
Addressing Undesirable Emergent Behavior in Deep
Reinforcement Learning UAS Ground Target Tracking

Hannah Lehman∗, Shelby Hackett,†and John Valasek‡

Texas A&M University, College Station, TX 77843-3141

Deep reinforcement learning algorithms have been used to produce agent policies for un-
manned air systems using non-gimballed cameras that are tracking ground targets. Simplifying
abstractions to the environment are often used which mandate a relatively small number of
states and actions and sometimes produce undesirable emergent behavior. This paper investi-
gates the use of a learning-based algorithm in conjunction with a flight controller to eliminate
undesirable emergent behavior for the non-gimballed camera, fixed-wing unmanned air sys-
tem ground target tracking problem. Approaches investigated consist of fidelity of dynamical
model, reward structure shaping, low-level controller, and changing action space and duration.
These approaches mitigate undesirable emergent behavior and result in a learning method
that is stable during training, resilient to hyperparameter values, and produces a flight con-
troller that is able keep the target in the image frame of the camera. Results presented in the
paper show that a proper combination of these techniques can greatly reduce the likelihood
of the agent performing undesirable emergent behavior, while still providing acceptable target
tracking performance with minimal ringing and smooth learning.

Nomenclature

M = Set that characterizes a Partially Observable Markov Decision Process
S = Set of possible states (state-space)
s = Vector of states
A = Set of possible actions (action-space)
a = Vector of actions
T = Set of conditional transition probabilities between states
A = Reward function
g = Trajectory (set of sequential states and actions taken)
� = Heaviside (unit step) function
ℎ = Altitude
F8, 9 = Weight in reward function

I. Introduction
Unmanned Air Systems (UAS) serve as methods of tactical surveillance, reconnaissance, and intelligence gathering.

Currently, a tactical UAS requires four personnel, each with their own responsibilities, to perform a mission. In addition
to individual responsibility, the team must be in constant communication with one another to complete the mission.
This makes even well-trained teams at risk for errors caused by miscommunication, slow reaction time, and missed or
squandered opportunity. The use of machine learning to assume individual and/or group responsibility is an opportunity
to improve mission reliability and safety.

There have been a number of approaches to solve the target tracking problem with a fixed strap-down camera on a
small UAS. Beard and Egbert [1] derived explicit roll-angle and altitude-above-ground-level (AGL) constraints for

∗Graduate Research Assistant, Vehicle Systems & Control Laboratory, Aerospace Engineering Department. Student Member AIAA.
lehman@tamu.edu.

†Graduate Research Assistant, Vehicle Systems & Control Laboratory, Aerospace Engineering Department. Student Member AIAA.
shackett@tamu.edu.

‡Professor and Director, Vehicle Systems & Control Laboratory, Aerospace Engineering Department. Fellow AIAA. valasek@tamu.edu,
http://vscl.tamu.edu/valasek

1

SAND2021-15465CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

http://vscl.tamu.edu/valasek

road tracking. Their derivation guarantees that the target will remain in the camera frame provided it is possible to use
edge tracking of the roadway, plus other features and landmarks. Beard and Saunders [2] later extended this work and
addressed the problem of tracking a ground-based target using a fixed camera that was pointing out of the wing of a
UAS. Rather than planning explicit trajectories for the vehicle, a nonlinear image-based feedback guidance strategy was
developed that maintained the target in the FOV of the camera. Knowledge of predetermined terrain features such as
roads and buildings enhanced the tracking performance and the algorithms cannot track in a non-structured featureless
environment.

