

Surrogate-based optimization for variational quantum algorithms

Ryan Shaffer^{1,2}

Lucas Kocia²

Mohan Sarovar²



¹ University of California, Berkeley, CA, USA

² Sandia National Laboratories, Livermore, CA, USA

Winter Intern Symposium

Sandia National Laboratories

Thursday, February 17, 2022

QISE-NET

QUANTUM INFORMATION SCIENCE

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Agenda

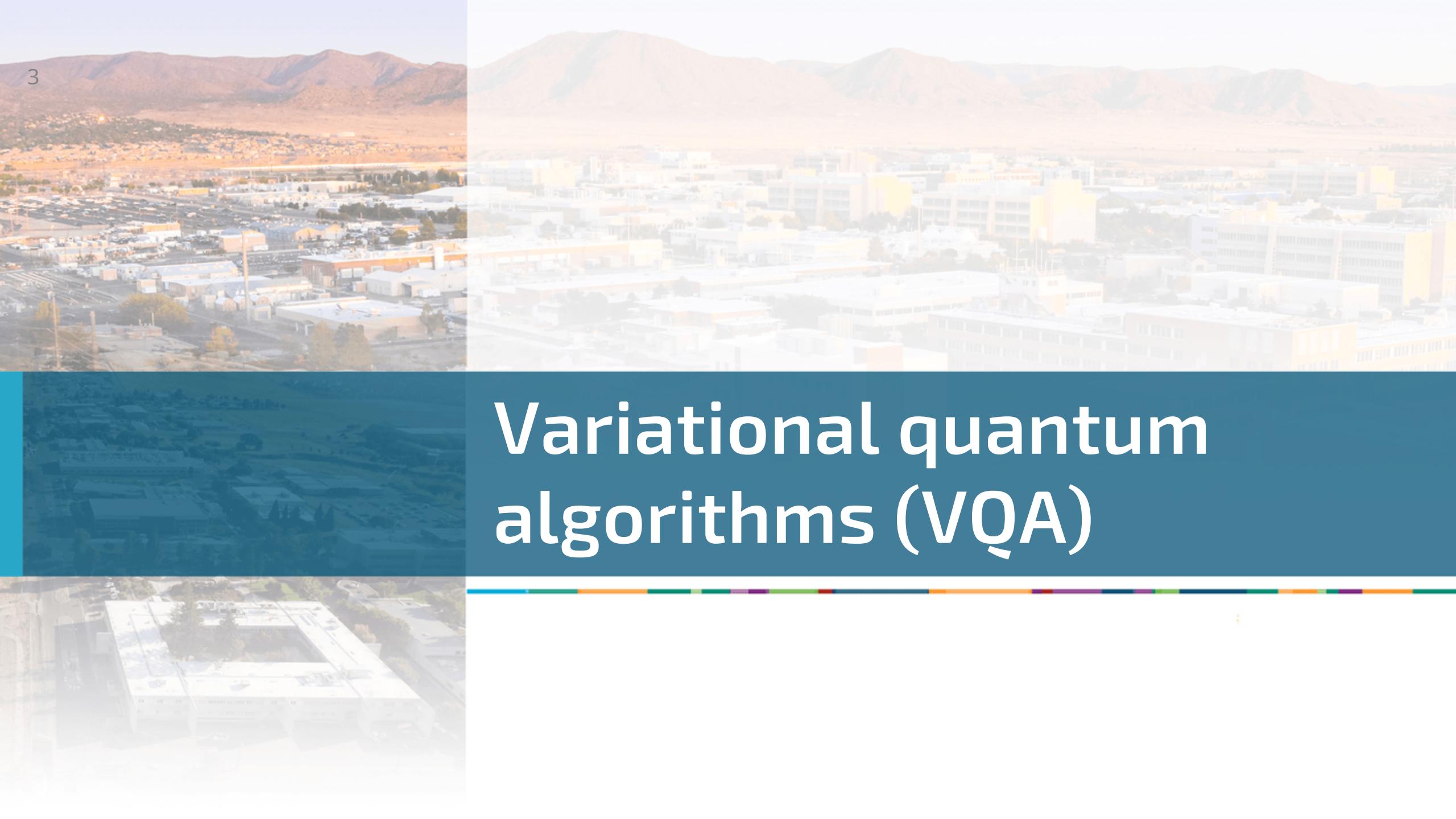
Variational quantum algorithms (VQA)

- Overview
- Existing optimization techniques

Surrogate-based optimization for VQA

- Overview
- Comparison to existing techniques

Summary



Variational quantum algorithms (VQA)

Variational quantum algorithms (VQA)

