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* Motivation for a compact atom interferometer (Al)

* Integrated photonics for a laser system

* Al demonstration with a grating magneto-optical trap

* Passively pumped vacuum package

* Guided Als with photonic atom trap integrated platforms

* Conclusion
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= Atom interferometers (Als) are excellent inertial sensors

= Exciting candidate for inertial navigation without GPS aiding

= (Can an atom interferometer be substantially miniaturized while maintaining high performance?

= Research the technologies that enable miniaturization of an Al. ~6"
— v Honeywell
avigation . om SIGMA Goals
Grade interferometer (1-axis accel)
(HG9900) (Lab demos)
Accel Bias (16) [ug] <25 <104 <0.25
Accel SF (16) [PPM] <100 <10 1
Accel Random Walk not reported 105 <1
[1g/VHz] QA~ 10
Gyro Bias (1o) [deg/hr] <0.003 <7 x107
Gyro SF [PPM] <5 <5
Gyro Random Walk (10)
<0.002 2 x 10
[deg/Vhr] :
QA: Quartz Accelerometer QA (x3) & RLG (x3)

RLG: Ring Laser Gyroscope




High Data-Rate Atom Interferometry () i

* Detect e Recapture (1.7 ms)

* Release atoms

b 4

- P - -— - ®
DL vem g Ry
e Laser cooled atoms A

(4.3ms, T = 15 ukK, N = 10°)

N[] «— 3 «<—N|J

" State preparation (depump) « Raman pulse sequence High data-rate atom interferometry operation for

(14 ms, T =7 ms) dynamic environments: Reduced sensitivity with a

- - short T, smaller system size, and minimized relative

Example, (40 Hz)* cycle S22t 2T27 movement between cold atoms and the Raman
pulses

~—




Light Pulse Atom Interferometer (LPAI) () i

/2 s /2
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Splitter Mirror Splitter
Time
o7l fﬁ‘"ﬁ | | f,f"“"\_ -  Stimulated Raman transitions drive state-dependent
0sh # \’H J x‘*-xx | photon recoils on atoms
sl 4 \ e “«_H ] * Split (/2) - Redirect (1) > Recombine (1t/2) for
04 ;_,a‘f . Ry matterwave interference
03 . . . . . . e Atom interferometer accelerometers and gyroscopes
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Bandwidth Considerations for Dynamic Environments () i

Sensitivity (ug/tHz)

3
W T} Raman pulses Atoms
107 . : 0 ,
ADI816385 4, — n-axis
é | : acceleration
ol T - » / ___________ o
nghBWAIa . C;EAZOOD N— S % NRppRp
Wl S . *® QA3000 it r--=--+  Cross-axis
¢ ‘ h acceleration
10_1 L ....................... ....................... e B _:
| Fes, 5 g ~es
A0 E B, ...................... . 81".., l‘ _
Stanford Al ¢ Stanford Al j RQ Cross-axis
P (Peters) (B|edermann) ; - Y o rotation
10 —— o S LVOREN
10 10 10 10 10 10 L I 'H..’
Bandwidth (Hz) S~

Bandwidth required for inertial sensor applications
Al sensitivity reduces with bandwidth & Compact size lends itself to high bandwidth
Hybrid Inertial Navigation: LPAIs + an inertial measurement unit (IMU) cosensor + feedforward processor

—
Patent application 1: Hybrid Inertial Navigation System and Method K



Photonic Integrated Circuit (PIC)-Based Laser System (@) &=,

Saturation €
Spectrosco EEsEe
- — Light Optical Frequency 1560 nm
Modulation Amplification Doubling 780 NI e
i----)[SDA]-----)[SHG]_ Laser Lock
]Sﬁﬂ-nm --------------)i;1 ::
Seed Laser '

SB]----)[ SOA ]-----)[SHGH Cooling / Depump
Bli—---)[SOA ]-----)[SHGH Repump / Detection | [ pA]