Other approaches have used machine learning to approach the problem of target tracking. Valasek et al. [3] created
a reinforcement learning algorithm approach for learning bank angle control policies based on current bank angle
and the target’s position in the image frame. There are three advantages to an RL based approach. First, all learning,
computation, and tracking takes place in the camera’s image frame to simplify computations, and prior information
about the geometry of the target space (nodes or road network, landmarks, features, coordinates) are not required to do
the tracking. This permits tracking of targets in completely featureless terrain environments. Second, knowledge of
the target dynamics in the image frame is not needed. Third, determining an accurate dynamical model relating the
target position and motion in the image frame to aircraft states and controls can be difficult, and the model will have
uncertainties resulting from the modeling process. The modeled kinematic chain from target position in the inertial
frame to the aircraft frame introduces computational errors that propagate with each successive rotation. By using an
RL approach, the control policy can be determined without needing to first identify the entire system dynamics. A
feature of this approach is that the learning agent will continue to learn, refine, and update the control policy previously
learned offline during actual operation. Use of this approach does not require system models, although they can help
offline learning, and the reinforcement learning eliminates the need for any heuristic or ad hoc approaches.

Noren et al. [4] detailed the initial flight testing of a previously trained control policy [3] for the autonomous
tracking of ground targets. Noren’s work showed that it is possible to train a reinforcement learning controller in a
simulated environment and deploy the learned policy to hardware. Despite limitations imposed by planar motion and
single-output controller constraints, satisfactory tracking performance was achieved in hardware. This ability to transfer
from simulation to hardware has also been shown in the work presented in [5] in which a policy was initially trained
offline in simulation and improved online on the vehicle during flight testing. In addition, this work showed that the
agent learned behavior that a pilot would not have thought to perform, improving the tracking ability.

A phenomena called emergent behavior occurs when a trained agent learns to exploit the reward to produce novel,
unexpected behavior. While this may be useful in some cases, the emergent behavior encountered in solving the
ground target tracking problem is shown to be undesirable. This paper investigates various approaches to counteract the
emergent behavior and produce a machine learning agent that will improve mission capability, safety, and reliability.

II. Learning and Simulation Environment
The presented utilization of soft actor-critic algorithms to a learning-based flight controller frames the ground target

tracking as a reinforcement learning problem. In Reinforcement Learning (RL), it is desired to train an agent to learn the
parameters \ of a policy (or controller) c\ , in order to map the partially-observable environment’s observation vector o
(or state vector s in fully-observable environments) to agent actions a. The performance of the agent is measured by a
scalar reward signal A returned by the environment. Fig. 1 illustrates this description as a diagram and Fig. 2 shows how
it can be applied to the target tracking case.

Fig. 1 Reinforcement learning problem modeled in terms agent and environment.

The goal of Reinforcement Learning (RL) is to learn a policy in a potentially non-deterministic environment. When

2

the environment is unknown, this becomes model-free RL, which can be formalized as a Partially Observable Markov
Decision Process (POMDP) [6]. A POMDPM can be characterize by its state-space S (vector of states s ∈ S), an
action-spaceA (vector of actions a ∈ A), a transition operator T (which defines the probability distribution ?(sC+1 |sC)),
and the reward function A : S × A → R (or A (s, a). This definition is illustrated by Eq. 1:

M = {S,A,T , A}. (1)

To simplify derivation of the algorithm it is assumed to be a fully-observable environment. This is shown in Fig. 1.
In Reinforcement Learning, at each time step C of a time horizon) , a policy (or controller) c, parametrized by \C , maps
the current environment’s states sC to actions aC : c\ (aC |sC). This action affects the current environment’s states sC which
evolve to sC+1 based on the environment’s transition distribution (dynamics) T = ?(sC+1 |sC , aC). The environment also
returns a scalar reward function A that evaluates the action taken aC at the state sC : A (sC , aC).

During an episode, the sequence of states observed and actions taken over a number of time steps) can be represented
by a trajectory g:

g = {s0, a0, s1, a1, . . . , s) , a) } (2)

The probability of experiencing a given trajectory g in a Markov Decision Process can be written as:

c\ (g) = ?\ (s0, a0, s1, a1, . . . , s) , a)) (3)

= ?(s0)
)∏
C=1

c\ (aC |sC)?(sC+1 |sC , aC) (4)

The goal in policy gradient RL methods is to find the parameters \∗ of policy c parametrized by \ that will maximize
the objective � (\), which represents the expected total reward to be received by this policy across all timesteps of the
episode. This present work is primarily concerned with the Soft Actor-Critic algorithm, though it will compare results
to other learning algorithms such as Deep Deterministic Policy Gradient (DDPG).

