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(I) What is a transport operator?

@ Many quantities of interest in geophysical fluid
dynamics are advected (transported) quantities: they
obey an equation of the form

da
Tl “ud=>0

where Zya is the Lie derivative. This is the most
general form of a transport operator.

@ Examples: entropy, potential temperature, mass,
moisture/salt/trace species, potential vorticity, etc.

@ In this work we focus on densities (scalar-valued
volume or n-forms), for which the Lie derivative is:

08 V.-(au)=0

ot

(Il) Transport operators and structure-preservation

@ The equations of motion for a general fluid in R? with
K advected densities* Dx (k=1,..., K), total mass
p =Y, ckD, and absolute velocity v can be written in
symplectic form using a Hamiltonian Z’|v, Dy| as

oV D
-qF"+Y =XVB, =
BT, q —l—; > k=0
d Dy Dy
V. (ZEF) =
viv S§H

with potential vorticity g = R where F = %~ and
B, — 07

k = 5p, are functional derivatives of 7. Examples:
(thermal) shallow water, (moist) compressible Euler
in Cartesian coordinates™”

@ Using predicted variables x = (v, D) and symplectic
operator J[X] this is

%_J&%ﬂ
dt OX
where
R ToSky &%”_(F)
- Vo(% ) 0 ox  \ Bk

@ Key point: each D, leads to a corresponding term
(the ¢ operator) in the v equation. In other words, J Is
anti-symmetric under the appropriate inner product.

This Is the structure that should be emulated in a
humerical method.

@ Note: can write transport equations for Dy in terms of

transport velocity U = T as

9Dy
4V (DY) =0

* When quantities such as temperature I that are not (purely)
advected are predicted, this type of formulation is still useful because
part of their dynamics is described by transport operators with
corresponding diamond operator terms in the v equation.

** Similar related formulations apply in R* (or for arbitrary 2D/3D
manifolds, in fact), in other coordinate systems (such as Lagrangian,
height or mass-based terrain-following vertical coordinates) and with
other types of advected quantities; and for various dynamical
(hydrostatic, semi-compressible, etc.) and metric (shallow,
traditional, etc.) approximations.
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(1) Structure-preserving numerical transport operators

@ We use a discrete exterior calculus (DEC) based approach, essentially
an extension of the TRISK scheme:

o - o 0 ,
N L 4 —

oD, < .

FDp(—2F" ) =

at n(ﬁe ) O ,Ul F’l (](]

1 s 0 sy A ¥ A H

where £ = < and BY = <= for 3
discrete Hamiltonian s#[v', D}]]. . .

o Can write transport equation for Df] in terms of transport velocity U™
(defined through F"~1 = peU" 1) as
D]~
-D
5 o(
Key: This is a standard staggered FV transport scheme, and

arbitrary (high-order) centered finite volume (CFV) or weighted
essentially non-oscillatory (WENQ) reconstructions.
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(V) Results

Water vapor concentration g,
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Potential temperature perturbation 6’
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Results for g, and 6’ from the rising bubble (RB) test case for the moist
compressible Euler (MCE) equations, comparing 3rd, 5th and 7th order
WENO (top row in each figure) and CFV (bottom row in each figure)
reconstructions. WENO eliminates spurious oscillations while retaining
high resolution of small scale features (low dissipation). Increasing the
order of accuracy with WENO decreases the dissipation and improves
effective resolution, while with CFV this leads to noisier solutions.
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(V) Conserved Quantities

Conservation of total energy 7 (left), total mass .# (middle), and total
entropy £ (right) for the MCE RB test case. Using both CFV and WENO
reconstructions, .# and % are conserved to machine-precision, while 7

IS conserved to time truncation error.

(VI) Adding monotonicity/positive-definiteness

@ Monotonicity/positive-definiteness can be enforced by introducing
flux-corrected transport (FCT) operators &, (could be identity for some

D7) that scales fluxes —sF"~" = D?U"~" at grid cell edges:

pe
oV
-+ Y &, —DB° =
ot +; Kot =0
oDn - .
(N" : Dn(cbkFF” =0

@ This works well because WENO reconstructions are essentially
monotonic (— positive-definite), therefore ®, are close to identity
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Conservation of total water vapor mass 7 (left) and p, minima (left) /
maxima (right) for the MCE RB test case. For both CFV and WENO
reconstructions 7" is conserved to machine-precision and p,, IS
positive-definite, while WENO significantly limits overshoots in the p,
maxima compared to CFV.

(VIl) Conclusions

@ We have developed a structure-preserving, high-order and
oscillation-limiting transport operator for densities, with an optional
FCT-type approach to obtain monotonicity/positive-definiteness.

@ Results from MCE RB test case demonstrate the effectiveness of
WENO reconstructions compared to CFV reconstructions.

(VIII) Future Work

@ Develop structure-preserving, high-order and oscillation-limiting
transport operators (i.e. Zya and ¢) for other types of real and
(co)-tangent bundle-valued k-forms (e.x. scalars, vectors, tensors)
@ Useful for magnetohydrodynamics (MHD) and other charged fluid models,

alternative GFD formulations, complex fluids, etc.
o Already developed for "velocity self-advection" operator gF ' in 2D, a type of
interior product (this is Q operator)

@ Extend ideas to spacetime formulations for fluids
@ Can this lead to structure-preserving semi-Lagrangian approaches?
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