Sensor

'_'__-.,._.-g:;-_-___,-_!--_;p---élSDA]-----)[SHGF Raman 1 Head
!----)l SOA ]-----)[SHGH Raman 2 /

Silicon Compound Nonlinear
Photonics Semiconductor Photonics

1 xN splitter

8 mm

SB

* Chip-scale PIC-based laser system: 1560-to-780 nm approach, mass-producibility, miniaturization, and ruggedization

* Silicon photonics: Single sideband (SSBM)/phase (®,,,p) modulators, thermo-optic phase shifters, variable optical
attenuators (VOAs), optical filters, and photo-detectors.

 Compound semiconductor: Multi-stage high power semiconductor optical amplifiers (SOAs) and optical switches

* Nonlinear photonics: Second harmonic generation (SHG) for frequency doubling

~JS—
Patent application 2: Compact Laser Source with Frequency Modulators Generating Multiple Lines N




Integrated Laser Implementation () p,

F=2toF =1,2,3 F=1toF =0,1.2
107 , L= 10
- l £ B~
S | I S22 05
s I : ol 0.0
o 1004 & | o 4 7 f—
_ z1  2-1 : 2 001
£ - I SZ-1007
= B i : D= 2200+
g 10°{w . I - 7 7 =
= N ' - 1.0
2 13| [EleC £s-
5 = = BT Zi =232 051
= 10 E S EHE =1 5= S
7 = ﬂl = = Sl 0.0 ”
/ ! : = _ 1.0 4 x — M
10° 3 | ! EZ 051
! : oo » 4 ,
-1 0 | 2 3 4 5 6 7 ] 5 10 15 25
Detuning [GHz) Time [ms]
Five laser channels for 8Rb atoms (D2)
* Ch 1: Laser Lock (saturation spectroscopy) * Time-multiplexed frequency shifting with SSBMs
* Ch 2: Cooling or Depump * Raman pulses: 1-10 ps

* Ch 3: Repump or State sensitive detection pulses: ~0.1 ps

* Ch4:Raman #1 (Seed laser frequency)
e Ch5:Raman #2




Suppressed-Carrier Single Side-Band Modulator () s
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Single Side-Band Modulator Feedback
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Single Side-Band Modulator Active Control (Fn)

Normalized Single Side-Band Modulator Spectrum

A
-1
2 -1 f. +1 +2 43 -10 - A .
‘ ‘ A A e >35dB carrier
____ With Feedback _20 - . |
*+  ~28dB carrier - suppression
suppression
o | ~18dB spur i 30+ 1
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- i 5 -40 -
£ S
g - . o

‘ 50 | |
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|
N ‘ yh | v J ] -60 . |
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*implemented higher resolution heterodyne spectral measurement -80

" Freq. (GHz)




Integrated Photonics Raman Laser Setup () ..

Feedback to slave FM (Raman beam phase lock)

y E[> High speed PD

Synth
3.4 GHZ
."2 - AOM To
" = il . _ vacuum
Fiber 4 Ch. Optical Switch chamber
laser SC-SSB Ch1 Amplify (1560nm)— Double
(1560nm) Modulator Ch2 — Amplify (780nm)
“ Repump
7/ LTser
N [Offset Lock]
Electronics

Feedback to Fiber laser (Master laser offset lock)
SC-SSB: Suppressed Carrier Single Sideband
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Al Demonstration with Integrated Raman Laser Setup (@) ..

Fraction of atoms in

0 0.2 0.4 0.6 0.8
Time between interferometer pulses (ms)

Demonstrate an Al accelerometer, an atomic
gravimeter with SIP Raman laser setup

m/2 — 1 — /2, where 1, = 5 ps

Measure the chirped fringe from the Doppler-
shifted atomic resonance due to gravitational
acceleration

Estimate the gravity with a model:
g = 9.77 £ 0.01 m/s?




