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Motivation

* Quantifying the response of a structure mounted to a vibration shaker table is critical to design
 This helps capture important measures such as failure margin

* One method to accomplish this is the effective mass model: a modal model that simulates the
response of a component due to a base acceleration input in one direction
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* Effective mass models can be extracted from either a finite element model (FEM) or
experiment

* Previous works have developed several methods for extracting effective mass models from
experiment, but require many steps and computations

* This work proposes a new, more efficient method to compute an effective mass model
based on a modal Hurty-Craig-Bampton (HCB) framework



Effective Mass Background

* The ratio of effective mass to total mass of a component is
related to how strongly that mode will be excited in a particular
vibration direction

* An effective mass model can be used to calculate the actual
energy in the component during the base acceleration
environment

 Useful metric for assessing failure margin by comparing
energy at failure to energy in a qualification test

* Typically there are three effective mass modal models for a
component, one for each of the X, Y, and Z translational directions

* Normally rotational directions are ignored, since standard
vibration table tests are usually focused in one translational
direction

* An experimental method can extract an effective mass model
from a modal test of a component on a fixture
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m;: fixed-base component modes




‘ Hurty-Craig-Bampton Effective Mass Formulation

* Modal equation of motion of free-free assembly (fixture + component)
’ ['Qn,fr - C‘Uzl]q =0

Modal Coordinates
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* Transform free-free assembly to fixed-base component and fixture modes
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* p: fixed-base modes of component

* S: modes of fixture
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* First six coordinates of S represent unit displacements in each S
physical direction (X, Y, Z, 6, 0, 6,)

* Assume for now that S only contains rigid modes
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Hurty-Craig-Bampton Effective Mass Formulation, Determine T,

* Matrix T, defines the relationship between g and p

* Start with the constraints required to fix base of component
* Xp = q)bq ~ ‘Pb§ 1 00 0 Ty1) ~Tz1
cS=Wid,G=0 Po=10 1 0 -1r, 0 1y,
l_Y_J :

B Constraint equation: s = Bg = 0
* Perform coordinate transform to fixed-base component modes

‘l|q =Ln General fixed-base component coordinates

. BLﬁ =0 Constraint equation in general fixed-base component coordinates

* L = null(B)

* Constrain free-free assembly using L to get equations of motion for fixed-base component

* LT Q5 — 0?1l = 0

* Compute eigenvalues/vectors of this new equation of motion to get fixed-base modes

/ISR YV T is the fixed-base component mode shapes

* Therefore, the relationship between @ and p is

+g=LTp
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Hurty-Craig-Bampton Effective Mass Formulation, Determine T

* Matrix Tg defines the relationship between q and §

=
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* Start from S
Q
* Xp = (bbC_I ~ ‘Pbg g
O

* Since W, contains only rigid body modes, physical motions of the fixture Fixture

can be approximated from only the rigid body modes of ®
¢ ‘7rgd = (bl:rgdqug}
o 05 I—

* Therefore the transformation T is: |

q’b,rgd




* Transform original free-free equations of motion of the assembly to the HCB representation of the system

Fixed-Base Natural Frequencies
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* The (i, ) terms of Mg are the modal participation factors for component mode p; to base input direction s;

‘ Hurty-Craig-Bampton Effective Mass Formulation
|

* Since mass-normalized mode shapes of the assembly were used, the corresponding effective mass 1s:

Effective Mass of Mode i to input direction j
Meffij = Mps(f;j)z

* Key takeaways:
* Effective mass models for all three directions are obtained simultaneously
* Only requires shape information of the fixture, both in the assembly and in isolation

* With a slightly modified Ty, this process also works if elastic fixture modes atre included in Wy,. This is
required when the fixture exhibits elastic motion in the free-free assembly modal test.



Demonstration, Numerical Example

* The proposed method was used to extract the effective mass model

of a planar beam assembly in two configurations:

X

L.

« Component + stiff fixture A
e Component + soft fixture
* The assembly with the soft fixture has two elastic fixture modes in Constrained all |
« Stiff fixture only exhibits rigid motion rotations at
connection node
MOdEll;ls Density | Length | Base | Height | Number of Number of
Beam (Ibf/in?) . . . . Measurement
(Ibm/in3) | (in) (in) (in) Elements
DOFs
Component I x10° 0.098 10 1 1 51 10
Fixture, Soft 1x10° 0.098 20 6 6 101 12
| THistefssetive ] _ 6 6 ~ 12 — .

