriented perpendicular to that angle.

Log Magmiude of Filtered FFT




Construction of Complex
Filters for 2D Images




2D Filter Requirements — Frequency and Direction

For 2D filters, we need to isolate
the motions into various frequency
components and directions

Frequency isolation is required due
to motion varying with phase at
different frequencies

> Low frequency requires small phase
change to move a given distance

> High frequency requires large phase
change to move a given distance

Direction isolation is required due
to features moving in specific
directions on the image.

Low spatial frequency
Slow change in the image

High spatial frequency
Fast/sharp change in the image

Must also isolate the
direction of motion



Isolating Spatial Frequency: Generating 2D Band-pass
Filters

Band-pass filters are constructed identically to the
1D case, except that the radius from the center O
frequency is used for all directions

Results in concentric rings around the zero
frequency

Again, filters must sum-square to 1 across all
frequency bins

Low-pass and high-pass filters can be constructed
by subtracting the sum-squared of all band-pass
filters from 1.




Visualizing the Spatial Frequency Filters
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Isolating Spatial Orientations: Generating Direction Filters

Filters that isolate specific directions are
now constructed

Recall we could create complex filters in
the 1D case by removing negative
frequency components

Can create complex filters here by
zeroing out one side of the zero
frequency

These must also sum-square to 1 across
the frequency band (where not zeroed)

.

Real Filter, Symmetric
about 0

Complex Filter, Only on one
side of zero




Visualizing the Orientation Filters
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Combining Orientation and Frequency Filters

The final set of filters can be created by multiplying band-pass filters by the orientation
filters for all combinations.




‘ Performing Motion Magnification on Images

With the filter banks constructed, we can now perform motion magnification:
|.  Filter reference and deformed signals with complex filter banks
2. Subtract deformed phases from reference phases (wrap from — to )
3. Scale phases by an amplification factor
4. Muldply filtered reference signal by a complex number with unit amplitude and amplified phase
5. Filter signal with filters a second time (sum-squared of filter contributions equals to 1, equivalent to filtering twice).

6. Sum low-pass filtered signal with 2x each band-passed filtered signal to reconstruct the magnified images (high-pass is ignored)

(a} Reference Image

(d) Filtered Reference Image with Modified Phases

§

(c} Image with Unit Amplitude
and Magnified Phase Difference

ih} Detormed Image

(g) Twice Filtered Reference Image with [f} Twice Filtered Referenc g h Modified Phases (&) Filtered Reference g th Medified Phases
Modified Phases {Real and Imaginary Parts} {Frequency Domain) {Frequency Demain)



Motion Magnification
Examples




Beam Example

Rendered 2 mode shapes of a
beam using Blender at 0.5 px peak
displacement.

Motions are invisible to the naked
eye.

Beam images are filtered to extract
phase and subtracted from the
reference images.
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Magnified Beam Images

Phase quantities amplified and used to reconstruct magnified images

Note that for images with small dimensions, it can help to pad the image with zeros to
make it larger, which increases the allowable filter size and therefore the allowable
magnification
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‘ Plate Example

Rendered 2 mode shapes of a plate using Blender at 0.5 px displacements

Pixels invisible to the naked eye.

Beam images are filtered to extract phase and subtracted from the reference images.
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‘ Magnified Plate Images

Phase quantities amplified and used to reconstruct magnified images
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Applications for Phase-
Based Motion Magnification




Gaining an Intuitive Understanding of Component E
Response i
i

Phase-based motion processing gives an unprecedented intuitive
look at the displacements occurring in a test.

Able to see motions on the real test article as they occur

No reduction in fidelity due to conversion to stick models or element
models

No assumptions of part motions as occurs in finite element
expansion techniques

Can treat phases similarly to displacement sensors and filter specific
motions




Displacement

Preprocessor for Digital Image Correlation or other
Photogrammetric Techniques

Motion Magnification has been used as a
preprocessor for other optical testing strategies

o Motions magnified in images
o Magnified images passed into DIC or Photogrammetry
tools.
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Modal Analysis and Image-based Expansion

Phases can be treated as displacement sensors, and modes can be fit
to them
Can extract Natural Frcql.wncv and Dumpin}_{ from a handful of sensors
Mode Sl'l:-l}')CR in the Phase domain can be used to reconstruct mode
.~ah;1pc.~a on image

Phase shapes can be used to expand environment data so
environments can be visualized on-image
[nstrument field test article and send on environment = X,
[nstrument lab test article identically and perform modal test = @
Repeat modal test with camera viewing test article from desired angle, fit
modes to phases = Pg
Expand sensor data x4 to phase-space xg using phase shapes xg =
Dy Py xq
Reconstruct images from phase quantities using motion magnification
techniques







Motion Magnification Major Points

Motion Magnification can magnify subtle, imperceptible motions in a set of images so they are visible to
the viewer.

Motion magnification is useful for:
> Gaining physical intuition into the motion of your part
> Preprocessing image data for quantitative analysis
> Presenting structural dynamic information to non-technical people

Motion magnification utilizes a bank of complex filters to isolate specific spatial frequencies and
directions in the image

o Filters assembled from half-cosine pulses raised to an exponent
o Filters localized in both frequency and image domains

o Extent of filter in image domain denotes the distance a feature can be magnified before breakdown, but also
represents the area under which motions cannot be localized

o Sharper filters in the frequency domain provide more magnification capability at larger computational requirements
(more filters to span the entire frequency domain)

Phase quantities from motion magnification can be treated as displacement sensors
o Temporally Band-pass filtered to isolate specific motions
> Modes fit to phases can be used to construct on-image mode shapes
o Arbitrary displacements from environments can be visualized on image using modal superposition concepts