Near-term quantum computers are **noisy** and have **limited coherence times**

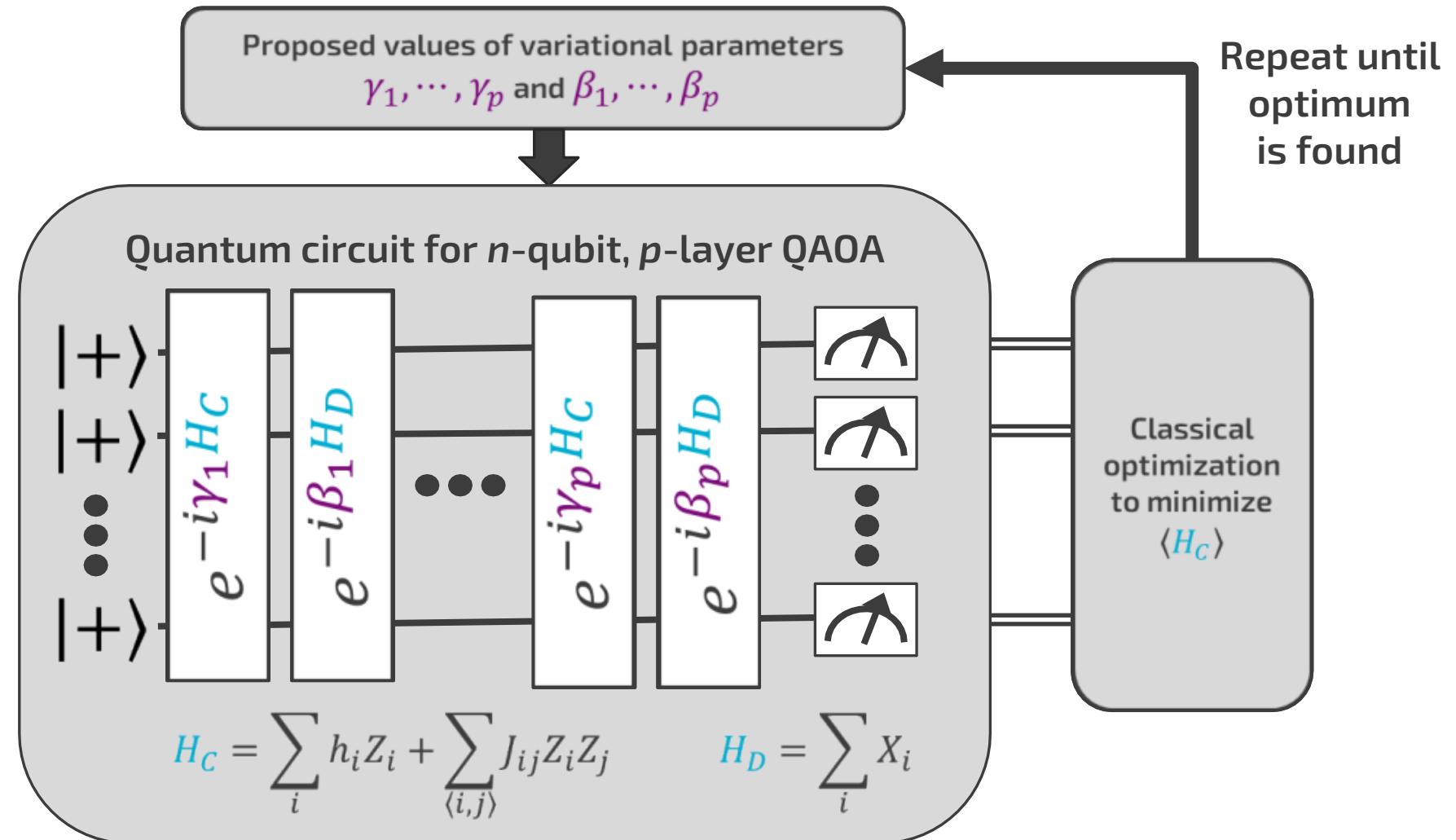
It will be years before we can run large-scale computations on a QC

For now, much research is focused on **variational quantum algorithms**

- Hybrid of quantum + classical computation
- Run many small-scale quantum programs, supplemented by classical optimization

Quantum Approximate Optimization Algorithm (QAOA)

Goal:
 Find the values of
 variational
 parameters
 $\gamma_1, \dots, \gamma_p$ and
 β_1, \dots, β_p
 that minimize an
 objective function
 $\langle H_C \rangle$

