

Sandia
National
Laboratories

Development of a Data Management Methodology for a COTS Part Testing Program to Meet the Needs of a Broad Range of Users

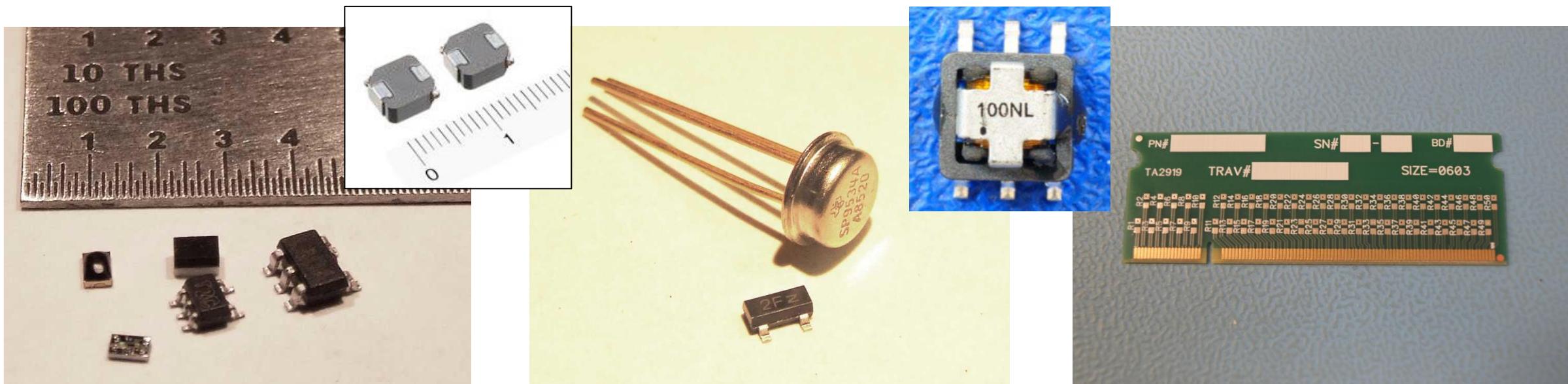
PRESENTED BY

Christopher Stork, Lee Crowder & Stephen Hwang
Sandia National Laboratories

February 2, 2022

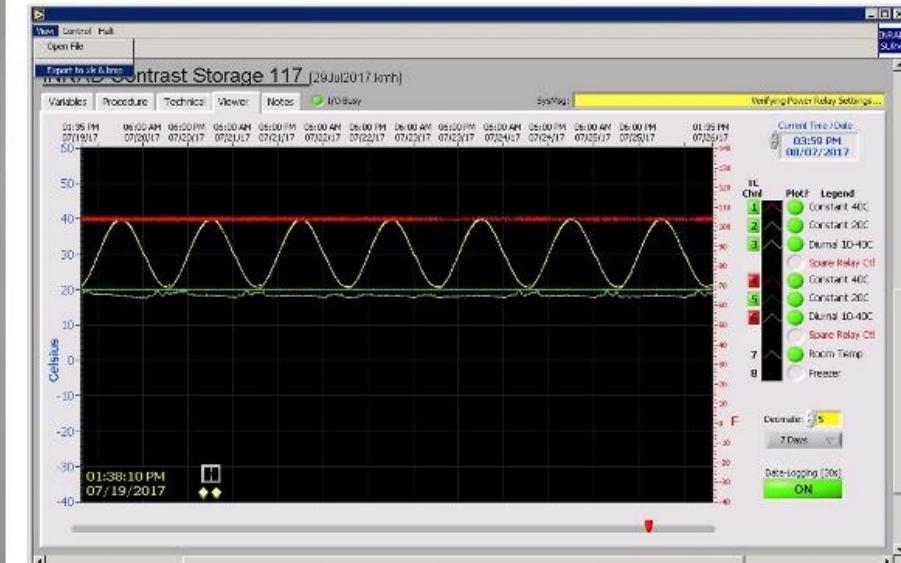
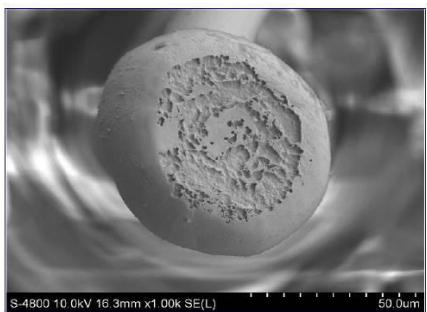
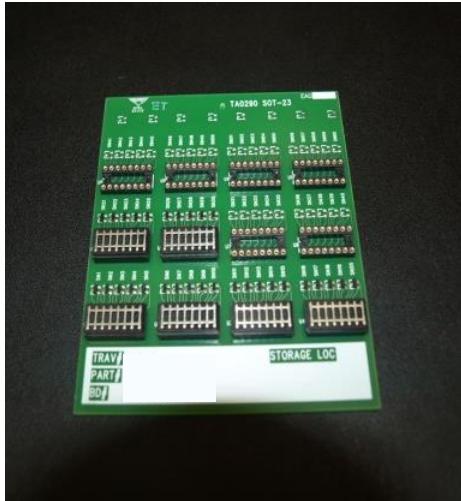
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Overview



- Introduction to Sandia and High-Reliability Electronic Components group
- Commercial-off-the-shelf (COTS) surveillance testing program
- Electronic Component Analysis & Test Tracking (eCATT) System
- What is preventing COTS data from being fully leveraged?
- Current dispersed state of COTS data
- Proposed solution: relational table-based data structure
- Understanding COTS data users/consumers
- Demonstration of proposed solution: restructuring and analysis of Long Term Dormant Storage (LTDS) data from multiple user perspectives.
- Demonstration of proposed solution: Restructuring and analysis of metal-oxide field effect transistor (MOSFET) data from multiple user perspectives.
- Discussion of future work

Sandia & High-Rel Electronic Components Group




- Sandia is a U.S. NNSA research & development laboratory focused on delivering essential science and technology to solve our nation's most challenging security issues.
 - Sandia's primary mission is ensuring the U.S. nuclear arsenal is safe, secure, and reliable, and can fully support our nation's deterrence policy.
- Sandia's High-Reliability Electronic Components group responsible for development and delivery of high reliability electronic products for national security systems:
 - Includes selection and qualification of commercial-off-the-shelf (COTS) parts.

COTS Surveillance Testing Program

- COTS surveillance testing program established to characterize long-term performance and reliability of electronic parts under adverse environmental conditions (e.g., humidity and temperature cycling, high radiation) and aid in part selection:
 - Electrical testing data/metadata available for thousands of COTS parts maintained within the Electronic Component Analysis and Test Tracking (eCATT) system.

