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Near-term quantum computers are noisy and have limited coherence times

It will be years before we can run large-scale computations on a QC

For now, much research is focused on variational quantum algorithms
= Hybrid of quantum + classical computation

= Run many small-scale quantum programs, supplemented by classical optimization

|
» | Variational quantum algorithms (VQA) m
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SPSA (Simultaneous Perturbation Stochastic Approximation) is the most
commonly-used technique for optimizing variational quantum algorithms with
noisy samples.

1.  Attempt to follow the gradient in the objective function landscape
= Take two (noisy) samples near an initial point
= Approximate the gradient based on these samples
= Move in the direction of the gradient for the next iteration

2. Repeat until convergence

I
s | Classical optimization: SPSA m
I



; | SPSA example (animation)
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We propose a surrogate-based technique for optimizing variational quantum
algorithms with noisy samples.

1. Construct a surrogate of the objective function landscape
= Take many (noisy) samples in a local “patch”
= Construct the function surrogate in this patch, e.g., using a kernel approximation

|
o 1 Surrogate-based optimization for VQA m
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0 | Example surrogate: Gaussian kernel approximation
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1 I Surrogate-based optimization for VQA

We propose a surrogate-based technique for optimizing variational quantum
algorithms with noisy samples.

1. Construct a surrogate of the objective function landscape

Take many (noisy) samples in a local “patch”

Construct the function surrogate in this patch, e.g., using a kernel approximation
Use the surrogate to estimate the coordinates of the minimum in this patch

Use these coordinates as the center of the next patch
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> | Comparison to SPSA (animation)
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13 | Results: QAOA for max-cut
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2 | Potential advantages of SBO vs. SPSA

Often converges more quickly in higher-dimensional problems
= Achieves better variational parameter estimates with fewer experimental runs

Allows taking batches of samples from many different coordinates within each
optimization iteration

= Results in speed and robustness (against drift) advantages in the absence of low-latency
circuit loading

Requires fewer shots per sample point than SPSA
= Kernel approximation produces a surrogate where shot noise is smoothed out



Summary




16 1 Summary

We propose a surrogate-based optimization technique, for optimizing variational quantum
algorithms with noisy samples.

We demonstrate an improvement over SPSA on common problems such as QAOA and VQE,
using a Gaussian kernel approximation as the surrogate.

We observe potential advantages over SPSA in convergence and experimental runtime,
particularly for higher-dimensional problems.

Thank you for listening!
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¢ | Numerical results: QAOA for max-cut
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19 | Results: VQE for H, and LiH (ideal simulator)

emergy

15 4

140

05 4

a4

Hz VQE with UCC Ansatz, ideal simulator, nshots=100

—— exact

= = VOE with SBO, nfev=20

= &= VOE with SPSA, nfev=20
= ¥- WOE with 5P5A, nfev=100

0.4 06 08 10 12 14
interatomic distance

LiH VQE with UCC Ansatz, ideal simulator, nshots=100

— exact

VQE with SBO, nfev=40
VQE with SPSA, nfev=40
- VQE with SPSA, nfev=100

Sl

Hp
(B |

05

10 15 20 25 30
interatomic distance




20 | Results: VQE for H, and LiH (with hardware noise)
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