A. Framing the Tracking Problem as Reinforcement Learning

Fig. 2 Intelligent motion video guidance for unmanned air system ground target tracking modeled as a
reinforcement learning problem.

In the target tracking case presented by this work, the environment comprises the aircraft, camera, and ground target
model, shown in Figure 3 and explained in more details in Section II.B. Environment states are represented by the
linearized aircraft states and target pixel positions -) and .) in the image plane of the camera (Eq. 5). The aircraft
dynamical states are D , velocity, U, angle-of-attack, @, body-axis pitch rate, \, pitch attitude angle, V, sideslip angle, ?,
body-axis roll rate, A , body-axis yaw rate, q, bank angle, k, heading angle, and ℎ, altitude.

3

Fig. 3 Geometry of an unmanned air system with a fixed-camera tracking a ground target in the camera image
frame.

S = {-) , .) , D, U, @, \, V, ?, A, q, k, ℎ} (5)

The agent controls the aircraft through elevator, throttle, aileron, and rudder actions, X4, X) , X0, XA respectively (Eq. 6).
The agent’s actions are evaluated by a scalar value, the reward signal. The reward signal is computed based on the
normalized Euclidean distance of the target to the center of the image plane (Eq. 7). Initial research was performed
using the AV-8. This aircraft was deemed unsuitible for the desired task, and the modeling was first switched to the
MQ-9 and later to the RMRC Anaconda to match the future flight testing platform.

A = {X4, X) , X0, XA } (6)

A =

(
1 −

√
-2
)
+ .2

)√
-2
) "�-

+ .2
) "�-

)2
(7)

The learning-based flight controller optimizes the action selection by an iterative process in a simulated environment.
The simulation runs many episodes, each starting with a ground target and the aircraft. The aircraft initializes in a
random position in the inertial space and the ground target initializes in the image frame. The episode resets if the target
leaves the image frame or if the aircraft performs any maneuver outside the safety limits as defined by the authors or the
environment itself. In most cases these limits are determined by the linear range of the aircraft or limitations of the
direction cosine matrices. In some cases additional constraints are added for g-loading or other flight restrictions.

B. Aircraft Agent Modeling
The learning controller that handles the full-state continuous target tracking case is trained using a full-state,

continuous, non-real time simulation that incorporates models of the camera, target, and UAS agent. A six degree-of-
freedom, Linear Time Invariant (LTI) state-space model is used for the aircraft model in the environment. The agent
learns using the states defined in Eq. 5, and originally using actions consisting of low-level commands elevator X4,
aileron X0, rudder XA , and throttle XC (Eq. 6). The first model was a non-coupled LTI state-space model of the Cessna
172 which was built using stability & control derivatives available in the open literature [7]. This produced mediocre
results since the desired full coupling between longitudinal and lateral/directional dynamics which the agent needed
to experience during training was not present. This is because the coupling derivatives are typically not available for
aircraft models in the open literature.

The model limitation was overcome using a higher fidelity model that is fully coupled between longitudinal and
lateral/directional dynamics. The RMRC Anaconda (Figure 4) was selected since it is also the vehicle which has been
used for validation & verification flight testing of the agents in the author’s previous work, and it will be used in a similar
role for the present work. The RMRC Anaconda model was synthesized using data collected from flight testing and the
algorithms and approach for near real-time online system identification developed by the authors in [8], [9]. The model
of the RMRC Anaconda synthesized and used is presented in the Appendix.

4

Fig. 4 RMRC Anaconda platform external physical characteristics

Camera specifications are shown in Table 1. The target is modeled as a point mass with planar motion on the XY
plane. Policies are trained here for the case of stationary targets.

