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Energy Exascale Earth System Model (E3SM) – Land
Component

The Land Model (ELM) Component of the Energy Exascale Earth System
Model (E3SM) is increasingly complex with many processes

Large ensembles are needed for uncertainty quantification… but
computationally infeasible
Focus on surrogate models based on small ensembles to increase the
efficiency of sensitivity analysis and model calibration studies
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Cheaper Surrogates are Necessary to Replace Expensive
Computational Models for UQ Assessments

Model Approximations:
functional approximations
non-parametric models, e.g. Gaussian processes
neural networks and other supervised learning techniques

Requirements:
expressivity with a limited number of parameters
cheap – analyses often requiring 𝑂(106) evaluations with limited
computational resources
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Functional Approximations

Tensor-product basis approximations:

𝑓(𝝀) =
𝑁1

∑
𝑖1

𝑁2

∑
𝑖2

…
𝑁𝑑

∑
𝑖𝑑

𝜙𝑖1
1 (𝜆1; 𝜽)𝜙𝑖2

2 (𝜆2; 𝜽) … 𝜙 𝑖𝑑
𝑑 (𝜆𝑑; 𝜽)

use orthogonal polynomials, radial basis functions, …
the curse of dimensionality 𝑂(𝑁𝑑) typically limits the polynomial order/no.
of functions

this places limits on the surrogate model capacity to adapt to
non-linear behavior
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Functional Tensor-Train Models

Analogous to tensor-train models [Oseledets, 2013]: approximate
multivariate functions instead of multidimensional arrays

𝑓(𝝀) = ∑𝑟0
𝑖0=1 ∑𝑟1
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Model evaluation/gradient computation consists of a sequence of
matrix-vector multiplications [Gorodetsky & Jakeman, 2018]
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Functional Representations – Univariate Functions

Linear Representations (e.g. polynomial chaos expansions)

𝑓 (𝑖𝑗)
𝑘 (𝜆𝑘(𝜉𝑘); 𝜽(𝑖𝑗)

𝑘 ) =
𝑝𝑘

∑
𝑙=0

𝜃(𝑖𝑗)
𝑘,𝑙 Ψ(𝑖𝑗𝑘)

𝑙 (𝜉𝑘)

Non-Linear Representations (e.g. radial basis functions)

𝑓 (𝑖𝑗)
𝑘 (𝜆𝑘; 𝜽(𝑖𝑗)

𝑘 ) =
𝑝𝑘

∑
𝑙=0

𝜃(𝑖𝑗)
𝑘,𝑙,1 exp(−𝜃(𝑖𝑗)

𝑘,𝑙,2(𝜆𝑘 − 𝜃(𝑖𝑗)
𝑘,𝑙,3)2)
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Arbitrary Network Structure

Tensor train approximation
ℱ1 ℱ2 ℱ3 ℱ4 ℱ5 ℱ6 ℱ7

Tensor cores connected in an generic network - increased flexibility to
represent model structure

ℱ1 ℱ2 ℱ3

ℱ4 ℱ5

ℱ6

ℱ7
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ELM Data – Simulations Corresponding to Select
Observation sites

200 runs corresponding to uniformly randomly sampled parameters
over a 10D parameter space

160 training runs/40 validations runs
8-fold cross validation over 160 training runs
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Functional Tensor Network Models – Training

Data split into 160 training runs / 40 validations runs
Non-linear least squares with 8-fold cross validation over the
training runs
Univariate functions represented as polynomial expansions based
on Legendre polynomials

Cross-validation to pick optimum regularization parameter,
tensor rank, and polynomial order

𝜃∗ = argmin
𝜃

(1
2

𝑁
∑
𝑖=1

(𝑓(𝜆(𝑖); 𝜃) − 𝑦(𝑖))2 + 𝛼||𝜃||22)

Quality of fit assessed via mean-squared error (MSE)

𝑀𝑆𝐸 = 1
𝑁

𝑁
∑
𝑖=1

(𝑓(𝜆(𝑖); 𝜃∗) − 𝑦(𝑖))2
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ELM Fit Results – FTN Models (in Hierarchical Tucker
Format)

Site US-Ha1/June: Validation MSE
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ELM Fit Results – FTN Models (in Hierarchical Tucker
Format)
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ELM Results: Variance-based GSA

fnlr (fraction of N in RuBisCO – CO2 conversion process)
mbbopt (stomatal conductance slope – net CO2 flux)
vcmaxse (entropy for photosynthetic parameters)
dayl_scaling (day length scaling parameter)
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Closure

Extended functional tensor train models to accommodate generic tensor
network configurations

Expanded flexibility in capturing the structure of the original model
Efficient gradient computations through tensor network contractions
Alex Gorodetsky, CS, John Jakeman (2021)
https://tinyurl.com/2p92thbn

Functional tensor network models constructed via ridge regression are in
good agreement with validation data for the driver application

Global Sensitivity Analysis results match subject matter expertise given
the training runs available for this study
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