Electronic Component Analysis & Test Tracking (eCATT) System

- Tracks movement of COTS parts as they undergo surveillance testing.
- Records steps used in processing parts and environmental conditions that parts are exposed.
- Process for collecting raw data and recording test metadata is highly structured and organized, allowing the test lab to move hundreds of parts through in an efficient and trackable way.

Steps performed in processing parts for eCATT Traveler #19555

The screenshot shows the eCATT software interface. The top navigation bar includes 'eCATT Home', 'Travelers & Steps', 'Results', 'Parts', 'Labs', and 'Reports'. The 'Travelers & Steps' page is active. The main content area is titled 'Edit / View Traveler & Steps' and shows a table of steps for Traveler #19555. The table columns are: Step, Subcategory, Test Engineer, Lab, Start Date, End Date, and Step Actions (Post, Print, PDF, XML, JIT). The steps listed are: 1. Incoming traveler review, 2. Pull Parts from Inventory, 3. Serialize, 4. Tesec, 5. Temperature Bake, 6. Temp./Humidity, 7. Reflow, 8. Tesec, 9. DRM - Stats, Charts, Deltas, 10. Split Travelers, and 11. Traveler final review.

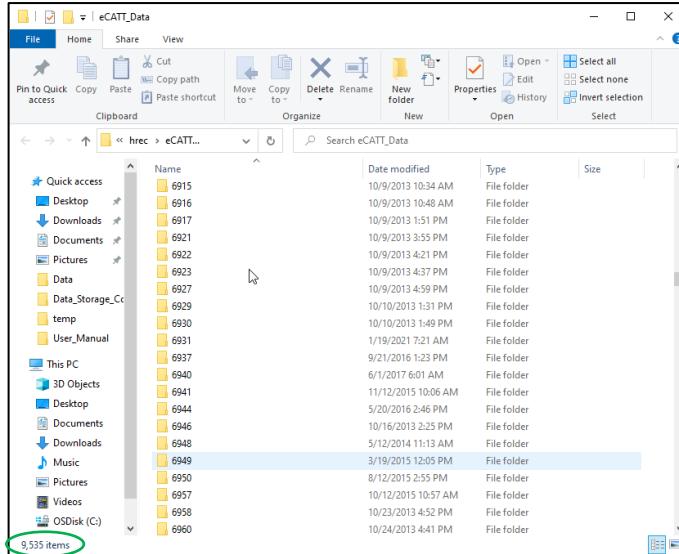
Tester data file for eCATT Traveler #19555

	A	B	C	D	E	F	G	H	I	J	K
1	DTA File Name	19555_Post_PreCond_Amb.dta									
2	DTA File Created Date Time	03 12 2020 14:37:00									
3	TST File Name for DTA										
4	XLSX File Name	19555_Post_PreCond_AmbDTA.xlsx									
5	XLSX File Created Time	03 12 2020 15:51:10									
6	Operator										
7	Station	A									
8	Device Name										
9	Lot Name	N/A									
10	Comment	Post Pre Cond @ Room									
11	Last N&P Check	03 12 2020 09:38:19									
12	DataLog Rate	1									
13	Number of Tests	9									
14	Quantity Logged	166									
15	Datalog Quantity to Log	32767									
16	Test		1	2	3	4	5	6	7	8	9
17	Item	CONT	BVDSS	VTH	SAME	IDSS	IGSS	RDON	RDON	VF	
18	Limit	0	575	1.3	2.3	1.00E-07	1.00E-07	45	45	1.2	
19	Limit Min Max	>	>	<	<	<	<	<	<	<	
20	Limit Units	V	V	A	A	R	R	V			
21	Bias 1	ID	IG	T#	VDS	VSG	ID	ID	IAK		
22	Bias 1 Value	0	0.00025	9.40E-05	3	590	20	0.09	0.09	0.09	0.09
23	Bias 1 Units	A	A		V	V	A	A	A		
24	Bias 2		VMAX				VG	VG			
25	Bias 2 Value	0	580	0	0	0	0	4.5	10	0	
26	Bias 2 Units	V					V	V			
27	Time	0.00078	0.3	0.3	0	0.3	0.3	0.00038	0.00038	0.02	
28	Time Units	S	S	S	S	S	S	S	S	S	
29	Wafer Data	No									
30	Serial	Bin									
31	1	2	579.8	1.885	1.885	1.38E-10	2.47E-11	25.8	24.1	0.7506	
32	2	2	579.8	1.893	1.893	1.44E-10	2.64E-11	25.61	24.55	0.7509	
33	3	2	579.7	1.876	1.876	1.56E-10	2.53E-11	25.64	24.01	0.7506	
34	4	2	579.8	1.888	1.888	1.59E-10	2.74E-11	25.33	23.74	0.7511	
35	5	2	579.8	1.886	1.886	1.27E-10	3.37E-11	25.08	23.51	0.7508	
36	6	2	579.8	1.873	1.873	1.22E-10	2.42E-11	26.18	24.14	0.7504	
37	7	2	579.8	1.879	1.879	1.37E-10	2.37E-11	26.31	24.88	0.7502	
38	8	2	579.8	1.879	1.879	1.52E-10	2.41E-11	26.25	24.17	0.7504	

What is preventing COTS data from being fully leveraged?

- Large volumes of data are being collected for COTS testing and surveillance, but these data sets are not being fully leveraged to identify potential performance issues within tested parts due to:
 - Organization of data within eCATT, a system designed to maximize efficiencies and meet the needs of the test lab which are very specific. The foundation exists within the eCATT system and test lab procedures, but understanding and leveraging these data is a daunting task for other users.
 - Dispersed nature of metadata.
 - A need for a more complete, robust suite of data analysis tools easily applied to a broad range of data.
 - Incomplete understanding of the data users/consumers (e.g., technologists testing parts, component engineers, surveillance engineers, statistical analysts, management, customers) and their needs. An understanding of COTS data users/consumers and their needs should impact how the data are organized (e.g., ensure that necessary data fields are stored) and analyzed.
 - Lack of clear documentation of all questions to be answered by the tests, creating challenges for users unfamiliar with testing.

COTS Data Organization and Storage Challenges



- COTS electrical testing data are collected with multiple types of testers (Tesec, Microflex, Vee, B1506A), each of which can output data in a different format.
- Similarly, image data are collected for COTS parts using different imaging modalities (e.g., x-ray, CT, thermal imaging).
- Electrical test data are spread across multiple files and folders in disparate file formats.
- Metadata specifying environmental and testing conditions that different subsets of parts were exposed to are not typically documented in tester data files, and instead must be determined from manual review of recorded steps in eCATT system.
- There is a growing need to organize and store these dispersed data sets and accompanying metadata so that they can be analyzed and understood by an expanding range of COTS data users/consumers.