Table 1 Camera model specifications

Parameter Value
Resolution (pixels) 1024x768

Aspect Ratio 4:3
Horizontal Field of View (deg) 90
Vertical Field of View (deg) 30

Pan Angle w.r.t. Aircraft Frame (deg) -90
Tilt Angle w.r.t. Aircraft Frame (deg) -20

III. Emergent Behavior and Iterative Environment Changes
The goal of much reinforcement learning is to learn and implement solutions that humans may be unable to perform

quickly or safely. These solutions may at times be beyond what a human operator would conceive or be able to execute
[10]. An example of good emergent behavior is demonstrated in [5] by the agent’s unorthodox reaction to unexpected
target behavior during a test flight. By incrementally increasing separation distance from the target, rather than circling
in the opposite direction and attempting to re-acquire it later, tracking was maintained without interruption in a manner
that was unexpected by the human operator.

More often however, the agent learns to exploit the reward structure to the detriment of the mission goal [11].
Repeated instances occurred early on in the present work when the agent learned to exploit the reward structure by
diving at the target, despite stable reward and episode length training results. This behavior is not indicated in the
standard evaluation metrics, thus the environment must be modified such that evaluation reflects the desirability of the
behavior of the agent. Diving is the emergent behavior this work investigates to avoid, and success will depend upon the
ability to recognize diving behavior in standardized evaluation metrics, eliminate diving from agent time histories, and
exhibit lengthy, robust tracking of ground targets.

A. Initial Environment Changes and Reward Selection
Since this behavior was not present in [5] the primary cause of diving was thought to be the expanded action space

and potentially the aircraft model being used. The aircraft model was changed to a vehicle at a non-hover flight condition
as detailed in the previous section. The Cessna 172 model was implemented in the present work to give the agent the
best possible chance to perform smooth actions. The controller agent using the new model showed improvement but still
spiraled down to the target. The reward structure was then modified to add a penalty for extreme altitude drops as shown

5

in Eq. 8 where A8 is the reward for the position in the image frame as defined before, h is the altitude, w are weights, and
H is the Heaviside function. It is undesirable to completely restrict altitude and speed as in [5]. Therefore, the altitude
reward was built with a slack-band around the ideal altitude. Changes in altitude within the margin to aid maneuvering
are allowed, but any movement outside of the acceptable range will be penalized on a linear scale as shown in Fig. 5.

A = A8 − (F1,1ℎ + F1,2) + (F1,1ℎ + F1,2)� (ℎ − 450) (8)

Fig. 5 Slack-band altitude reward structure.

Initial experiments were performed with other reward functions (eg. piecewise continuous) but the linear reward
function produced the most consistent and simple agent reactions. This modified reward structure vastly reduced the
incidences of diving and spiraling, but resulted in shorter than ideal episode lengths. The new environment with added
altitude reward was initially trained on the original DDPG algorithm as in [12]. Despite no change to the image frame
reward function, the addition of the altitude reward produced a higher average reward return. This is presumably due to
better average tracking in the image frame while the episode is running. In addition, there is high variance in reward
return. It is clear that exploration for a more stable algorithm would be beneficial.

Alternative algorithms were explored and comparisons were made to a number of algorithms from Stable Baselines
[13]. The algorithms chosen were Soft Actor Critic, TD3, TRPO, and DDPG. Comparisons between the basic structures
and capabilities of these algorithms are shown in [13]. In these comparison plots, each agent was trained separately
from three random seeds and the results averaged across the three sets. The mean of the sets was plotted along with
a shaded region of one standard deviation above and below the mean. This allows for ready comparison of both the
average return as well as the volatility and stability of each agent.