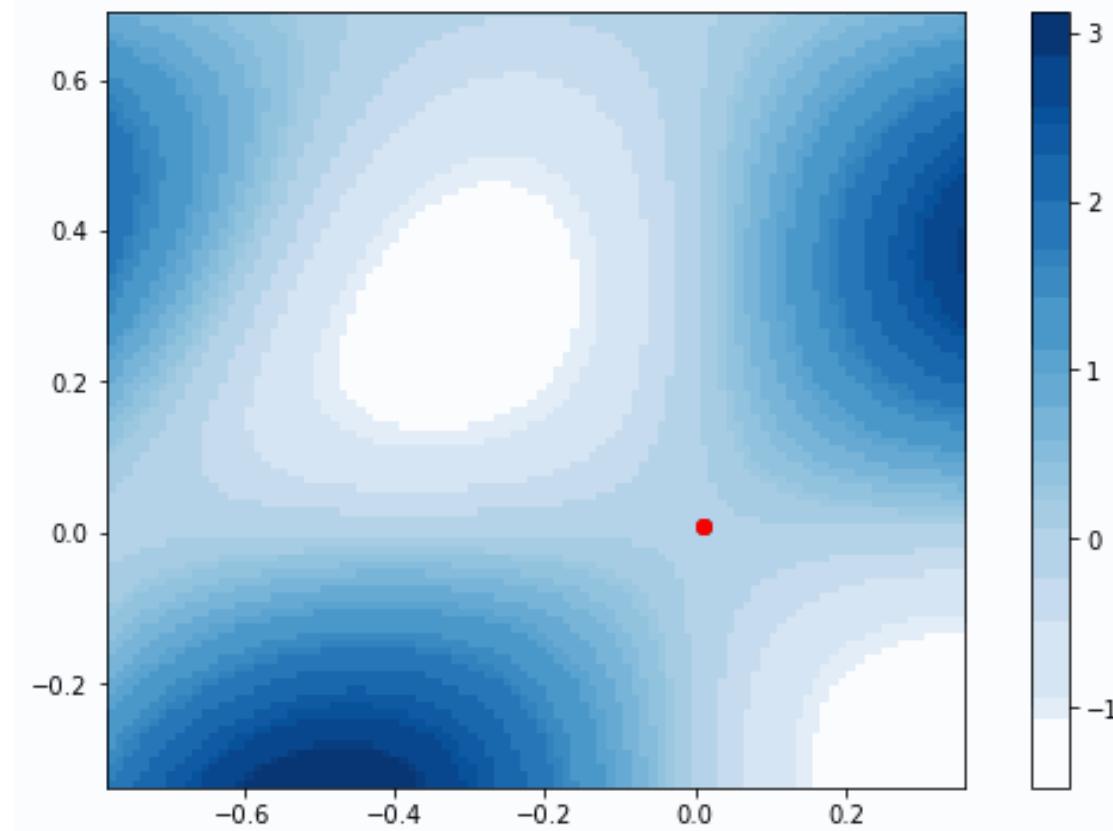


Classical optimization: SPSA

SPSA (Simultaneous Perturbation Stochastic Approximation) is the most commonly-used technique for optimizing variational quantum algorithms with noisy samples.

1. Attempt to **follow the gradient** in the objective function landscape
 - Take two (noisy) samples near an initial point
 - Approximate the gradient based on these samples
 - Move in the direction of the gradient for the next iteration
2. Repeat until convergence

SPSA example (animation)



Surrogate-based optimization for VQA

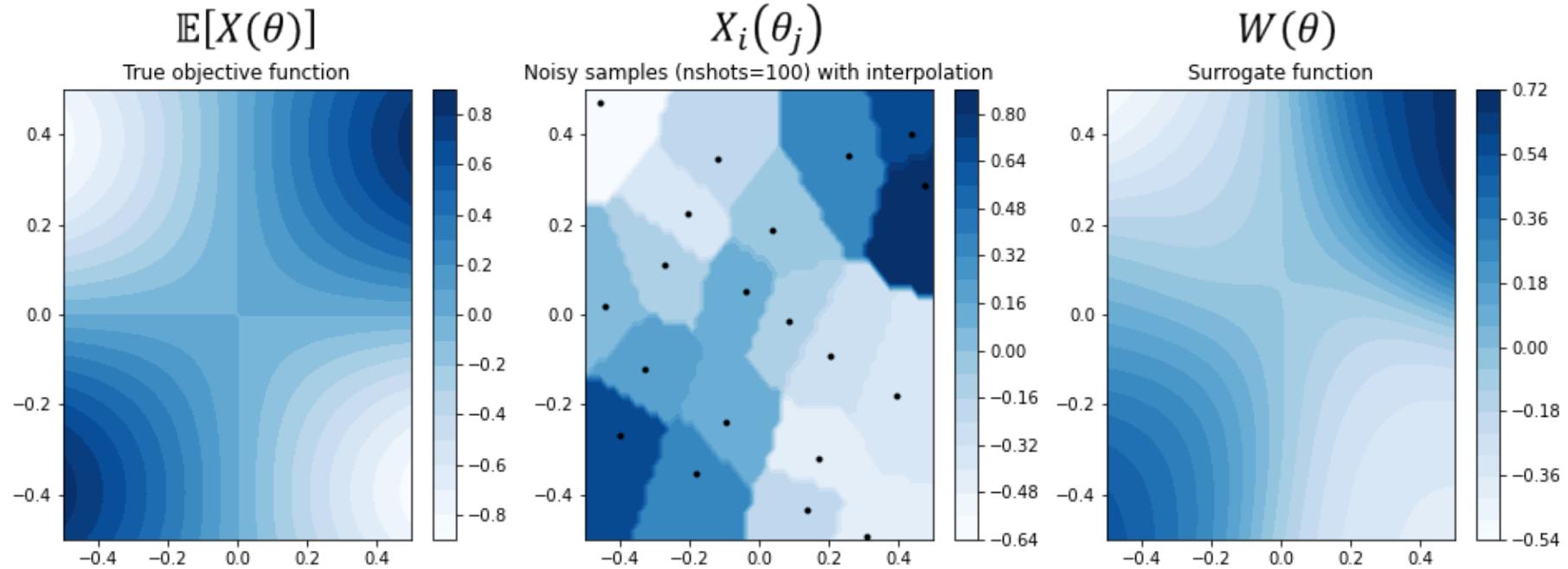
Surrogate-based optimization for VQA

We propose a surrogate-based technique for optimizing variational quantum algorithms with noisy samples.

1. Construct a **surrogate** of the objective function landscape
 - Take many (noisy) samples in a local “patch”
 - Construct the function surrogate in this patch, e.g., using a kernel approximation

Example surrogate: Gaussian kernel approximation

Construct surrogate as a sum of Gaussians centered on each sample point.



θ_j = coordinates of j^{th} sample point

k_j = number of shots taken at j^{th} sample point

$X_i(\theta_j)$ = i^{th} measurement result at coordinate θ_j

Kernel:

$$K(\theta, \theta_j) = e^{-\frac{\|\theta - \theta_j\|^2}{2\sigma^2}}$$

Surrogate:

$$W(\theta) = \sum_j \left(\frac{1}{k_j} \sum_{i=1}^{k_j} X_i(\theta_j) \right) K(\theta, \theta_j)$$