Current Dispersed State of COTS Data

Electrical test data stored in thousands of folders in multiple formats

Metadata stored in eCATT system

Part information in manufacturer data sheets

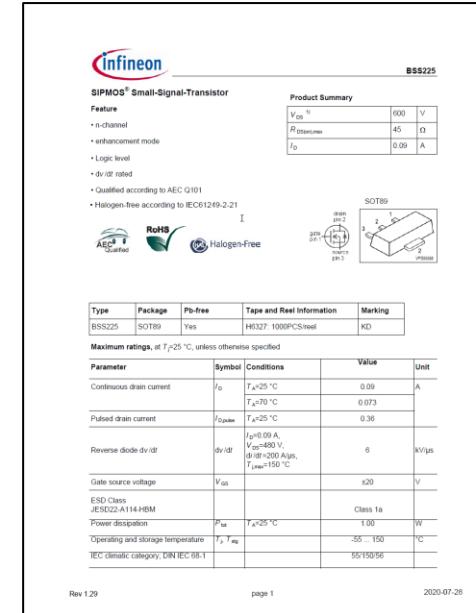
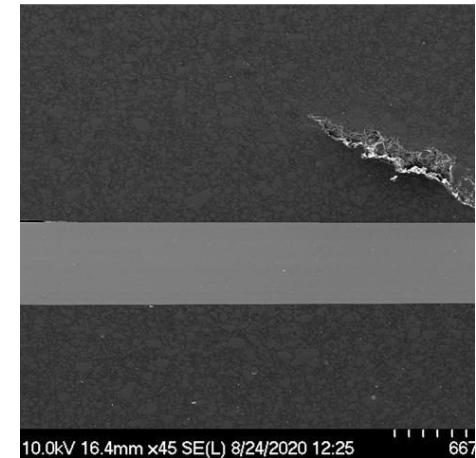



Image data embedded in reports/stored separately

Difficult to perform analyses desired by broad range of users given the current dispersed state of COTS data

Proposed Solution: Relational Table-based Data Structure

- Consolidate information contained in multiple COTS data files and eCATT system into a relational table-based structure, where each table corresponds to a key class of information collected for COTS testing program.
- Key tables (classes of information) identified:
 - Test Data* – Electrical testing data collected in a step for eCATT Traveler Number.
 - Test Information* – Metadata describing each test data collection (e.g., test date, test data file name, operator).
 - Test Variable Information* – Information regarding variables/measurements included in each test data collection (e.g., units, low limit, high limit).
 - Part Information – Information for each part in COTS testing program (e.g., manufacturer, MFR part number, data sheet, part type, part subtype).
 - Traveler Number Information† – Metadata describing each eCATT Traveler Number (e.g., Traveler number, Traveler type, Traveler status, part quantity, instructions, notes).
 - Traveler Step Information† – Information associated with each step of an eCATT Traveler Number (e.g., step number, category, subcategory, start date, end date)
- Consolidated, relational table-based structure offers several advantages:
 - Data can be easily retrieved across multiple tests, enabling improved data visualizations & analyses.
 - Resulting tables can be directly translated into a relational database.

* Prototype table structure implemented

† Can be extracted from the eCATT system

Implementing Prototype Table Structure: Python-based Tools

- Developing Python-based tools for automatically extracting information from COTS tester data files and organizing it into three relational data tables:
 - Test Data
 - Test Information
 - Test Variable Information
- Problem: COTS electrical testing data are collected with multiple types of testers, each of which can output fields (e.g., part number, serial numbers) in different format.
- Implemented Solution: Simplify process of identifying fields within multiple tester data file formats utilizing text analytics, specifically regular expressions that allow for flexible pattern matching.
 - Support for four most common tester data file types (Tesec, Microflex, Vee, B1506A).
- For example, regular expressions can be designed which recognize that the following text strings refer to the same field:
 - “Serial Number”, “Serial”, and “S/N”
 - “Operator” and “Test Engineer”
 - “Part No.” and “Part Number”
 - “High Limit” and “Hi Limit”

Implementing Prototype Table Structure: Python-based Tools

Spyder (Python 3.7)

File Edit Search Source Run Debug Consoles Projects Tools View Help

C:\work_directory\OTS_projects\pyda\src\extract_ecatt_data.py

ch02_tokenization.py x Python_text_analytics_example_jul2621.py x plot_ecatt_data.py x extract_ecatt_data.py x analysis_script_G2R1000MT331_19594.py x analysis_script_BSS225_20775_20776.py x analysis_script_G...

```

88
89     def extract_test_data(self):
90         # Extract test data data frame. Support for Tesec, Microflex, and Vee tester data file types.
91
92         # Note: Specify the columns that will be included in the test data data frame.
93
94         # Identify the test data within the data frame and create test data data frame.
95
96         # Identify row specifying the start of the test data.
97         s_sn = self.df[0].str.contains('S/N|Serial Number|Serial', case=False, regex=True, na=False)
98         # Notes: (a) Include a check to determine if there are multiple "serial number" rows, or none.
99         # (b) Account for nan values in evaluated which can result in non-boolean mask containing NaN values -
100        # Status: Complete, see above.
101
102        # Now identify the numeric values following the row index of the "serial number" row. The row indices specifying the
103        # DUTs are presumed to be consecutive.
104        # Find characters in each string of the first column that are numeric.
105        s_num = self.df[0].str.isnumeric()
106
107        # Determine row containing "Serial Number" identifier
108        sn_row = self.df.loc[s_sn, 0].index.tolist()[0]
109
110        # Determine the beginning index and ending index of rows containing test data.
111        beg_num_ind = []
112        end_num_ind = []
113        for ii in range(sn_row + 1, self.df.shape[0]):
114            if s_num.loc[ii]:
115                if ii == sn_row + 1:
116                    beg_num_ind = ii
117                end_num_ind = ii
118            else:
119                break
120
121        # Determine the column names for the test data data frame
122        # Initialize list of column names - the first element is 'Serial Number'
123        cols_test = ['Serial_Number']
124
125        # Determine if there is a 'Bin' element, and if so include it in the column names.
126        # Notes: Consider making this string insensitive, or more specific (e.g., 'Bin' or 'Bin ').
127        # First check if the candidate 'Bin' element is a string.
128        if isinstance(self.df.loc[sn_row, 1], str):
129            if self.df.loc[sn_row, 1].startswith('Bin'):
130                cols_test.append('Bin')
131
132        # Extract test/variable names
133        testname_row, testname_list, testname_list_unique = self.extract_test_names()
134
135        # Add the unique "Test Name"/"Test Description" values to the column name list
136        cols_test.extend(testname_list_unique)
137
138        # Remove any leading and trailing spaces from every string in the column name list
139        cols_test = [x.strip() for x in cols_test]
140
141        # Save test/variable names for later reference (e.g., conversion of test
142        # data from wide to long format).
143        self.measured_vars = [x.strip() for x in testname_list_unique]