Once trained, the resulting plots for reward moving average and mean episode length can be seen in Fig. 6. Despite
similarities in reward and episode results, the agents chose vastly different methods by which to obtain those rewards.
Some agents, such as TD3, chose to immediately cut thrust, while others such as TRPO immediately set thrust to 100%.
DDPG agents universally had fairly prominent ringing (rapid oscillation of controls), while SAC in particular had the
least ringing. These results of the SAC training show an ability to train a stable policy that reacts to changing states in
order to maintain view of the target. SAC has the fastest initial training gains and results in the most stable end agent.
For this reason, SAC was chosen as the algorithm of choice for further investigation of reward structure modifications
and their effect on episode length.

Despite significant differences in average reward the episode duration remains around 400 timesteps for all algorithms.
The discrepancy between increasing reward and constant timeteps shows that the reward is poorly optimized for the
actual results desired, i.e., a long tracking duration. Many episodes showed a tendency to dive towards the target but
stopped before hitting the target or losing the aircraft. The altitude penalty was effective in preventing loss of the vehicle
but failed to incentivize the agent to properly execute an orbit of the target to keep it in the image frame. Keeping the
target in the center of the image frame is desirable but not the major objective of the problem. Therefore a number of
changes to the reward structure were made to rectify this disparity between reward and goal. Many reward structures
were tested based on various simplifications and penalties, and the results of these changes at the low-level commands
are shown in Fig. 7. These changes resulted in a about a 100% increase in average episode length.

6

Fig. 6 Comparisons between reward and episode length returns for various Stable Baseline models.

Fig. 7 Comparison between several low level command agents.

B. Controller Implementation
However, the agent still failed to learn to orbit the target. One approach to attempt to gain this ability is to learn on

environment states (or high-level actions) rather than actions. In brief, though many modern Neural Net approaches find
more consistent results using low level inputs, the sample inefficiency of RL may require high level inputs [14]. Results
of a similar episode length comparison after the controller was implemented are shown in Fig. 8.

An optimal Nonzero Setpoint (NZSP) flight controller ([15]) was synthesized and incorporated in the RMRC
Anaconda model shown in Equations 22 and 24 to help mitigate diving behavior. The approach from [15] is summarized
here with Equations 10 through 20. Using the optimal NZSP results in a new action space of commanded states as
shown in Equation 9 with the optimal NZSP generating the lower-level commands to provide not only the desired
tracking but also stability augmentation of the plant.

A = {D, @, V,Φ} (9)

7

Fig. 8 Comparison between original low level agents (‘SAC’) and select high level agents.

The optimal Nonzero Setpoint (NZSP) is a command augmentation structue (CAS) which steers the plant to a
terminal steady-state condition, with guaranteed state-tracking properties. For a linear time invariant system with =
states and < controls,

x = �x + �u; x(0) = x0
y = �x + �u (10)
x ∈ R=, u ∈ R<, y ∈ R<

it is desired to command some of the initial outputs y to steady-state terminal output values y< and keep them there as
C →∞. If these terminal outputs are trim states, denoted by ∗, then at the terminal steady-state condition the system is
characterized by

x∗ = �x∗ + �u∗ ≡ 0
y< = �x∗ + �u∗ (11)
x∗ ∈ R=, u∗ ∈ R<, y< ∈ R<

For guaranteed tracking, the number of commanded outputs y< must be less than or equal to the number of controls <.
Error states and error controls are defined as

x̃ = x − x∗

ũ = u − u∗ (12)

where x̃ and ũ are the error between the current state and control respectively, and the desired state and control
respectively. The state equations can be written in terms of these error states as

x̃ = x − x∗ = �x + �u − (�x∗ + �u∗)
x̃ = �x̃ + �ũ (13)

with quadratic cost function to be minimized

� =
1
2

∫ ∞

0

[
x̃)&x̃ + ũ) 'ũ

]
3C (14)

8

The optimal control which minimizes Eqn.14 is obtained by solving the matrix algebraic Riccati equation for infinite
horizon

%� + �) % − %�'−1�) % +& = 0 (15)

resulting in

%� + �) % − %�'−1�) % +& = 0 (16)