: _[ﬁ%éﬂé_saﬁégffx d-bise - . Frequency Effective Mass
frequencies predicted for each assembly is | Mode Description (Hz) X 7z
compared to the truth result for the—— [ 1% bending of component 101.38 000 | 6131 ||
component beam 2 2" bending of component 635.35 0.00 18.83

» Effective masses are presented as 3 15t axial mode of component 1569.06 81.06 0.00
4 Higher bending of component 1779.00 0.00 6.47

percentages of the component mass



Demonstration, Numerical Example

mode

The predicted results match the truth data for both configurations, but the soft fixture has larger errors
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Demonstration, Experimental Example

* The proposed method was applied to the nylon plate structure from [1]
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* In [1], the effective mass model of the plate was extracted from a FEM and an experiment. Their
results were then compared.

* The FEM result was used as the truth data
* The experiment was a free-free modal test of the assembly comprised the fixture and nylon plate
* Note: one elastic fixture mode was within the bandwidth of interest

* The proposed HCB method utilized the data from this experiment to compute the effective mass
model

* All three results are compared
[1] R. L. Mayes and D. W. Linehan, "Measuring Effective Mass of a Circuit Board," Topics in Modal Analysis 11, vol. 8, pp. 207-217, 2014.
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Demonstration, Experimental Example

Frequency (Hz) Effective Mass Frequency Error Effective Mass Error
Predicted q y (% of Nylon Plate Mass) Predicted (% of FEM) K% of Nylon Plate Mass)|
Fixed-Base Method Method Fixed-Base
Mode FEM | from | 2% pev | from Modal Mode | Method ypoqarmcp| Methed viodal HeB| |
(1] HCB (1] HCB from [1] from [1]

1 344-357 | 339.4 | 339.5 | 81.6-83.1| 81.5 | 81.5 1 -49t0-13|-49t0-1.3]-1.6t0-0.1 | -1.6to -0.1

2 1000-1012| 1081.4 | 1082 | 5.8-6.2 6.9 6.9 2 69t08.1 | 6.9t082 | 0.7to 1.1 | 0.7to 1.1

3 2590-2654) 2705 | 2710 ]0.41-0.43 4 4 3 1.9t044 | 2.1t04.6 |]3.57t03.59]3.57 to 3.59

In [1], the FEM utilized two different methods to attach the plate to the
fixture, so a range of frequencies and effective masses are given

Both methods achieved frequency errors within 10%
Both methods achieved effective mass errors within 4%

The proposed method yielded similar results as that used in [1]




Summary and Conclusions

* A new method for extracting an effective mass model from an experiment was presented which utilized a
modal Hurty-Craig-Bampton framework

* This new method is simpler and more efficient than previous techniques while still offering the same
prediction accuracy

* There are fewer steps

* Effective mass models for all three translational input directions are obtained simultaneously

* The proposed method relies on substructuring techniques, so corresponding standard best-practices and
heuristics apply

* Example: well-conditioned shape matrices, @y, and W, (i.e. sufficient instrumentation to acquire
independent modes of the fixture)

i
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Craig-Bampton Effective Mass Formulation

* Here we assume that the rigid modes of the fixture in the free-free assembly at the fixture DOFs can be approximated by the
rigid modes of the fixture by itself. This is also assumed to hold true for the elastic modes. Therefore

* ®prgalrga = YprgaSrga

* PpeiGer = PpeiSer
{qrgd}

el
_ §r_gd
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* Solving for the q:

<
I

* The derivation is slightly different if there are elastic modes in W}, in addition to rigid body modes. |
‘

%]

e ] f— + c
Qrgd — q’b,rgdlpb.rgdsrgd

. _ + .
* Get = Pp e WPpeiSer

* Thus the transformation becomes

4
q:’b.rgd q”b.rgd 0

. T=|LT .
0 Dy o1Wh el

* The computation of modal participation factors and effective mass proceeds as before using this new transformation matrix
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