```

dat_folder

Name	Type	Size	Value
df_eCATT_4196_test_data	df_eCATT_4196_test_data - DataFrame	49	C:\work_directory\...
data_descript	df	1	df
eCATT_4196_CapDf_09072017_Data	df	1	df
eCATT_4196_CapDf_A118ds20150113_Data	df	1	df
eCATT_4196_CapDf_FinalLTDS4Test_Data	df	1	df
eCATT_4196_CapDf_Init_Data	df	1	df
eCATT_4196_CapDf_POST1_20C20RH_Data	df	1	df
eCATT_4196_CapDf_Post1_40C20RH_Data	df	1	df
eCATT_4196_CapDf_Post1_TmpCyc_Data	df	1	df
eCATT_4196_CapDf_POST2_50C20RH_Data	df	1	df
eCATT_4196_CapDf_POST2_TC_Data	df	1	df
eCATT_4196_CapDf_Sn41_100_01112016_Data	df	1	df
filenam	df	1	df
mfg_part_num	df	1	df
step_num	df	1	df
test_sys	df	1	df

Console 1/A

```

...: test_system=test_sys,
...: data_description=data_descript,
...: step_number=step_num)
...: eCATT_4196_CapDf_FinalLTDS4Test_Data.read_ecatt_data()
...: eCATT_4196_CapDf_FinalLTDS4Test_Data.extract_test_data()
...: eCATT_4196_CapDf_FinalLTDS4Test_Data.extract_test_info()
...: eCATT_4196_CapDf_FinalLTDS4Test_Data.extract_test_variable_info()
...: eCATT_4196_CapDf_FinalLTDS4Test_Data.add_test_data()
...: eCATT_4196_CapDf_FinalLTDS4Test_Data.generate_test_data_long()
...: #
eCATT_4196_CapDf_FinalLTDS4Test_Data.generate_passing_failed_parts_data()
...:
...:
...: # Concatenate the eCATT number 4196 test data data frames
...: df_eCATT_4196_test_data =
pd.concat([eCATT_4196_CapDf_Init_Data.df_test_data,
...:
eCATT_4196_CapDf_Post1_TmpCyc_Data.df_test_data,

```

Format Resize Background color Column min/max Save and Close Close

LSP Python: ready conda (Python 3.7.3) master [48] Line 427, Col 1 ASCII CRLF RW Mem 54%

Understanding the Range of COTS Data Users/Consumers

Data User/Consumer	Data Needs(?)	Needs Currently Addressed?
Test lab staff	The ability to easily and accurately track movement of COTS parts and record testing data.	Yes, within eCATT
Component engineers	Access to ALL details of COTS parts, suppliers, tests, and results, with the ability to cross reference and document to provide a full story of each part.	To be determined (discussions required to assess)
Surveillance engineers (systems perspective)	Understanding of how parts are aging. Determine systems impacted by aging parts and corresponding risks. Desire to be less reactive and more proactive.	No, as it is difficult to extract data for multiple parts and systems
Statistical analysts	Detailed statistics/data analytics using the full spectrum of (statistical) design, part supplier information, information garnered on testing of controls, test data details at granular level.	No, as test data are spread across multiple files and folders in disparate formats
Management (any level), customers	Results and conclusions from statistical analysis, data analytics (beyond summary statistics). Presented in mgt appropriate graphs and metrics on as needed basis.	No, information is available in eCATT but not easily accessible for these needs
Upper management, higher level customers	High level metrics for financial/project/strategy decision making. Presented in mgt appropriate graphs/metrics at regular intervals of time.	No, information is available in eCATT but not easily accessible for these needs

Demonstration: Long Term Dormant Storage (LTDS) Testing of Capacitor (I) – Tests Performed & Data Collected

- 100 parts placed on 1 control board and 3 test boards for LTDS testing.
- Electrical testing performed at 10 time points over **8 years**:
 - Initial testing prior to environmental aging.
 - Post 1 year after temperature cycle aging (-20C to 40C).
 - Post 1 year after temperature/humidity aging (50C/20% relative humidity).
 - Post 2 years after temperature/humidity aging (40C/20% relative humidity).
 - Post 2 years after temperature cycle aging (-20C to 40C).
 - Post 2 years after temperature/humidity aging (50C/20% relative humidity).
 - Post 3 years after temperature/humidity aging (40C/20% relative humidity).
 - Post 4 years after temperature/humidity aging (40C/20% relative humidity).
 - Post 6 years after temperature/humidity aging (40C/20% relative humidity).
 - Post 8 years after temperature/humidity aging (40C/20% relative humidity).
- Measurements/variables collected:
 - Capacitance (ability of part to store electric charge)
 - Dissipation factor (measure of loss rate of energy)

Demonstration: Long Term Dormant Storage (LTDS) Testing of Capacitor (2) – Data Users and Their Questions

Data User	Question(s)
Test lab staff	Are any gross performance issues observed in each test that would require retesting? Are measurements for tested parts falling within prescribed specification limits? If not, which parts are falling outside the limits?
Component engineers	To be determined
Surveillance engineers	How are parts aging as a function of time and environmental exposure? Which systems are impacted by aging parts and what are the corresponding risks?
Statistical analysts	What is the performance of the parts across testing conditions? What is happening with the failure rate? Do parts fall inside of the specification limits? If not, do parts exceed the specification limits because the part is degrading, or due to sources of variability in the way testing was performed? What do the controls tell us about measurement variability?

Demonstration: Long Term Dormant Storage (LTDS) Testing of Capacitor (3) – Data Before and After Reorganization

A	B	C	D	E	F	G	H
1 eCATT #: 4196							
2 Evaluation Status: Initials							
3 Part No.: 445204-177							
4 Package: SMT CDR12							
5 Device De	A	B	C	D	E	F	G
6 Program N	1 eCATT #: 4196						
7 Test Engi	2 Evaluation Status: Post1YrTmpCyc						
8 Test Date:	3 Part No.: 445204-177						
9 Temperat	4 Package: SMT CDR12						
10 Test Facili	5 Device De	A	B	C	D	E	F
11 Bldg/Floo	6 Program N	1 eCATT #: 4196					
12 Test Equip	7 Test Engi	2 Evaluation Status: 20C50RH_1					
13 Test Adap	8 Test Date	3 Part No.: 445204-177					
14 Test No.:	9 Temperat	4 Package: SMT CDR12					
15 Test Name	10 Test Facili	5 Device Description: Capacitor 4.7pF					
16 Lo Limit	11 Bldg/Floo	6 Program Name: 445204_177_LTDS4_CDF.vee					
17 High Limit	12 Test Equip	7 Test Engineer:					
18 Units	13 Test Adap	8 Test Date: 16/Jan/2013 14:57					
19 S/N:	14 Test No.:	9 Temperature (C): 22					
20	15 Test Name	Cap	1	2			
21	16 Lo Limit	4.60E-12					
22	17 High Limit	4.80E-12	0.029999999				
23	18 Units	Farads	#				
24	19 S/N:						
25	20	1	4.64E-12	-0.001746024			
26	21	2	4.68E-12	-0.001693768			
27	22	3	4.68E-12	-0.00183628			
28	23	4	4.72E-12	-0.001977504			
29	24	5	4.68E-12	0.000735394			
30	25	6	4.62E-12	-0.001755058			
31	26	7	4.68E-12	-0.001689942			
32	27	8	4.67E-12	-0.001678496			
33	28	9	4.70E-12	-0.00203207			
34	29	10	4.61E-12	-0.001563918			
35	30	71	4.63E-12	-0.000531721			
36	31	72	4.75E-12	-0.000532981			
37	32	73	4.75E-12	-0.001324688			
38	33	74	4.62E-12	-0.001677936			
	34	75	4.63E-12	0.000102832			
	35	76	4.75E-12	-0.000350358			
	36	77	4.64E-12	-0.000963213			
	37	78	4.68E-12	-0.001001579			
	38	79	4.71E-12	-0.001174606			
					4196_CapDf_POST1_20C50RH_Data		