A feedback control law in terms of the measured states is obtained by converting ũ back to u, giving

u = (u∗ + x∗) − x (17)

with u∗ and x∗ constants. They are solved for directly by inverting a quad partition matrix deduced from Eqn.11[
� �

� �

]−1
=

[
-11 -12

-21 -22

]
[
x∗

u∗

]
=

[
-11 -12

-21 -22

] [
0

y<

]
(18)

and then solving for

x∗ = -12y<
u∗ = -22y< (19)

Upon substitution in Eqn.17 the control law implementation equation becomes

u = (-22 + -12)y< − x (20)

For the optimal control policy u to be admissible, the quad partition matrix must be invertible. Therefore, the equations
for x∗ and u∗ must be linearly independent, and the number of outputs or states that can be driven to a constant value
must be less than or equal to the number of available controls. An advantage of this controller is the guarantee of perfect
tracking of a number of outputs equal to the number of controls, independent of the value of the gains, provided they are
stabilizing. The gains can be designed using any desired technique, and only affect the transient performance, and not
the guarantee of steady-state performance.

In Figure 8 it is shown that the introduction of a controller increases the episode length from about 400 timesteps to
around 1350, a 220% increase. An example of one episode using the controller and additional penalties is shown in Fig.
9.

C. Action Space Reduction and Extended Action Duration
Another method of increasing agent performance is reducing environment complexity. It is important for the fidelity

of the simulation to maintain all aircraft dynamic complexity, but it is possible through the use of a controller, to reduce
the number of actions that the agent must control. An example of an agent trained with reduced action space is shown
in Fig. 10. This agent only learns one command, bank angle, and allows the rest of the actions to be handled by the
controller. It is apparent from this episode that the emergent diving behavior is no longer exhibited and some turning
behavior has been learned, although it does not complete a full turn.

A significant delay between action taken and reward payoff is another hurdle. If the agent needs to turn and it takes
several seconds to get into a turn, the agent must purposefully choose to continue to turn for hundreds of timesteps
before it receives the reward. An increased action duration (or a decrease in action duration) would allow for an action
and its resulting reward to be more immediately linked. The combination of action duration increase and action space
reduction proved to have a significant effect on agent behavior and episode duration. An example of an agent trained
using both reduced action space and extended action duration is shown in Fig. 11 in which the action duration has been
changed from 100Hz to 2Hz. This command rate was chosen based on necessary update rates from [4] and performs
well when compared to 10, 5, and .5 Hz models. This agent is able to handle different vehicle movement cases as
shown in Fig. 12 which tracks a randomly moving target. A comparison between these approaches and the approaches
discussed previously is shown in Fig. 13. This simplification and sampling approach results in a 49 fold increase in
average episode length.

9

Fig. 9 Example of a high-level command agent

Fig. 10 Example run using reduced action space

10

Fig. 11 Example run using reduced action space and 2Hz action duration

Fig. 12 Example run using reduced action space and 2Hz action duration tracking a randomly moving target

11

Fig. 13 Episode length comparison of models in seconds

IV. Conclusions
This paper investigated an approach to mitigate undesirable emergent behavior by utilizing a learning method that is

stable during training, resilient to hyperparameter values, and produces a flight controller that is able keep the target in
the image frame of the camera. Based upon results presented in the paper, the following conclusions are drawn:

1) For the problem investigated, use of four actions was shown to produce undesirable emergent behavior in terms
of inadmissible aircraft responses and trajectories. These behaviors utilize the action space in ways that lead to
state values that must be discouraged through the use of penalties and modifications to the learning environment.

2) Average episode length was increased by a factor of approximately 49 and impacting the ground was completely
eliminated by an appropriate combination of a more appropriate vehicle model, learning high-level commands to
a flight controller, reduced action space and action sampling, and modifying the reward structure to better reflect
the desired behavior.