Three-Stage Optical Amplifier in Ill-V Materials ()

Laboratories

= Demonstrate > 200mW of 1560 nm power e Super High P, ,
= Large optical power challenging High Gain
= Saturate gain materials —

= First two stages successful

= Last stage needs more fabrication development

First stage amplifier Middle stage amplifier
v T T 11 . - - -
_._::Nk::m 2 10} 1 Y ﬂ':l :' :mﬂ 3
Bl | B Ll mnmuwvmmm e
il l "h““
g il ||I'."'.\".w.m
£ 7| "‘.'m'm'l | '\'\'\'\'\'\'\'\
Y 5 muwl” !I |||| \‘ | y
5 Cleave UL L g iy ”r”rw |
4 out device “; TUUTRIHE W
3 - . . - " ‘Illl"l"
Pin (aBm) Pin (dBm)

Wafer Complete
~T—




Frequency Doubling with Lithium Niobate () .

Rib-etched LNOI Strip-loaded, bonded LNOI
. WLN .
ar 750~ | Etching depth air
TFLN LN Relies on bonding. No etching of LN
sio, (Lithium Niobate) Sio, Integrate LN with other photonic

structures through vertical (inter-
layer) transitions.
* Has been used by Sandia for EOM

(electro-optic modulator)
N. Boynton et al., Opt. Express 28, 1864 (2020)

other optics

= Disorder-tolerant waveguide design.
= First pole, verify poling quality, and finally, shallow etch.

= Highest waveguide conversion efficiency (939 %/W)
J. Zhao et. al., Opt. Express 28, 19669-19682 (2020)

UC San Diego




Laser System Architecture using PICs ()

Silicon Photonics Compound Semiconductor (11-V Photonics) Nonlinear Photonics
* Modulators & phase shifters e Narrow-linewidth lasers e HI: LN on silicon
* VOAs & optical filters * Electro-absorption modulators (frequency doubler & EOM)
* Photo-detectors (Ge) e SOAs
* HI: 1V or LN on silicon * HI: llI-V on silicon (laser & SOA)
(laser & SOA)

HI: Heterogeneous Integration
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PIC-Compatible Laser System () e

1560 nNM =====
T8O NIM e

Saturation
Spectroscopy

Laser Lock

Aol
3

4
1560-nm |_ > 4':,.) ‘B’---)IEDFA’---) VOA + SW ---)[SHG]—) Cooling / Depump LPAI

Seed Laser . y Sensor
~,
E“J ‘B’---)[EDFA]---) VOA + SW ---)[SHG]% chump;’ Detection Head
-\ )
v \
"“_ ......... )lEDFA] ................ > [SHG]_) Raman 1
Raman

\ ] (Combine
q -AOM ---)l SOA ]---)[SHG]%E,% l SOA Raman 2 0ombiner
/

* PIC-compatible laser system: 1560-to-780 nm approach, commercial-off-the-shelf
(COTS) components

* Using a PIC-compatible laser architecture validates the functional operation of the
PIC-based laser architecture

* SSBM: single sideband modulator; ®,,4,: phase modulator; f-AOM: fiber acousto-
optic modulator; EDFA: erbium doped fiber amplifier; SOA: semiconductor optical
amplifier; VOA: variable optical attenuator; SW: optical switch; SHG: Second

harmonic generation

~—




Compact Atom Interferometer Sensor Head () it

1 To Ion Pump  Grating Chip Swan-Neck Flexure
Raman T< . B Di:;:nser
Beams = ' a Y
R | Ti Vacuum
— Chamber
Power 163 i

Monitor
_ 3D-Printed

Atom . .
aiwer Ring

Detection

Downward
Raman Beam

Cooling

3D-Printed
Beam

Retainer Ring

120 mm
GMOT
« Compact sensor head with a grating chip and fixed optical components CS;';;g_llfg % - Atoms
| .
e Multi-axis cold-atom inertial sensors with grating chips Beam Micro-

