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Background: What is Semantic Segmentation?
2

▪ Semantic segmentation aims to classify images at the pixel-level

▪ This is done by assigning a value to each pixel based upon its class

Focused Ion Beam-Scanning Electron Microscopy image of 

Marcellus Sandstone (left) and manually segmented image (right)

One pixel = 

10 nm resolution

▪ Generating accurate segmentations of rock images is critical to geomaterial 
characterizations

▪ Challenges: Complexity in geometry, size, scale, and compositions
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Motivations: Why use Deep Learning Methods?
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▪ Manual or traditional image segmentation tends to be labor-intensive, often subject 
to user-bias, not easy to adapt to other class of images, and/or manual correction

▪ U-Net based approaches have been successfully applied for image classification, 
segmentation, object detection of various types of images including medical, rocks, 
satellites, cracks, etc.

▪ Many open-source packages are available for easy adoption



Objectives and DL Methods
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▪U-Net and hybrid version of other well-known architectures*: U-Net (Ronneberger et 
al., 2015), U-VGG16 (Simonyan and Zisserman 2014), U-ResNet (He et al. 2016), 
MultiResU-net (Ibtehaz & Rahman 2020), 3D U-Net

▪ Investigation of improvements through transfer learning and ensemble approaches

*Base code is available from Keras Segmentation 
https://github.com/divamgupta/image-segmentation-keras
*MultiResU-Net from github repository 

https://github.com/divamgupta/image-segmentation-keras


Image Data
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▪ Original datasets include 3D microCT and FIB-SEM images

▪ Original images have been segmented with various traditional 
methods (e.g., Yoon and Dewers, 2013 GRL for S-Chalk)

▪ 128x128 and 128x128xD images are used for 2D and 3D 
models

▪ Dataset is split randomly into training (70%), validation (15%), 
and testing (15%)

Marcellus ShaleCarbonate Chalk (S-Chalk) Carbonate Chalk (L-Chalk)Boise Sandstone

MicroCT images at 30 

micron resolution

(1500x1500x1800)

FIB-SEM images at 15 

nm resolution

(932x620x930)

FIB-SEM images at 10 

nm resolution

(900x700x900)

FIB-SEM images at 10 

nm resolution

(900x700x900)

Dataset Num. of  

Training 

Images

Num. of  

Validation 

Images

Num. of  

Testing Images

Sandstone 27173 5869 5870

Carbonate 

Chalk

4812 1050 1050

Shale* 1593 231 231

Liege Chalk 11827 2534 2535

*Shale training data was augmented to increase # of pore samples



Methods: Model Architectures
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▪ Models are U-Net based 
architectures (U-Net 2D/3D, U-
VGG16, U-ResNet, MultiResUnet)

▪ U-Net follows “U” shape of 
convolutional neural network 
architecture with a feature of skip 
connection

▪ All models follow an encoder-
decoder architecture 

o Encoder extracts feature maps 
from input image

o Decoder transforms these 
feature maps into a prediction

U-Net (Ronneberger et al., 2015)

MultiResU-Net (Ibtehaz et al., 2020)



Methods: Hyperparameters & Transfer Learning
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▪ Adam optimizer with a learning rate of 0.001

▪ Loss: categorical focal loss

▪ Batch size: 196 for U-Net and U-VGG16, 128 for U-Resnet, 64 for MultiResUnet

▪ Early stopping: 100 epochs

▪ Method where model originally trained on 
one task leveraged for another

▪ Useful because it can allow for training to 
converge at a faster rate and lead to more 
robust models 

▪ Investigated by initializing VGG16 and ResNet
models with weights from ImageNet

Transfer Learning Approach



Evaluation Metrics
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▪ Testing data are used for evaluation 

▪ Frequency Intersection Over Union (F-IoU)

▪ Pixel-wise accuracy (Pixel-Acc)

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

𝑃𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
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Key:

• TP = true positives

• TN = true negatives

• FP = false positives

• FN = false negatives

• 𝑝𝑖𝑗 = pixels of class i predicted 

to belong to class j

• Assuming 𝑘 − 1 classes



Base Results

● “F-IoU” refers to frequency IoU

● “Pixel Acc” refers to the pixelwise accuracy

Sandstone S-chalk L-chalk Shale

F-IoU Pixel Acc F-IoU Pixel Acc F-IoU Pixel Acc F-IoU Pixel Acc

U-Net 0.9522 0.9753 0.9514 0.9748 0.9219 0.9573 0.9332 0.9653

U-Net-3D 0.9270 0.9623 0.9006 0.9457 0.8752 0.9243 0.5989 0.7480

U-VGG16 0.9687 0.9840 0.9519 0.9749 0.9250 0.9572 0.7966 0.8863

U-ResNet 0.9829 0.9913 0.9397 0.9687 0.9476 0.9719 0.8948 0.9444

MultiResUnet 0.9826 0.9912 0.9601 0.9794 0.9492 0.9730 0.9444 0.9713

Example training plot 

showing validation 

and training loss as 

MultiResUnet is 

trained on Sandstone 

data



Predictions for Selma 
Chalk Data
(Only Base Models 
Shown)

Sample images, predictions, and 

error maps from the testing split of 

the Selma chalk dataset. On the 

error maps, white indicates label 

and prediction agree, blue 

indicates pore was predicted but 

expected solid, red indicates solid 

was predicted but expected pore. 