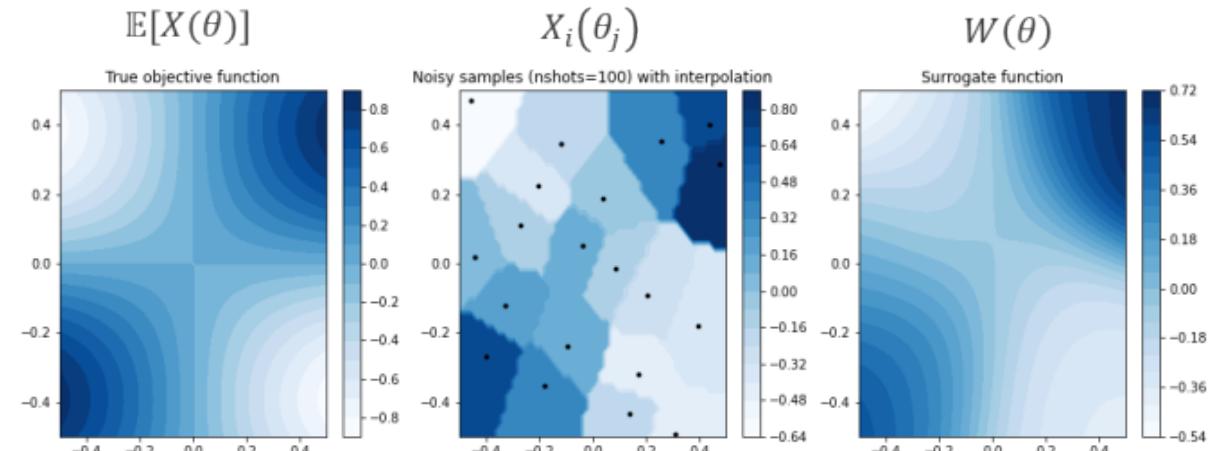
Surrogate-based optimization for VQA

We propose a surrogate-based technique for optimizing variational quantum algorithms with noisy samples.

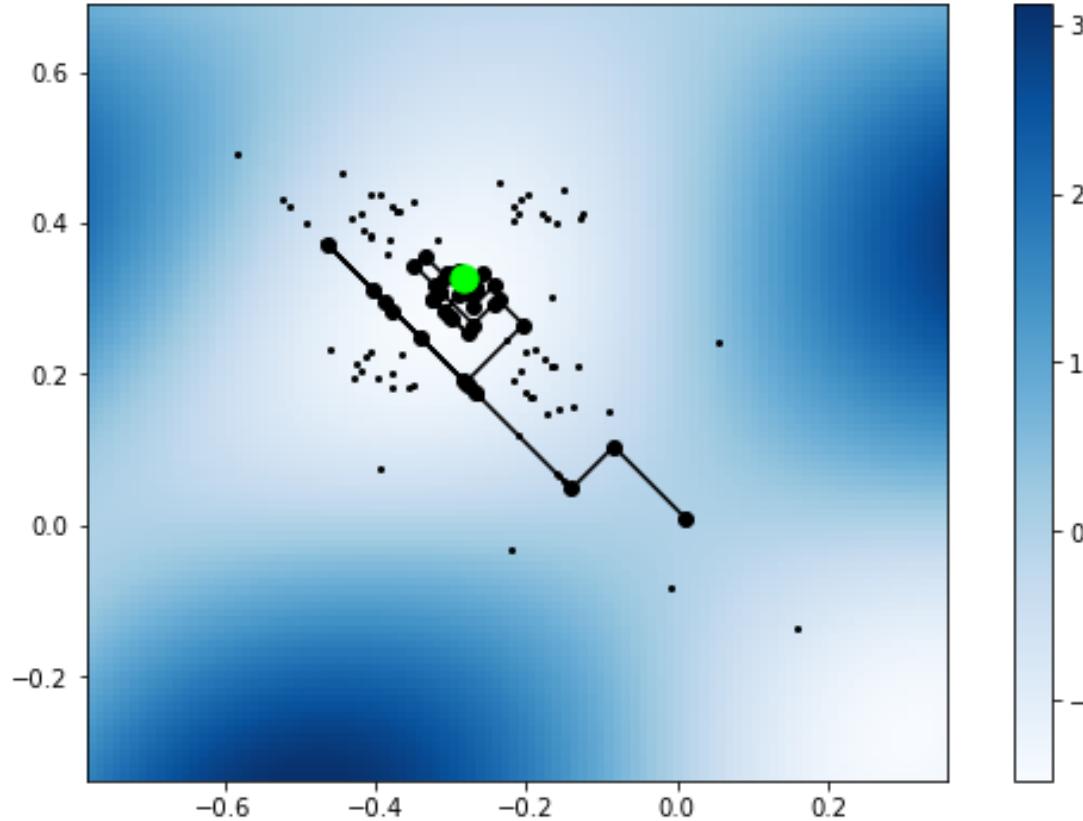
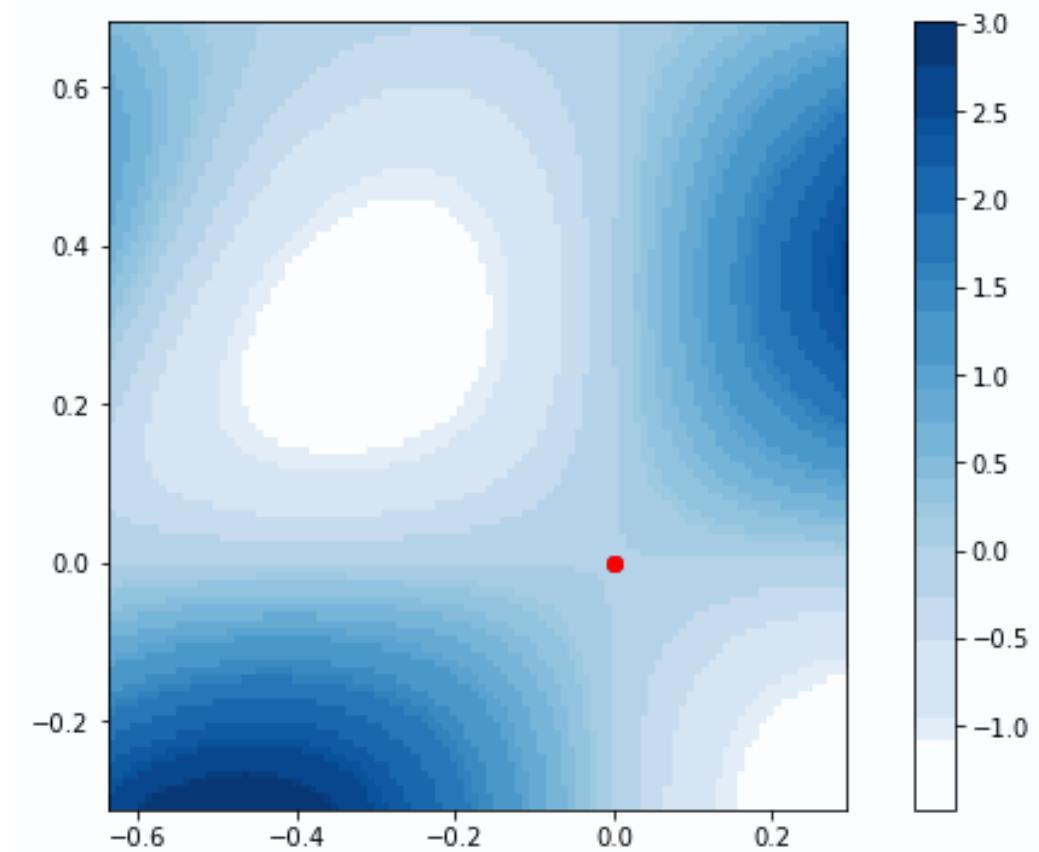
1. Construct a **surrogate** of the objective function landscape