Multiple Raw Tester Data Files and Part Treatment Information from eCATT System

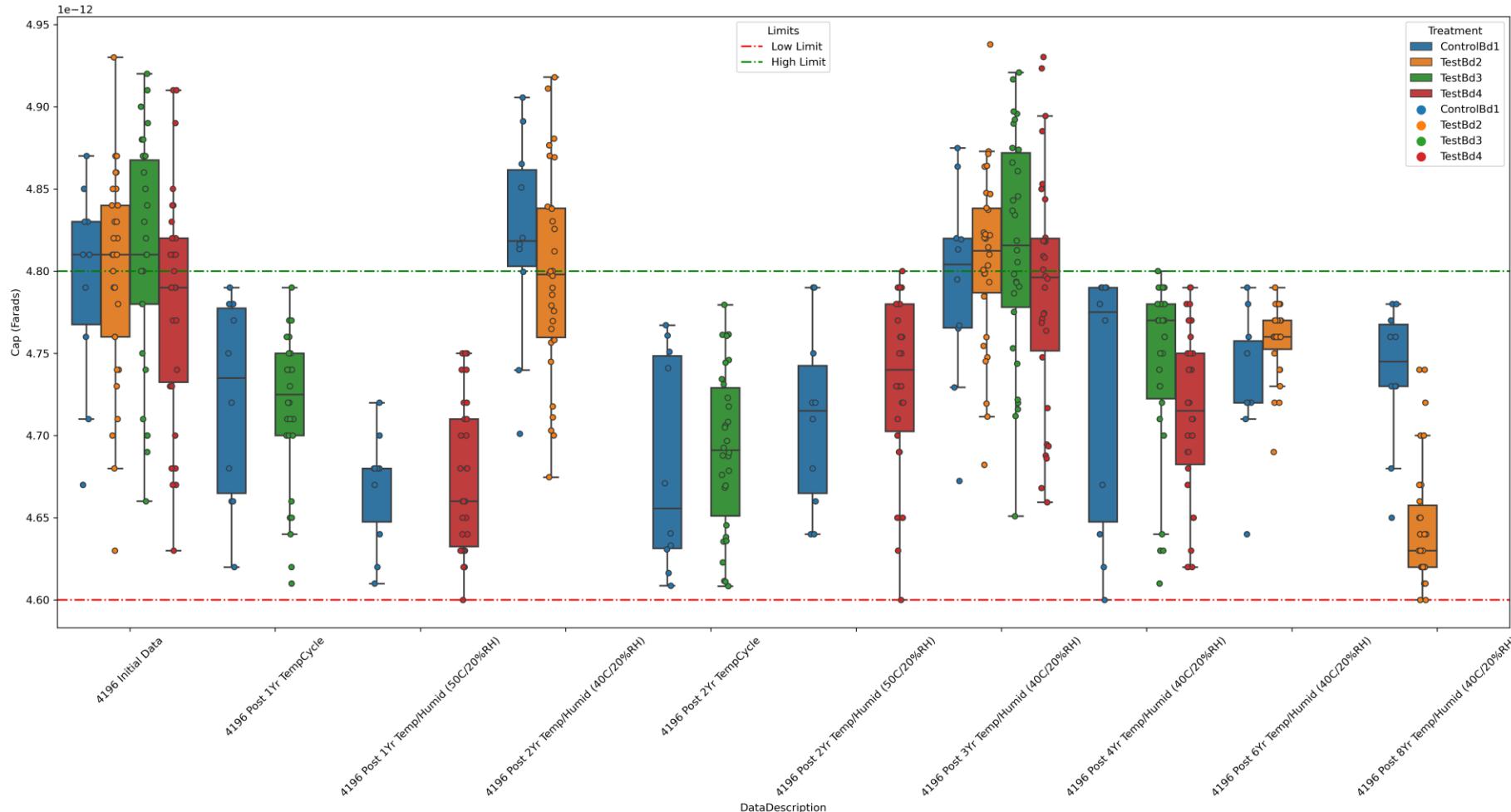
Information Consolidated into Multiple Relational Tables

Index	eCATT_Number	Step_Number	Mfr_Part_Number	TestDate	Filename	TestTemp	Operator	TestSystem
0	4196	7		2011-08-25 08:42:00	4196_CapDf_Init_Data.csv	None	VEE	
1	4196	11		2012-11-08 10:35:00	4196_CapDf_Post1_TmpCyc_Data.csv	None	VEE	
2	4196	15		2013-01-16 14:57:00	4196_CapDf_POST1_20C50RH_Data.csv	None	VEE	
3	4196	19		2013-08-05 13:34:00	4196_CapDf_Post1_40C20RH_Data.csv	None	VEE	
4	4196	23		2014-02-26 10:12:00	4196_CapDf_POST2_TC_Data.csv	None	VEE	
5	4196	27		2014-04-16 11:39:00	4196_CapDf_POST2_50C20RH_Data.csv	None	VEE	
6	4196	31		2015-02-16 14:33:00	4196_CapDf_A11Bds20150113_Data.csv	None	VEE	
7	4196	35		2016-02-04 07:55:00	4196_CapDf_Sn41-100_01112016_Data.csv	None	VEE	