3) Soft Actor Critic performed better than Deep Deterministic Policy Gradient when new anti-diving metrics
were introduced. Deep Deterministic Policy Gradient was shown to have difficulty learning complex maneuver
behaviors when using low-level commands. Soft Actor Critic was able to achieve approximately a factor of 49
longer episodes with minimal ringing due to use of the extended action duration, and exhibited reduced learning
volatility.

Future work involves the integration of relative actions and newer linear models and reward structures. Additionally,
the integration of hyperparameter optimization techniques such as Optuna will be investigated. Results of this work will
be validated with flight testing of an unmanned air system.

V. Acknowledgement
This research was funded by the Laboratory Directed Research and Development program at Sandia National

Laboratories, a multimission laboratory managed and operated by National Technology and Engineering Solutions of
Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-NA0003525. The technical monitors are Daniel Whitten and James
E. Pagan. This support is gratefully acknowledged by the authors. This paper describes objective technical results and
analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views
of the U.S. Department of Energy or the United States Government.

12

References
[1] Egbert, J., and Beard, R. W., “Low Altitude Road Following Constraints Using Strap-down EO Cameras on Miniature Air

Vehicles,” 2007 American Control Conference, 2007, pp. 353–358. doi:10.1109/ACC.2007.4282767.

[2] Saunders, J., and Beard, R. W., “Visual Tracking in Wind with Field of View Constraints,” International Journal of Micro Air
Vehicles, Vol. 3, No. 3, 2011, pp. 169–182. Doi: 10.1260/1756-8293.3.3.169.

[3] Valasek, J., Kirkpatrick, K., May, J., and Harris, J., “Intelligent Motion Video Guidance for Unmanned Air System Ground
Target Surveillance,” Journal of Aerospace Information Systems, Vol. 13, No. 1, 2016, pp. 10–26. Doi: 10.2514/1.I010198.

[4] Noren, C., Valasek, J., G. Goecks, V., Rogers, C., and Bowden, E., “Flight Testing of Intelligent Motion Video Guidance
for Unmanned Air System Ground Target Surveillance,” AIAA Information Systems-AIAA Infotech@ Aerospace, 2018.
doi:10.2514/6.2018-1632.

[5] Valasek, J., Lehman, H., and Goecks, V. G., “Online Intelligent Motion Video Guidance for Unmanned Air System Ground
Target Surveillance,” AIAA Scitech 2019 Forum, 2019. doi:10.2514/6.2019-0135.

[6] Bertsekas, D. P., Dynamic Programming and Optimal Control, 2nd ed., Athena Scientific, 2000.

[7] Roskam, J., Airplane Flight Dynamics and Automatic Flight Control Part I, Design, Analysis, and Research Corporation,
Lawrence, KS, 1994.

[8] Lu, H. H., Rogers, C., Goecks, V. G., and Valasek, J., “Online Near Real Time System Identification on a Fixed-Wing
Small Unmanned Air Vehicle,” 2018 AIAA Atmospheric Flight Mechanics Conference, 2018. doi:10.2514/6.2018-0295, URL
https://arc.aiaa.org/doi/abs/10.2514/6.2018-0295.

[9] Leshikar, C., and Valasek, J., “System Identification Flight Testing of Inverted V-Tail Small Unmanned Air System,” 2022 AIAA
Atmospheric Flight Mechanics Conference, 2022.

[10] “In TwoMoves, AlphaGo and Lee Sedol Redefined the Future,” https://www.wired.com/2016/03/two-moves-alphago-
lee-sedol-redefined-future/, 2016. Accessed: 2021-06-04.

[11] “Faulty Reward Functions in the Wild,” https://openai.com/blog/faulty-reward-functions/, 2016. Accessed:
2021-06-04.

[12] Goecks, V. G., and Valasek, J., “Deep Reinforcement Learning on Intelligent Motion Video Guidance for Unmanned Air System
Ground Target Tracking,” AIAA Scitech 2019 Forum, 2019. doi:10.2514/6.2019-0137.