- Take many (noisy) samples in a local “patch”
- Construct the function surrogate in this patch, e.g., using a kernel approximation
- Use the surrogate to estimate the coordinates of the minimum in this patch
- Use these coordinates as the center of the next patch

2. Repeat until convergence

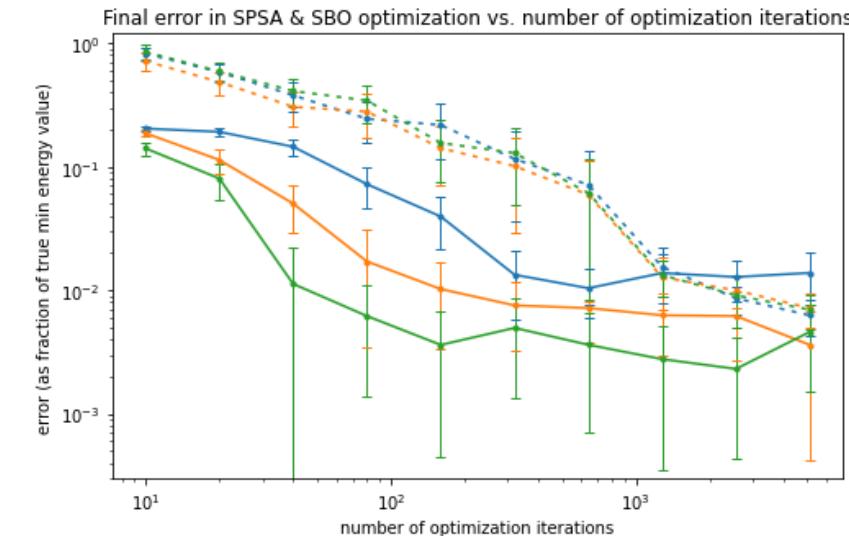


Comparison to SPSA (animation)