Test Information Table

Index	Serial_Number	Bin	Cap	Df	TestData_PrimaryKey_Wide	Treatment	Measurement_Type	Measure_Number	eCATT_Number	Step_Number
0	1	nan	4.79e-12	0.00055931	bjjjp2Rv7hbzL	Control1Bd1	none	1	4196	7
1	2	nan	4.83e-12	0.000234037	EKQJN90peB2bI	Control1Bd1	none	1	4196	7
2	3	nan	4.83e-12	0.000235914	FSQr0nMPK2t4Zp	Control1Bd1	none	1	4196	7
3	4	nan	4.87e-12	0.000184406	KDlqn2w8FXjpCe	Control1Bd1	none	1	4196	7
4	5	nan	4.67e-12	1.84e-05	11Vb2m3Yzv2VfVK	Control1Bd1	none	1	4196	7
5	6	nan	4.76e-12	0.000173928	5v7ML6mYg0ek01	Control1Bd1	none	1	4196	7
6	7	nan	4.81e-12	0.000104115	cICRhB0NvrcDanIS	Control1Bd1	none	1	4196	7
7	8	nan	4.81e-12	0.000151827	21leRrSBskMqmqr	Control1Bd1	none	1	4196	7
8	9	nan	4.85e-12	0.000608465	g58AzLG53by016B	Control1Bd1	none	1	4196	7
9	10	nan	4.71e-12	0.000219937	VBQdyvfpBVlxJa	Control1Bd1	none	1	4196	7
10	11	nan	4.83e-12	0.000631139	7Co0bktJwArcF	TestBd2	none	1	4196	7
11	12	nan	4.79e-12	0.000119851	NQ9AfP1jpsZje1Z	TestBd2	none	1	4196	7
12	13	nan	4.86e-12	0.000196	WBUSD55C0uxe01E	TestBd2	none	1	4196	7
13	14	nan	4.93e-12	0.0001058	yq8DjxHYGe2sTk	TestBd2	none	1	4196	7
14	15	nan	4.76e-12	-0.00027848	R6TzCTC4GhAc1vh	TestBd2	none	1	4196	7
15	16	nan	4.87e-12	8.27e-05	cUXBLTSR50Nmw85	TestBd2	none	1	4196	7
16	17	nan	4.84e-12	0.000879935	NqykNUPxuLtnZD	TestBd2	none	1	4196	7
17	18	nan	4.81e-12	0.000175484	pna12U0j1Uodog	TestBd2	none	1	4196	7
18	19	nan	4.86e-12	8.16e-05	nE2t28ca2NPNTB2	TestBd2	none	1	4196	7

Test Data Table


Index	Test_Name	Test_Number	Test_Name_Unique	Units	Low_Limit	High_Limit
0	Cap	1	Cap	Farads	4.6e-12	4.8e-12
1	Df	2	Df	nan	nan	0.03
2	Cap	1	Cap	Farads	4.6e-12	4.8e-12
3	Df	2	Df	nan	nan	0.03
4	Cap	1	Cap	Farads	4.6e-12	4.8e-12
5	Df	2	Df	#	nan	0.03
6	Cap	1	Cap	Farads	4.6e-12	4.8e-12
7	Df	2	Df	#	nan	0.03
8	Cap	1	Cap	Farads	4.6e-12	4.8e-12
9	Df	2	Df	#	nan	0.03
10	Cap	1	Cap	Farads	4.6e-12	4.8e-12
11	Df	2	Df	#	nan	0.03

Test Variable Information Table

Demonstration: Long Term Dormant Storage (LTDS) Testing of Capacitor (4) – Answering Statistical Analyst Questions

- Did part exceed the specification limit because part performance is changing, or due to sources of variability (days of testing, personnel, methods, instrument drift) in the testing?

Cyclical pattern observed in test data over time suggests out of spec measurements are attributable to variability in the testing.

Demo: Electrical Testing of Metal-Oxide Field-Effect Transistor (MOSFET) (I) – Tests Performed and Data Collected

- 5 parts formed the control set and 80 parts formed the test set.
- Electrical testing performed at 7 time points over **more than one thousand hours of exposure**:
 - Testing after temperature bake (125C for 24 hours) and temperature/humidity (30C/60% RH for 8 days) exposure. “Post Preconditioning” data
 - Retest after cleaning. “Post Preconditioning Retest” data
 - Testing after temperature/humidity exposure (85C/85% RH for 7 days). “Temp/Humidity 1” data
 - Testing after further temperature/humidity exposure (85C/85% RH for 7 days). “Temp/Humidity 2” data
 - Testing after further temperature/humidity exposure (85C/85% RH for 14 days). “Temperature/Humidity 3” data
 - Testing after further temperature/humidity exposure (85C/85% RH for 21 days). “Temperature/Humidity 4” data
 - Testing after further temperature/humidity exposure (85C/85% RH for 317 hours). “Temperature/Humidity 5” data
- Measurements/variables collected:
 - Drain current (ID) at applied drain source voltage (VDS) of 590V

Demo: Electrical Testing of Metal-Oxide Field-Effect Transistor (MOSFET) (2) – Data Users and their Questions

Data User	Question(s)
Test lab staff	Are any gross performance issues observed in each test that would require retesting? Are measurements for tested parts falling within prescribed specification limits? If not, which parts are falling outside the limits?
Component engineers	To be determined
Surveillance engineers	How are parts aging as a function of time and environmental exposure? Which systems are impacted by aging parts and what are the corresponding risks?
Statistical analysts	What is the performance of the parts across testing conditions? What is happening with the failure rate? Do parts fall inside of the specification limits? If not, do parts exceed the specification limits because the part is degrading, or due to sources of variability in the way testing was performed? What do the controls tell us about measurement variability?

Demo: Electrical Testing of Metal-Oxide Field-Effect Transistor (MOSFET) (3) – Data Before and After Reorganization

	A	B	C	D	E	F	G	H	I	J	K	
1	DTA File Name	20775_Amb_int.dta										
2	DTA File Created	03/06/2021 13:30:43										
3	TST File Name	for BSS225_Amb_RevB.TST	from \\S976973\c\$\TEST									
4	XLSX File Name	20775_Amb_intDTA.xlsx										
5	XLSX File Create											
6	Operator	1	DTA File N	20776_Amb_3.dta								
7	Station	2	DTA File C	13/07/2021 09:57:50								
8	Device Name	3	TST File N	BSS225_Amb_RevB.TST	from \\S976973\c\$\TEST							
9	Lot Name	4	XLSX File	20776_Amb_3DTA.xlsx								
10	Comment	5	XLSX File 1:	A	B	C	D	E	F	G	H	I
11	Last N&P Check	6	Operator C	1	DTA File N	20776_Amb_final.dta						
12	DataLog Rate	7	Station A	2	DTA File C	10/08/2021 11:13:48						
13	Number of Tests	8	Device Na	3	TST File N	BSS225_Amb_RevB.TST	from \\S976973\c\$\TEST					
14	Quantity Logged	9	Lot Name	20	XLSX File	20776_Amb_finalDTA.xlsx						
15	DataLog Quantit	10	Comment 2:	5	XLSX File	10/08/2021 11:26:59						
16	Test	11	Last N&P 1:	6	Operator							
17	Item	12	DataLog R	7	Station A							
18	Limit	8	Number o	9	Device Na							
19	Limit Min Max	10	Quantity L	9	Lot Name	20776						
20	Limit Units	15	Datalog Q	10	Comment 2:	22C TA2691/TA3049						
21	Bias 1	16	Test	11	Last N&P 08/08/2021 08:54							
22	Bias 1 Value	17	Item	12	DataLog R	1						
23	Bias 1 Units	18	Limit	13	Number o	9						
24	Bias 2	19	Limit Min Max	14	Quantity L	66						
25	Bias 2 Value	20	Limit Units	15	Datalog Q	32767						
26	Bias 2 Units	21	Bias 1	16	Test		1	2	3	4	5	6
27	Time	22	Bias 1 Value	17	Item	CONT	BVDSS	VTH	SAME	IDSS	IGSS	RDON
28	Time Units	23	Bias 1 Units	18	Limit	0	575	1.3	2.3	1.00E-07	1.00E-07	45
29	Wafer Data	24	Bias 2	19	Limit Min Max	>	>	<	<	<	<	<
30	Serial	25	Bias 2 Value	20	Limit Units	V	V	A	A	R	V	
31	26	Bias 2 Units	21	Bias 1	16	ID	IG	T#	VDS	VSG	ID	IAK
32	27	Time	22	Bias 1 Value	0	0.00025	9.40E-05	3	590	20	0.09	0.09
33	28	Time Units	23	Bias 1 Units	A	A	V	V	A	A	A	
34	29	Wafer Dat	24	Bias 2	VMAX				VG	VG		
35	30	Serial	25	Bias 2 Value	0	580	0	0	0	0	4.5	10
36	31	32	Time	27	Time	0.00078	0.3	0.3	0	0.3	0.00038	0.00038
37	33	34	Time Units	6	Time		s	s	s	s	s	s
38	35	36	Wafer Dat No	7	Wafer Dat No							
39	37	38	Serial	8	Serial							
40	39	40	Bin	30	Bin							
41	41	42		31		7	3					
42	43	44		32		7	2					
	45	46		33		8	2					
	47	48		34		10	2					
	49	50		35		14	2					
	51	52		36		16	2					
	53	54		37		17	2					
	55	56		38		18	2					
	57	58		39		19	2					
	59	60		40		20	2					
	61	62		41		21	2					
	63	64		42		22	2					