Fabricated

* 3D-printed retainer ring to hold the grating chip in vacuum Grating Chip

Upward

* Vacuum maintained by ion pump, fused silica windows
Raman Beam

* Atom number: 10°-107, Sub-Doppler cooling: 15 pK

Patent Application 3: Compact Grating-Based Magneto-Optical Trap Sensor Head for Cold Atom Inertial Sensors in Dynamic Environments



Grating Magneto-Optical Trap (GMOT) () s

ER Yoo bt
S10, S10,
S1 wafer ‘ S1 wafer
S10, deposition E-beam exposure and develop

4

tslqg_ :<—>d ; J,t,u
I Si0, t Si0,
S1 wafer - S1 wafer
Al deposition S10, etching and remove ER

* Sandia-fabricated hexagonal reflective grating chip
e 1.2 um pitch, ~¥50% duty-cycle, and 195nm depth

e Aluminum coating
< W4 Waveplate
Polarizer * Tetrahedral MOT configuration with a single flat-top cooling beam

Doublet Lens * Compact sensor head with fixed alignment optical package to

i Y minimize vibration for deployable cold atom inertial sensors

Patent Application 4: Compact Atom Interferometry Inertial Navigation Sensors with Tailored Diffractive Optics



High Data-Rate GMOT

5

Atom Number

%109

%108

1 o Po-

el e

e
Atom Number
o

5 10 15 20 0 50 100 150 200
Data Rate [Hz] MOT loading time [ms]

* Sub-Doppler cooled GMOT atoms (T = 15uK)
* High data-rate GMOT operation (> 20Hz)
* Next step: Increase the intensity of the cooling beam

Sandia
@ National
Laboratories
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Atomic Coherence with GMOT
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(i)

Ramsey sequence with microwave field:

T

5> T-— % (frequency scan)

Interrogation time T = 450 pus

Ramsey sequence with Doppler-free
Raman beams:
T ya

> (frequency scan)

> - T-
Interrogation time T = 48.08 us




Atom Interferometer Demonstration with GMOT

m Data
=
501 — Fit
=
2
=
2
)
2.
2
=
9 - N :z
<f‘ 0.0 1 | | | | | 1 |
0.5 1.5 2.5 3.5
Interrogation time T [ms]
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£ £
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S S
<00 . . < 007 , .
2.00 2.02 2.08 2.10 4.00 4.02 4.08 4.10

Interrogation time T [ms]

4.5

Interrogation time T [ms]

Raman beam delivered via free space (external from prototype)

Data rate: 10 Hz. Statistical uncertainty: ~2 ug

Sandia
@ National
Laboratories

Allan Deviation

< Data
2.7366e-05,12

Q

alr)[a]
et

Sensitivity measurement T = 2.5 ms
27 ug/rt-Hz

Work needed to improve the data
rate and SNR

-



Passively pumped Vacuum Package: ) i
Titanium Package Design Getter

Appendages
= C-cut sapphire windows, AR-coated
= No helium permeation (or very low)

= Passive pumping: SAES St172 getters
= Rb dispenser: SAES Rb-dispensers.

=  Copper pump-out tube for eventual pinch-off
seal.
= Sealing: laser welding and brazing

= Preparation: 400 °C bake-out in vacuum furnace , _ )
| - Sapphire Window with

- | Titanium Frames

tAfeligh Alumina

Rb Source
Appendage

41 mm

opper Tube
or pump out

2. Electrical Feedthrough

Electrical Feed
O '\\

Titanium

¥ Pinched

Off! T ¢
A;

Patent application 5: Passively Pumped, Polycrystalline Ceramic Ultra-High Vacuum Chamber
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Package operating for 1 year 7 months!

