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Science Driver

Energy Exascale Earth System Model (E3SM) - Land
Component

@ The Land Model (ELM) Component of the Energy Exascale Earth System
Model (E3SM) is increasingly complex with many processes

@ Large ensembles are needed for uncertainty quantification... but
computationally infeasible

@ Focus on surrogate models based on small ensembles to increase the
efficiency of sensitivity analysis and model calibration studies
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UQ via Tensors

Cheaper Surrogates are Necessary to Replace Expensive

Computational Models for UQ Assessments

Model Approximations:

@ functional approximations
@ non-parametric models, e.g. Gaussian processes

@ neural networks and other supervised learning techniques

Requirements:
@ expressivity with a limited number of parameters

@ cheap —analyses often requiring O(10°) evaluations with limited
computational resources
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UQ via Tensors
Functional Approximations

Tensor-product basis approximations:
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@ use orthogonal polynomials, radial basis functions, ...

@ the curse of dimensionality O(N¢) typically limits the polynomial order/no.
of functions

@ this places limits on the surrogate model capacity to adapt to
non-linear behavior
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UQ via Tensors
Functional Tensor-Train Models

Analogous to tensor-train models [Oseledets, 2013]: approximate
multivariate functions instead of multidimensional arrays
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@ Model evaluation/gradient computation consists of a sequence of
matrix-vector multiplications [Gorodetsky & Jakeman, 2018]

SNL Safta FTN 7/15



UQ via Tensors

Functional Representations — Univariate Functions

Linear Representations (e.g. polynomial chaos expansions)
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Non-Linear Representations (e.g. radial basis functions)
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UQ via Tensors

Arbitrary Network Structure

Tensor train approximation
NCR NS

Tensor cores connected in an generic network - increased flexibility to
represent model structure
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ELM Data Model Fit

ELM Data — Simulations Corresponding to Select

Observation sites

Harvard Forest EMS Tower U. of Michigan Biological Station Walker Branch Watershed
US-Hal - monthly averages US-UMB - monthly averages US-WBW - monthly averages

150

GPP [gC m~2 571]

GPP [gC m~2 571]
GPP [gC m~2571]

Jan  Mar May Jul Sep Nov Jan  Mar May Jul Sep Nov Jan  Mar May Jul Sep Nov

@ 200 runs corresponding to uniformly randomly sampled parameters
over a 10D parameter space

@ 160 training runs/40 validations runs
o 8-fold cross validation over 160 training runs
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ELM Data Model Fit

Functional Tensor Network Models — Training

o Data split into 160 training runs / 40 validations runs
@ Non-linear least squares with 8-fold cross validation over the
training runs
@ Univariate functions represented as polynomial expansions based
on Legendre polynomials
@ Cross-validation to pick optimum regularization parameter,
tensor rank, and polynomial order
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@ Quality of fit assessed via mean-squared error (MSE)
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ELM Data Model Fit

ELM Fit Results — FTN Models (in Hierarchical Tucker

Format)
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Site US-Hal/June: Validation MSE
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ELM Data Model Fit

ELM Fit Results — FTN Models (in Hierarchical Tucker

Format)

US-umB

Tensor rank

r=2 r=3 r=4 H 2
. o=1{ 0.043 0.045 0.045
(7]
kel
4
o US-MOz
o ? 2
E o=2{ 0.027 .
2 g ER
> = 2
= = z
/<] E Ea
a -2
0=3{ 0.027 0.008 0.008
-3 -2 -1 0 12 -373 -2 -1 0 1 2
ELI ELM

Validation data centered and normalized by

Site US-Ha1/June: Validation MSE the monthly standard deviation
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GSA

ELM Results: Variance-based GSA

Main Effect Sobol Index Total Effect Sobol Index
_ Var[E(FAN)] gr_ 1 VarB(F(AA-)]
' Var[f(A)] ’ Var[f(N)]

| March _| __June | September | _October |
S; sF 8§ STS S; ST

Parameter

i i i B S
flnr 0.70 0.72 0.80 0.83 0.84 0.86 0.76 0.77
mbbopt 0.01 0.02 0.09 0.13 0.04 0.06 0.02 0.02
vcmaxse 0.13 0.15 0.02 0.02 O 0 0.02 0.02
dayl_scaling 0.06 0.07 0 0 0.04 0.05 0.14 0.14

@ fnlr (fraction of N in RuBisCO — CO2 conversion process)
@ mbbopt (stomatal conductance slope — net CO2 flux)

@ vcmaxse (entropy for photosynthetic parameters)

@ dayl_scaling (day length scaling parameter)
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Summary
Closure

@ Extended functional tensor train models to accommodate generic tensor
network configurations

@ Expanded flexibility in capturing the structure of the original model

@ Efficient gradient computations through tensor network contractions

@ Alex Gorodetsky, CS, John Jakeman (2021)
https://tinyurl.com/2p92thbn

@ Functional tensor network models constructed via ridge regression are in
good agreement with validation data for the driver application

@ Global Sensitivity Analysis results match subject matter expertise given
the training runs available for this study
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