Information Consolidated into Multiple Relational Tables

Multiple Raw Tester Data Files and Part Treatment Information from eCATT System

Test Information Table

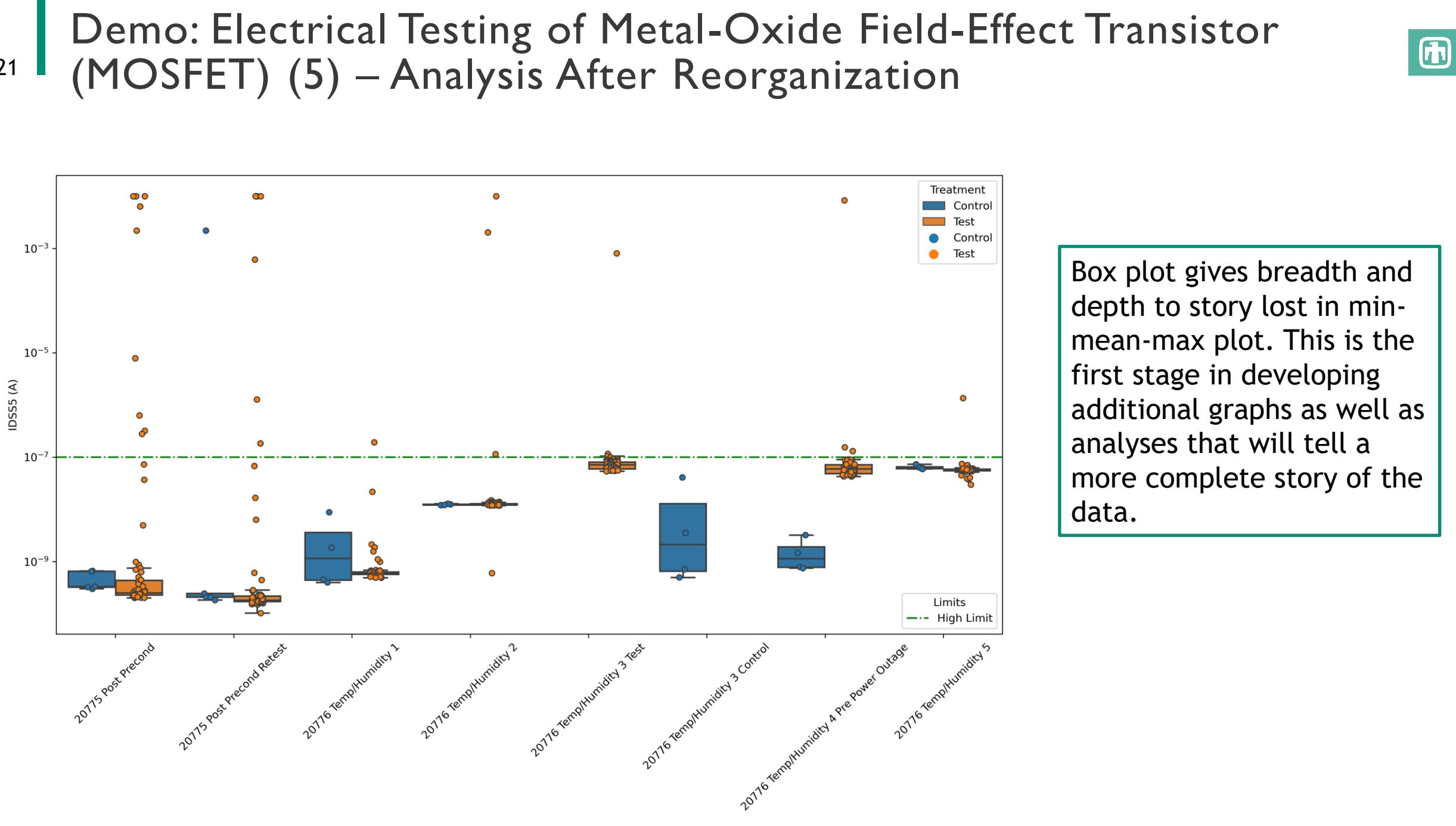
Index	eCATT_Number	Step_Number	Mfq_Part_Number	TestDate		Filename	TestTemp
				2021-06-03 13:30:43	2021-06-09 12:22:16		
0	20775	none		2021-06-03 13:30:43	2021-06-09 12:22:16	20775_Amb_intDTA.xlsx	None
1	20775	none		2021-06-22 06:40:42	2021-06-30 07:08:52	20776_Amb_intDTA.xlsx	None
2	20776	none		2021-07-13 09:57:50	20276_Amb_3DTA.xlsx	None	
3	20776	none		2021-07-13 10:21:58	20776_Amb_3controlsDTA.xlsx	None	
4	20776	none		2021-07-23 08:22:07	20776_prepoweroutDTA.xlsx	None	
5	20776	none		2021-08-10 11:13:48	20776_Amb_finalDTA.xlsx	None	
6	20776	none					
7	20776	none					