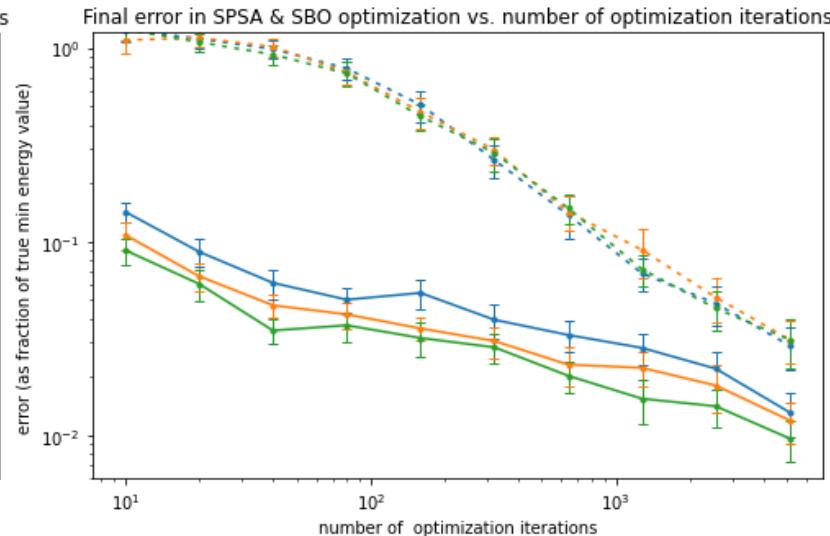


Results: QAOA for max-cut

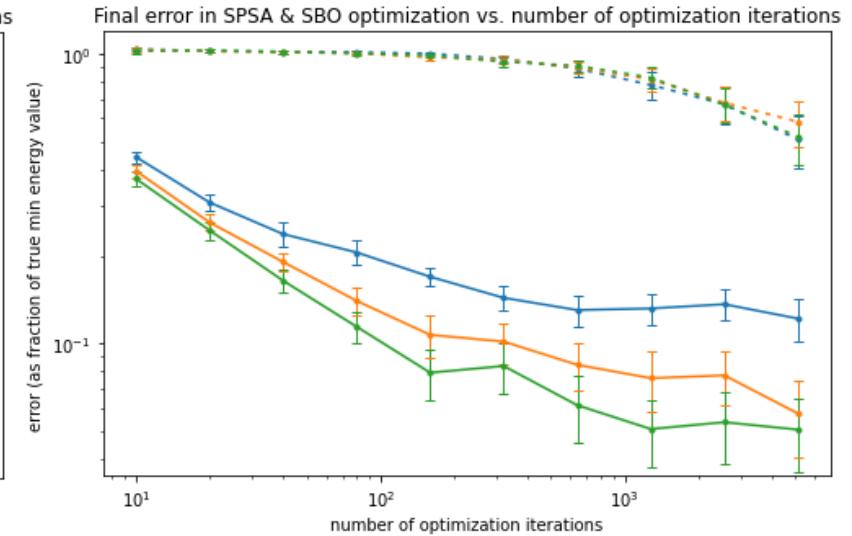
$n=4, p=2$



$n=6, p=4$



$n=10, p=7$



- SPSA nshots_per_iteration=1000
- SBO nshots_per_iteration=1000
- SPSA nshots_per_iteration=5000
- SBO nshots_per_iteration=5000
- SPSA nshots_per_iteration=25000
- SBO nshots_per_iteration=25000

x-axis: total # of classical optimization iterations
y-axis: relative error in min value found

Potential advantages of SBO vs. SPSA

Often **converges more quickly** in higher-dimensional problems

- Achieves better variational parameter estimates with fewer experimental runs

Allows taking **batches of samples** from many different coordinates within each optimization iteration

- Results in speed and robustness (against drift) advantages in the absence of low-latency circuit loading

Requires **fewer shots** per sample point than SPSA

- Kernel approximation produces a surrogate where shot noise is smoothed out

Summary

We propose a **surrogate-based optimization technique**, for optimizing variational quantum algorithms with noisy samples.

We demonstrate an **improvement over SPSA** on common problems such as QAOA and VQE, using a Gaussian kernel approximation as the surrogate.

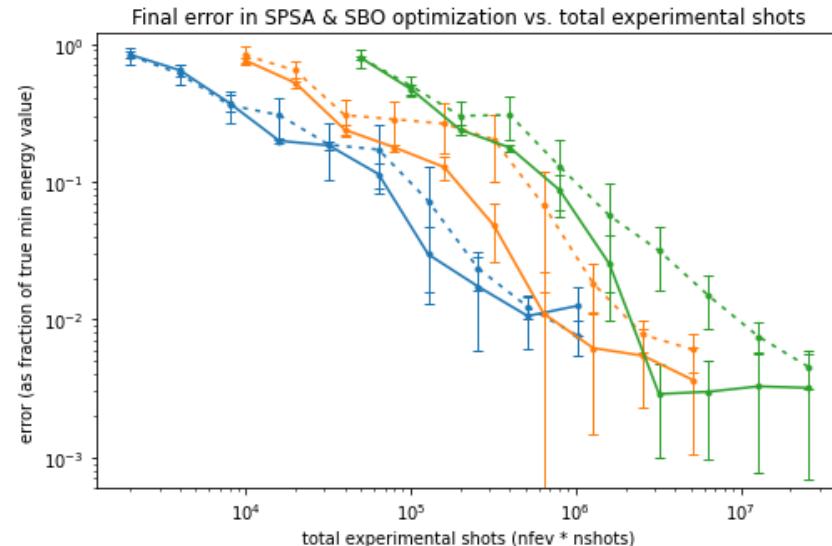
We observe **potential advantages over SPSA** in convergence and experimental runtime, particularly for higher-dimensional problems.

Thank you for listening!