[13] Hill, A., Raffin, A., Ernestus, M., Gleave, A., Kanervisto, A., Traore, R., Dhariwal, P., Hesse, C., Klimov, O., Nichol, A.,
Plappert, M., Radford, A., Schulman, J., Sidor, S., and Wu, Y., “Stable Baselines,” https://github.com/hill-a/stable-
baselines, 2018.

[14] Haarnoja, T., Ha, S., Zhou, A., Tan, J., Tucker, G., and Levine, S., “Learning to walk via deep reinforcement learning,” arXiv
preprint arXiv:1812.11103, 2018.

[15] Valasek, J., Gunnam, K., Kimmett, J., Tandale, M. D., Junkins, J. L., and Hughes, D., “Vision-Based Sensor and Navigation
System for Autonomous Air Refueling,” Journal of Guidance, Control, and Dynamics, Vol. 28, No. 5, 2005, pp. 979–989.
doi:10.2514/1.11934, URL https://doi.org/10.2514/1.11934.

Appendix: Aircraft Linear Model

A. RMRC Anaconda
The six degree-of-freedom fully-coupled linear time invariant state-space model of the RMRC Anaconda is obtained

by system identification flight testing about a steady, level, 1g trimmed flight condition. All angular quantities are in
radians. The trim states and values are shown in Table 2. The state vector is

G =

[
XD XU X@ X\ XV X? XA XΦ

]
(21)

13

https://arc.aiaa.org/doi/abs/10.2514/6.2018-0295
https://www.wired.com/2016/03/two-moves-alphago-lee-sedol-redefined-future/
https://www.wired.com/2016/03/two-moves-alphago-lee-sedol-redefined-future/
https://openai.com/blog/faulty-reward-functions/
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://doi.org/10.2514/1.11934

The state matrix is

� =

-0.1101 -0.9545 -2.6177 30.8596 2.8778 -0.4403 1.7681 3.1469
-0.0006 -0.6756 -0.4518 0.174 -0.3125 0.0265 0.1319 0.394
0.0426 10.787 -0.2738 -5.1785 3.8784 -0.1857 -0.1066 1.4919
0.0004 0.0631 0.9637 -0.0339 0.0259 0.0061 -0.0153 0.0199
0.0004 0.0429 -0.0068 0.2514 -0.7343 -0.0777 -1.0891 0.6173
0.0059 9.3587 3.7037 0.694 -5.4006 -3.2869 4.4875 -10.7015
0.0095 0.1539 0.4569 -5.0034 17.1677 -0.9996 -0.5098 2.006
0.0003 0.1739 0.0859 -0.021 -0.1022 0.8977 -0.0797 -0.0796

(22)

The control vector is
D =

[
X4 X) X0 XA

]
(23)

The control influence matrix is

� =

-6.9241 15.7696 -0.3614 -6.8906
0.9769 -0.0071 0.0786 -0.6223
-23.4937 -0.1652 0.4653 0.4633
-1.7197 -0.0111 0.0336 0.1646
0.2327 0.0483 0.071 1.1513
9.0601 -0.6782 23.6621 -12.1168
-3.4857 -0.2528 -2.5434 -11.8281
1.3545 -0.0809 2.294 -1.052

(24)

Table 2 RMRC Anaconda trim states and controls

Trim Parameter Value
*1 (ft/s) 69.3
�1 (ft) 500
U1 (deg) -3.6
\1 (deg) 10.4
V1 (deg) 6.9
Φ1 (deg) -0.6
X) (%) 60
X4 (deg) 0
X0 (deg) 0
XA (deg) 0.22

14

	Introduction
	Learning and Simulation Environment
	Framing the Tracking Problem as Reinforcement Learning
	Aircraft Agent Modeling

	Emergent Behavior and Iterative Environment Changes
	Initial Environment Changes and Reward Selection
	Controller Implementation
	Action Space Reduction and Extended Action Duration

	Conclusions
	Acknowledgement
	RMRC Anaconda

