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Variational quantum algorithms (VQA)

Near-term quantum computers are noisy and have limited coherence times

It will be years before we can run large-scale computations on a QC

For now, much research is focused on variational quantum algorithms
 Hybrid of quantum + classical computation
 Run many small-scale quantum programs, supplemented by classical optimization
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Repeat until 
optimum
is found

Quantum circuit for n-qubit, p-layer QAOA

Quantum Approximate Optimization Algorithm (QAOA)5



Classical optimization: SPSA

SPSA (Simultaneous Perturbation Stochastic Approximation) is the most 
commonly-used technique for optimizing variational quantum algorithms with 

noisy samples.

1. Attempt to follow the gradient in the objective function landscape
 Take two (noisy) samples near an initial point
 Approximate the gradient based on these samples
 Move in the direction of the gradient for the next iteration

2. Repeat until convergence
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SPSA example (animation)7



Surrogate-based 
optimization for VQA
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Surrogate-based optimization for VQA

We propose a surrogate-based technique for optimizing variational quantum 
algorithms with noisy samples. 

1. Construct a surrogate of the objective function landscape
 Take many (noisy) samples in a local “patch”
 Construct the function surrogate in this patch, e.g., using a kernel approximation
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Example surrogate: Gaussian kernel approximation

Construct surrogate as 
a sum of Gaussians 
centered on each 

sample point.
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Surrogate-based optimization for VQA

We propose a surrogate-based technique for optimizing variational quantum 
algorithms with noisy samples. 

1. Construct a surrogate of the objective function landscape
 Take many (noisy) samples in a local “patch”
 Construct the function surrogate in this patch, e.g., using a kernel approximation
 Use the surrogate to estimate the coordinates of the minimum in this patch
 Use these coordinates as the center of the next patch

2. Repeat until convergence
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Comparison to SPSA (animation)

SPSA
40 iterations, 2 points per 

iteration

SBO with Gaussian kernel 
approximation

10 iterations, 8 points per iteration
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Results: QAOA for max-cut

n=4, p=2 n=6, p=4 n=10, p=7

x-axis: total # of classical optimization iterations
y-axis: relative error in min value found
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Potential advantages of SBO vs. SPSA

Often converges more quickly in higher-dimensional problems
 Achieves better variational parameter estimates with fewer experimental runs

Allows taking batches of samples from many different coordinates within each 
optimization iteration
 Results in speed and robustness (against drift) advantages in the absence of low-latency 

circuit loading

Requires fewer shots per sample point than SPSA
 Kernel approximation produces a surrogate where shot noise is smoothed out
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Summary
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Summary

We propose a surrogate-based optimization technique, for optimizing variational quantum 
algorithms with noisy samples.

We demonstrate an improvement over SPSA on common problems such as QAOA and VQE, 
using a Gaussian kernel approximation as the surrogate.

We observe potential advantages over SPSA in convergence and experimental runtime, 
particularly for higher-dimensional problems.

Thank you for listening!
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Extra slides
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Numerical results: QAOA for max-cut

n=4, p=2 n=6, p=4 n=10, p=7

x-axis: total # of experimental shots
y-axis: relative error in min value found
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Results: VQE for H2 and LiH (ideal simulator)19



Results: VQE for H2 and LiH (with hardware noise)20