Extra slides

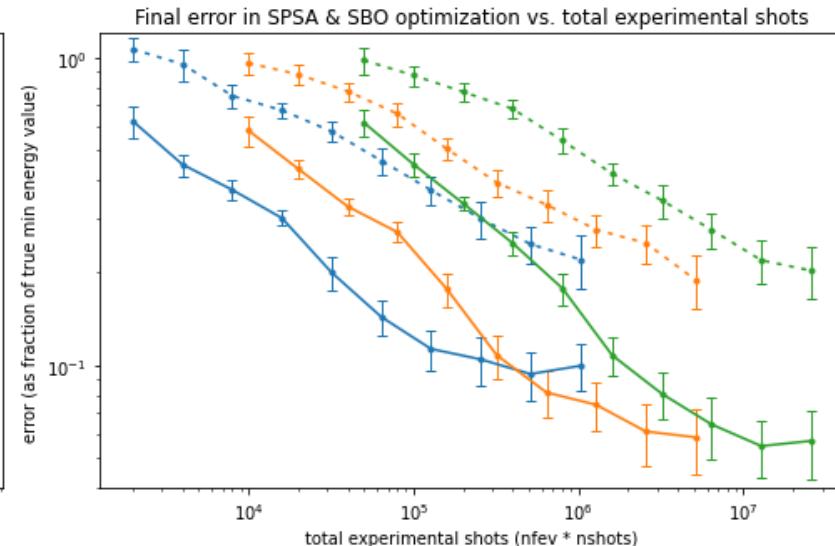
Numerical results: QAOA for max-cut

$n=4, p=2$

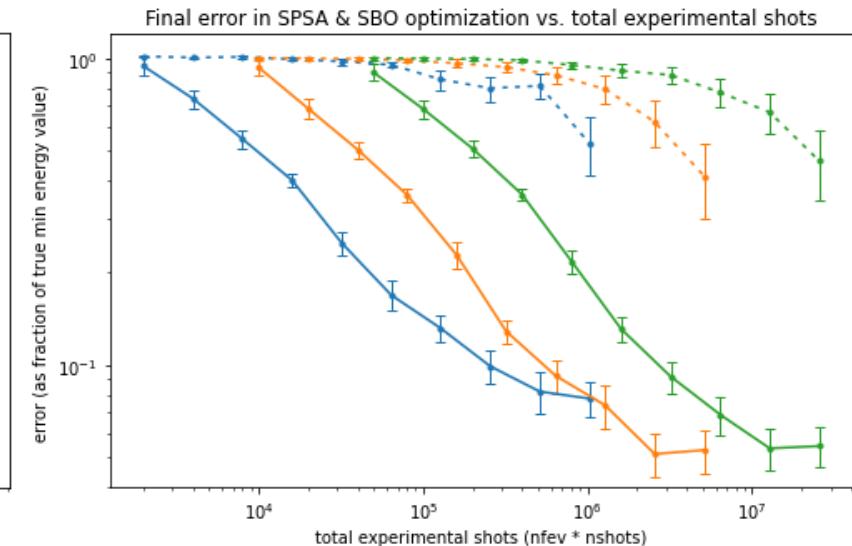


- SPSA nshots=100
- SBO nshots=100
- SPSA nshots=500
- SBO nshots=500
- SPSA nshots=2500
- SBO nshots=2500

$n=6, p=4$

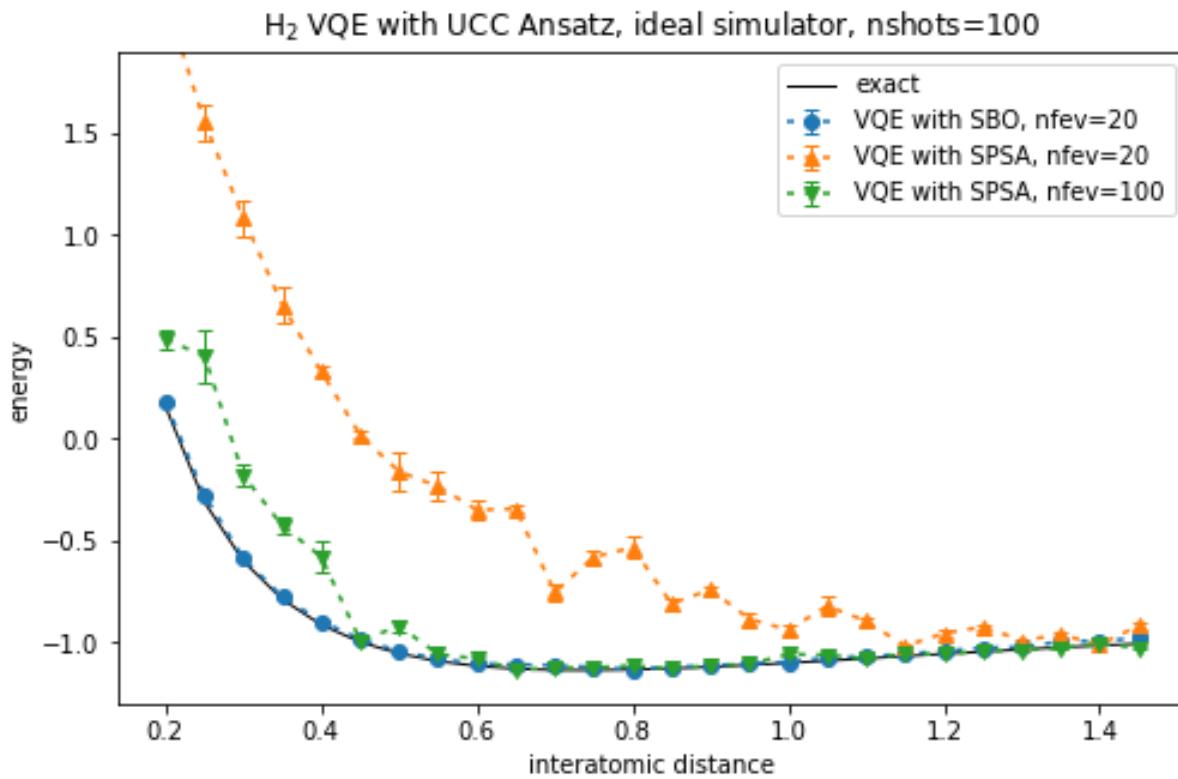
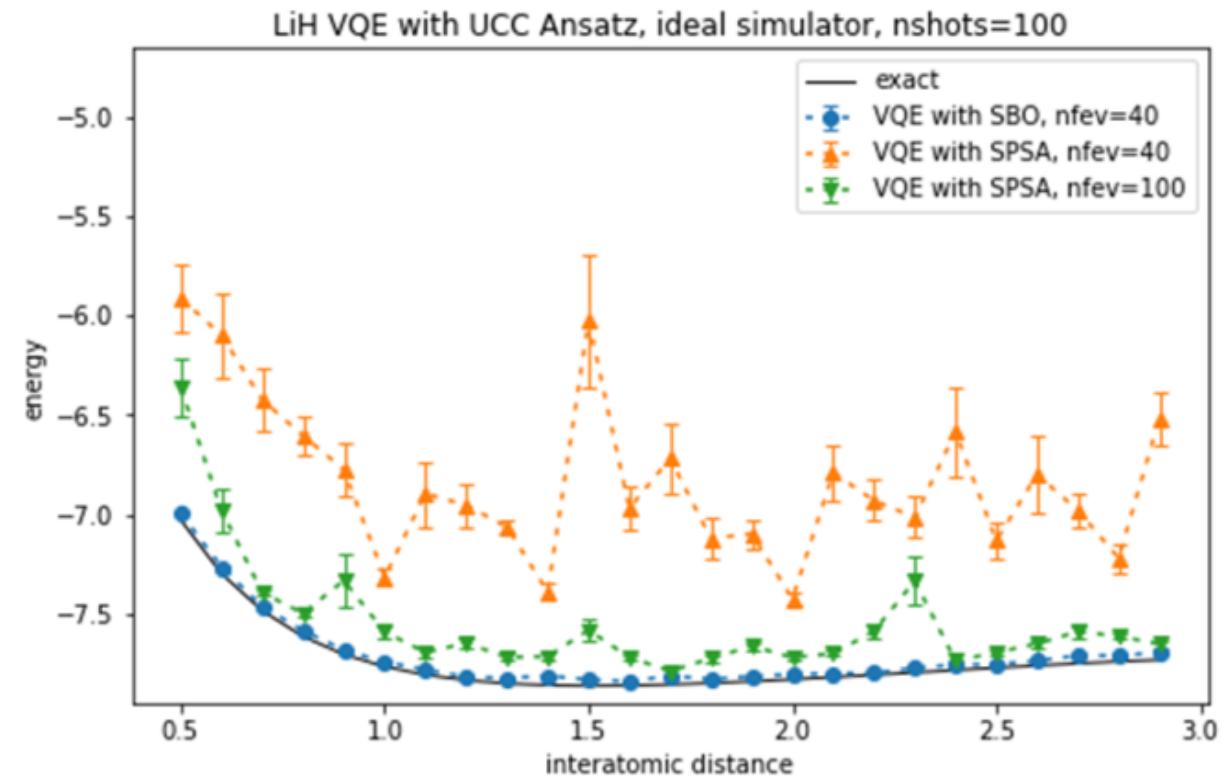