Test Data Table

Index	Serial_Number	Bin	CONT1	BVDSS2	VTH3	SAME4	IDSS5	IGSS6	RDON7	RDON8	VF9
0	1	3	nan	580	1.875	1.875	3.202e-07	8.68e-09	24.62	23.32	0.754
1	2	3	nan	231.1	0.00548	0.00548	0.002198	0.000999	105.7	105.5	0.7424
2	3	2	nan	580	1.89	1.89	2.777e-10	2.75e-11	24.97	23.7	0.7544
3	5	2	nan	580	1.88	1.88	4.95e-09	9.41e-11	24.81	23.51	0.7546
4	6	2	nan	580	1.885	1.885	2.718e-10	2.86e-11	25.07	23.76	0.7545
5	7	2	nan	580	1.873	1.873	4.137e-10	3.38e-11	24.48	23.17	0.7533
6	8	2	nan	580	1.88	1.88	3.513e-10	3.06e-11	22.82	21.5	0.7525
7	9	3	nan	0.9999	1.878	1.878	0.009999	0.000999	33.7	33.87	0.7531
8	10	2	nan	580	1.88	1.88	2.274e-10	1.94e-11	25.16	23.9	0.7547
9	11	2	nan	580	1.857	1.857	8.656e-10	2.26e-11	24.92	23.66	0.7542
10	12	2	nan	580	1.899	1.899	2.437e-10	2.17e-11	25.63	24.34	0.7546
11	13	2	nan	580	1.875	1.875	2.852e-10	2.11e-11	25.43	24.15	0.7548
12	14	3	nan	22.65	19.66	19.66	0.009999	1.37e-11	105.5	105.6	0.7467

Test Variable Information Table

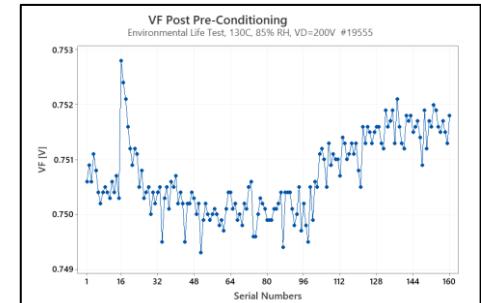
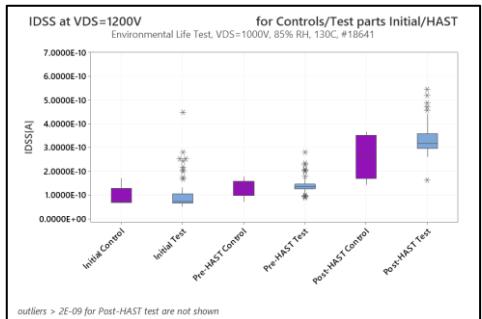
Index	Test_Name	Test_Number	Test_Name_Unique	Units	Low_Limit	High_Limit	Bias_1	Bias_1_Value
0	CONT	1	CONT1	nan	nan	nan	0	0
1	BVDSS	2	BVDSS2	V	575	nan	ID	0.00025
2	VTH	3	VTH3	V	1.3	nan	IG	9.4e-05
3	SAME	4	SAME4	nan	2.3	nan	T#	3
4	IDSS	5	IDSS5	A	nan	1e-07	VDS	590
5	IGSS	6	IGSS6	A	nan	1e-07	VSG	20
6	RDON	7	RDON7	R	nan	45	ID	0.09


Demo: Electrical Testing of Metal-Oxide Field-Effect Transistor (MOSFET) (4) – Analysis Before Reorganization

Min-mean-max plot introduces the data story, but can mask relevant details

Plot of drain current as a function of part serial number provides performance details for individual parts

Demo: Electrical Testing of Metal-Oxide Field-Effect Transistor (MOSFET) (5) – Analysis After Reorganization

Deeper Analyses Possible with Improved Tools

22

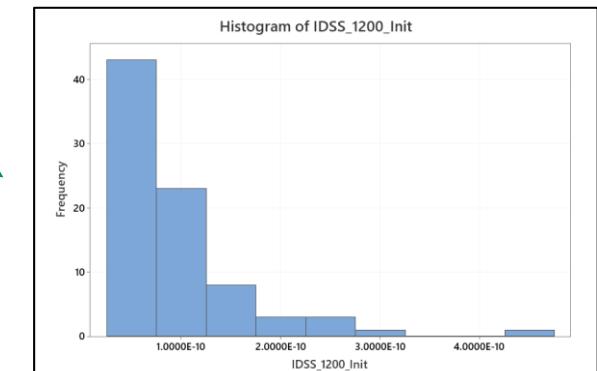
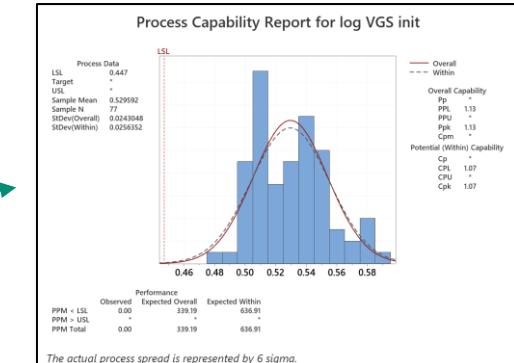
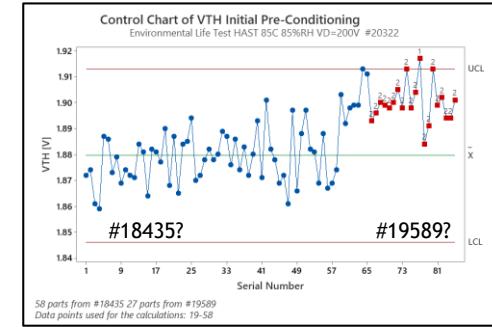
Deeper analyses are possible for a broader range of users with this next level organization of raw data, metadata, and other disparate data. Incorporation of additional visualizations and statistical analyses will leverage the data to document part performance in testing and paint a more detailed picture. This is a work in progress as we explore questions from current and new users.

Analytics questions of interest regarding data

Measurement error

Trends by serial number

Definition of failure rate




Environmental test settings

Lot to lot differences

Distributional questions

Differences in testing protocols

process capability relative to spec

Conclusions/Future Work

- Continue development of data analytics tools.
 - Identify further questions that need to be addressed by data analytics.
 - Make sure tools that are being developed are targeting questions that need to be answered, within the capability of the data that are being collected.
 - Use multivariate statistical analysis to better understand part failures.
 - Leverage data available at multiple time points and under different testing conditions.
- Identify primary users/consumers of COTS testing data and their needs, in order to inform data organization and data analytics efforts.
- Collaborate with COTS database development team to establish new data organization framework.
 - Identify core set of required, non-redundant relational tables (e.g., Test Data, Test Information, Part Information).

Acknowledgements

- Test Lab Team:
 - Clifton Aldridge
- Surveillance Engineers:
 - Sky Driver
 - Sean Brooks
- Database Development Team:
 - Gabe Simoes