Package 1: 575 days
-On day 231 changed to a Rb-85 MOT

- "
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Package 2: 351 days
-Valved off (not pinched)
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Towards Deployable Cold-Atom Inertial Sensors () s

 Compact atom interferometers

* PIC-based & PIC-compatible laser architectures
* High data-rate GMOT

* Passively pumped vacuum chamber

* Fixed-optics sensor head

Physics &
Optics

* Time-critical control electronics +
Control feedforward processor

Feedforward hardware implementation
SyStem for the operation of the LPAI in dynamic
environments

e Hybrid Inertial Navigation with
LPAIs and IMU cosensors

* Physics modeling

+ IMU cosensor + Kalman filter

Theory &
Algorithm
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Saghac Matterwave Interferometer using waveguides ()

Concept
1. Guide atoms along the evanescent-field optical trap (EFOT)

2. Separate atomic wavepacket with resonant light pulses: g - %
3. Measure interferometric phase with the state-dependent optical probe
O, =2mrmr?Q/h m

> <
Optical control pulses

Waveguide Atom Trap Potential Q 0q = 1 Hdeg/m

r Long-term goals

————— m =2.21 E-25 kg
N = 1000 atoms

r=17.8 mm
guide LMT: 300 Ak
Transits = 10
atoms Contrast: 80%
Guide atoms here with the membrane rib waveguide:
Two quasi-TE modes for blue- / red-detuned trap beams R. Stevenson et al., PRL 115, 163001 (2015)

L | =
‘\

Patent application 6: Guided Cold Atom Inertial Sensors with Membrane Integrated Photonics on Atom Trap Integrated Platforms



Evanescent-Field Optical Dipole Trap with Nanofibers
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* 685nm and 937nm trapping beams coupled to nanofiber
« Atom number measurement with an absorption probe

N =47.2 + 3.2 for 1-D guided atoms

1.00
_E 095 - S
7 . °
g 2 =] o oo
g 090 ¢ )
= Microwave Rabi Fringe ° D
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Lifetime measurement of 1-D guided atoms
7=8.1+£ 0.8 ms

Tapered Fiber
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Background subtracted image

Silicon Chip
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Membrane MOT atoms

MOT on the

Six cooling s pepi
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Side View
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membrane
waveguide



Alumma Waveguides: High Power Optical Handling () i

Big challenge: Heat dissipation in vacuum

1.5
Hm -+ <« 50nm Membrane

v )
= Samples were redesigned based on experimental 100nm 5 < Wiaveduioe Heat
measurements and calibrated thermal simulations A

= New designs handle ¥~30mW at shortest lengths and

Si Needle

y

> 6mW in target design -
-QCD P\ [0)
30 [~ o _ e NI EE St St S o B g A
20 - i ) h a B D “\\\\\‘\ 5.‘;
g o~-_  “Hybrid Needle
10 F >~ ~ - DeviceinUHV -
— : s 8 "~ : )
=2 > SRR F
) S g = g
) ™~ H T
= F oo 'S
SINE! - : -
i S I
+.\‘\. + + -
| o Infinity Design Ty
| o Hybrid Needle Design RN
+ Straight Design > =
0.1 - - T e 2 >um
100 200 300 400 500 10° ": y
Span [pum] S '

M. Gehl et al., Opt. Express 29 (9), 13129 (2021)
J. Lee et al., Scientific Reports 11, 8807 (2021)

Patent Application 7: Suspended Waveguides on Membrane and Needle Structures Towards Atom Trap Integrated Platforms
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Conclusion () i

= Multifaceted programs towards miniature cold-atom inertial sensors

= Integrated photonics laser system
= Single sideband modulator with suppressed carrier
= Demonstrated atom interferometry

= Compact atom interferometer sensor head
= High data-rate GMOT
= |nitial atomic gravimeter demonstration T

= Vacuum package development With MAtterwaves
= Passively pumped operation for > 1.5 years

= Guided atom interferometers towards multi-axis, arrayed atomic sensors
= Photonic atom trap integrated platforms

5{(8‘(3%10 \nel’tial GdeanCe

= Future work
= Combine integrated photonics platform with atom interferometer prototype

= Funding

LgR\D LABORATORY DIRECTED

RESEARCH & DEVELOPMENT
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