$n=10, p=7$



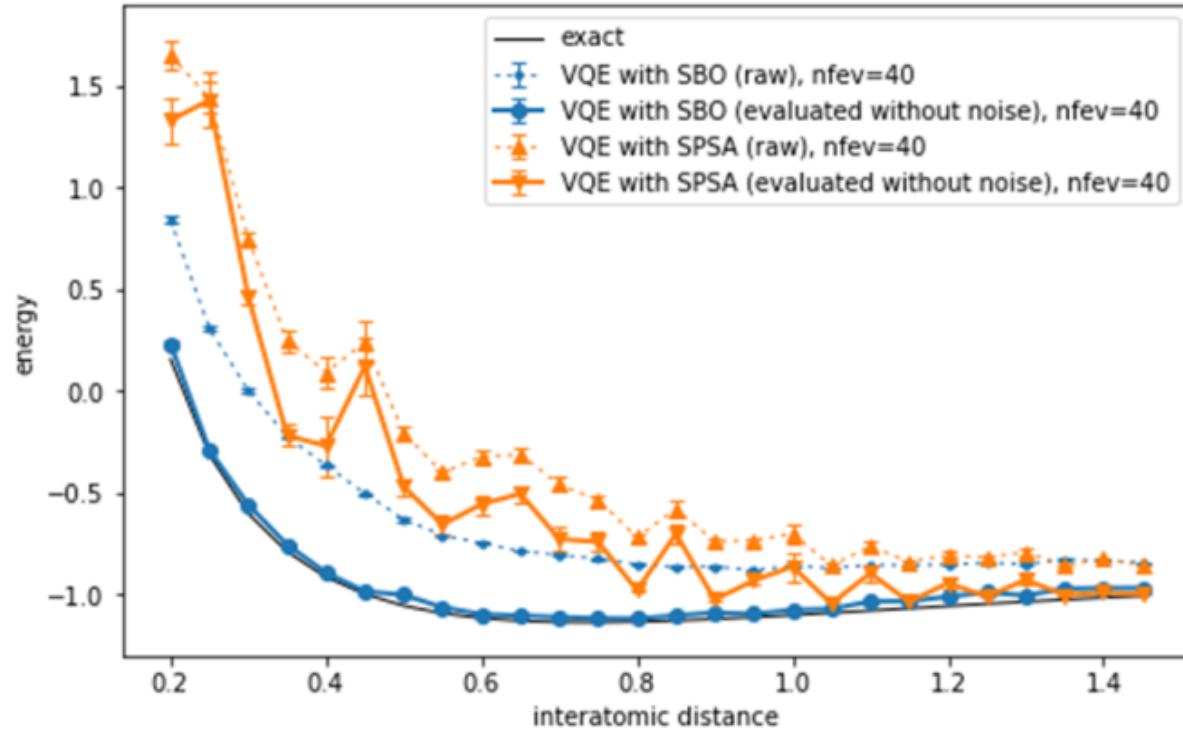
x-axis: total # of experimental shots
y-axis: relative error in min value found

Results: VQE for H_2 and LiH (ideal simulator)



Results: VQE for H_2 and LiH (with hardware noise)

H_2 VQE with UCC Ansatz, simulator with ibm_lagos noise model, nshots=100



LiH VQE with UCC Ansatz, simulator with ibm_lagos noise model, nshots=100

