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Developing Feedstock

Development and characterization of glass-bonded
alumina (94% Al, O3, 1.5% MgO, 1.2% CaO, 3%
SiO,). The addition of Silica allows for processing at
lower temperatures compared to pure Al,O;.

In 2018, Lithoz America successfully combined SNL's
glass-bonded alumina with photocurable resin and
established the initial processing parameters.
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Parameter Standard Range Influencing
Valug parameters
Geometry
Layer thickness [pm) 25 15-50 Resalution vs. printing
speed
Support structure thickness [pm] 240-360 Mass of the part &
support design
Geometry corrections
Contour offset [um] -40 0/-204-40 Tolerances
Pixel alignment Yes Yes Tolerances
Lateral (XY) shrinking compensation 1.203 Tolerances
Build direction (2) shrinking compensation 1.353 Tolerances
Z curing depth compensation Yes NofYes Lateral channels/holes
Z curing depth compensation layers 1 0-3 Tolerances




+ 1 Initial printed component characterization

ASTM F19-11 tensile buttons evaluation. Tensile buttons were evaluated in computer
tomography and proved to be challenging to manufacture for the DLP printing
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5 ‘ Additional mechanical Characterization

Flexural Bend Testing
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Shape Scale N AD P
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Archimedes Density

Dry Weight Suspended

Sample ID (g) Weight
TRAD?I'IONAL 1.06 0.777
T5A2 1.074 0.788
T2A3 1.408 1.033
T3A2 1.192 0.875
T8A2 1.059 0.778
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CT Analysis for Pore Evaluation
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Figure 4.10 Weibull fits of three build orientations for Direct Write printing of
Alumina tensile bars.
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