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(I) What is a transport operator?
Many quantities of interest in geophysical fluid
dynamics are advected (transported) quantities: they
obey an equation of the form

∂a
∂ t

+Lua = 0

where Lua is the Lie derivative. This is the most
general form of a transport operator.
Examples: entropy, potential temperature, mass,
moisture/salt/trace species, potential vorticity, etc.
In this work we focus on densities (scalar-valued
volume or n-forms), for which the Lie derivative is:

∂a
∂ t

+ ∇ · (au) = 0

(II) Transport operators and structure-preservation

The equations of motion for a general fluid in R2 with
K advected densities∗ Dk (k = 1, . . . ,K ), total mass
ρ = ∑k ckDk and absolute velocity v can be written in
symplectic form using a Hamiltonian H [v,Dk ] as

∂ v
∂ t

+ q FT +∑
k

Dk

ρ
∇Bk = 0

∂Dk

∂ t
+ ∇ · (Dk

ρ
F) = 0

with potential vorticity q = ∇T ·v
ρ

, where F = δH
δv and

Bk = δH
δDk

are functional derivatives of H . Examples:
(thermal) shallow water, (moist) compressible Euler
in Cartesian coordinates∗∗

Using predicted variables x = (v,Dk) and symplectic
operator J[x] this is

∂x
∂ t

= J
δH

δx
where

J =−

(
q�T Dk

ρ
∇�

∇ · (Dk
ρ
�) 0

)
δH

δx
=

(
F
Bk

)
Key point: each Dk leads to a corresponding term
(the � operator) in the v equation. In other words, J is
anti-symmetric under the appropriate inner product.
This is the structure that should be emulated in a

numerical method.
Note: can write transport equations for Dk in terms of
transport velocity U = F

ρ
as

∂Dk

∂ t
+ ∇ · (Dk U) = 0

* When quantities such as temperature T that are not (purely)
advected are predicted, this type of formulation is still useful because

part of their dynamics is described by transport operators with
corresponding diamond operator terms in the v equation.

** Similar related formulations apply in R3 (or for arbitrary 2D/3D
manifolds, in fact), in other coordinate systems (such as Lagrangian,
height or mass-based terrain-following vertical coordinates) and with

other types of advected quantities; and for various dynamical
(hydrostatic, semi-compressible, etc.) and metric (shallow,

traditional, etc.) approximations.

(III) Structure-preserving numerical transport operators
We use a discrete exterior calculus (DEC) based approach, essentially
an extension of the TRiSK scheme:

∂v1

∂ t
+ Q F̃ n−1 +∑

k

D̃e
k

ρ̄eD1B0 = 0

∂ D̃n
k

∂ t
+ D̃n(

D̃e
k

ρ̄e F̃ n−1) = 0

where F̃ n−1 = δH
δv1 and B0 = δH

δD̃n
k

for

discrete Hamiltonian H [v1, D̃n
k ].

Can write transport equation for D̃n
k in terms of transport velocity Ũn−1

(defined through F̃ n−1 = ρ̄eŨn−1) as
∂ D̃n

k
∂ t

+ D̃2(D̃e
k Ũn−1) = 0

Key: This is a standard staggered FV transport scheme, and D̃e
k are

arbitrary (high-order) centered finite volume (CFV) or weighted
essentially non-oscillatory (WENO) reconstructions.

(IV) Results
Water vapor concentration qv

Potential temperature perturbation θ ′

Results for qv and θ ′ from the rising bubble (RB) test case for the moist
compressible Euler (MCE) equations, comparing 3rd, 5th and 7th order

WENO (top row in each figure) and CFV (bottom row in each figure)
reconstructions. WENO eliminates spurious oscillations while retaining
high resolution of small scale features (low dissipation). Increasing the
order of accuracy with WENO decreases the dissipation and improves

effective resolution, while with CFV this leads to noisier solutions.

(V) Conserved Quantities

H M B

Conservation of total energy H (left), total mass M (middle), and total
entropy B (right) for the MCE RB test case. Using both CFV and WENO
reconstructions, M and B are conserved to machine-precision, while H

is conserved to time truncation error.

(VI) Adding monotonicity/positive-definiteness
Monotonicity/positive-definiteness can be enforced by introducing
flux-corrected transport (FCT) operators Φk (could be identity for some
D̃n

k ) that scales fluxes D̃e
k

ρ̄e F̃ n−1 = D̃e
k Ũn−1 at grid cell edges:

∂v1

∂ t
+ · · ·+∑

k
Φk

D̃e
k

ρ̄eD1B0 = 0

∂ D̃n
k

∂ t
+ D̃n(Φk

D̃e
k

ρ̄e F̃ n−1) = 0

This works well because WENO reconstructions are essentially
monotonic (→ positive-definite), therefore Φk are close to identity
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Conservation of total water vapor mass V (left) and ρv minima (left) /
maxima (right) for the MCE RB test case. For both CFV and WENO

reconstructions V is conserved to machine-precision and ρv is
positive-definite, while WENO significantly limits overshoots in the ρv

maxima compared to CFV.

(VII) Conclusions
We have developed a structure-preserving, high-order and
oscillation-limiting transport operator for densities, with an optional
FCT-type approach to obtain monotonicity/positive-definiteness.
Results from MCE RB test case demonstrate the effectiveness of
WENO reconstructions compared to CFV reconstructions.

(VIII) Future Work
Develop structure-preserving, high-order and oscillation-limiting
transport operators (i.e. Lua and �) for other types of real and
(co)-tangent bundle-valued k -forms (e.x. scalars, vectors, tensors)

Useful for magnetohydrodynamics (MHD) and other charged fluid models,
alternative GFD formulations, complex fluids, etc.
Already developed for "velocity self-advection" operator q FT in 2D, a type of
interior product (this is Q operator)

Extend ideas to spacetime formulations for fluids
Can this lead to structure-preserving semi-Lagrangian approaches?
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