Sandstone S-chalk L-chalk Shale

F-IoU Pixel Acc F-IoU Pixel Acc F-IoU Pixel Acc F-IoU Pixel Acc

U-VGG16-fine tune
0.9617

(-0.0070)

0.9805

(-0.0035)

0.9580

(+0.0061)

0.9784

(+0.0036)

0.9347

(+0.0097)

0.9655

(+0.0083)

0.6839

(-0.1127)

0.8121

(-0.0742)

U-Resnet-fine tune
0.9732

(-0.0097)

0.9863

(-0.0050)

0.9525

(+0.0128)

0.9751

(+0.0064)

0.9459

(-0.0017)

0.9709

(-0.0017)

0.9363

(+0.0415)

0.9671

(+0.0227)

Transfer Learning Results

▪ “Fine-tune” refers to the revision of weights from ImageNet as training 
progresses.

▪ Numbers below given values indicate a comparison to the base case (e.g., (+0.1) 
indicates the metric improved by 0.1)

MultiResUnet 0.9826 0.9912 0.9601 0.9794 0.9492 0.9730 0.9444 0.9713



Methods: Ensemble Approach
12

▪ Rather than generating predictions from a single model, multiple models are 
trained and then their predictions are combined

▪ In theory can reduce the variance of models and lead to better predictions

▪ In our implementation: 

o Model trained for 200 epochs, saving weights every 5 epochs

o Best 3 models (based on validation sets) from 200 epochs are used to make 
ensemble predictions (i.e., average prediction)

o Also tested special cases where models are drawn from a certain period of epochs 
in training (e.g. 3 models only taken from epochs 100-150)



Sandstone S-chalk L-chalk Shale

F-IoU Pixel Acc. F-IoU Pixel Acc. F-IoU Pixel Acc. F-IoU Pixel Acc.

U-Net

Ensemble

0.9633

(+0.0111)

0.9813

(+0.0060)

0.9521

(+0.0007)

0.9752

(+0.0004)

0.9458

(+0.0244)

0.9715

(+0.0142)

0.9346

(+0.0024)

0.9661

(+0.0008)

U-Resnet

fine-tune 

ensemble

0.9781

(+0.0049)

0.9889

(+0.0026)

0.9532

(+0.0007)

0.9756

(+0.0005)

0.9587

(+0.0128)

0.9782

(+0.0073)

0.9428

(+0.0065)

0.9706

(+0.0055)

MultiResU-Net

ensemble

0.9850

(+0.0024)

0.9828

(-0.0084)

0.9590

(-0.0011)

0.9787

(-0.0007)

0.9557

(+0.0085)

0.9766

(+0.0036)

0.9471

(+0.0027)

0.9728

(+0.0015)

Ensemble Results

▪ Note that for the U-ResNet base case is the fine-tuned model

▪ Numbers in parenthesis indicate a comparison to the base case (e.g., (+0.1) 
indicates the metric improved by 0.1)



Ensemble Results (Special Cases)

▪ Models were trained for 300 epochs
▪ Each respective case comes from a different epoch range:

o C1: [100-300], C2: [100-200], C3: [250-300]
▪ In table case which achieved highest F-IoU is shown (indicated by C1, C2, or C3 below values)
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Sandstone S-chalk L-chalk Shale

F-IoU Pixel Acc. F-IoU Pixel Acc. F-IoU Pixel Acc. F-IoU Pixel Acc.

U-Net

ensemble

0.9768

(C1)
0.9882

0.9569

(C1)

0.9775 0.9512

(C2)

0.9741 0.9497

(C3)

0.9741

U-Resnet

ensemble

0.9878

(C2)

0.9938 0.9621

(C1)

0.9804 0.9568

(C1)

0.9773 0.9522

(C3)

0.9754

MultiResU-Net

ensemble

0.9840

(C3)

0.9920 0.9646

(C1)

0.9818 0.9575

(C1)

0.9776 0.9503

(C1)
0.9745



Conclusions

▪Deep learning architectures can successfully be applied to the task of semantic 
segmentation for rock images and can perform better than manual segmentation to 
recover natural morphology of original images

▪Ensemble approach consistently improved performance

▪Use of transfer learning led to mixed results

▪3D model underperformed

o May be due to lack of training data and enough training (a small # of epochs in this work)

o Complications can arise when using depth data, such as unpredictable variations in 
illumination between images

▪Ensemble approach with hyperparameter tuned (results not shown) tend to improve
performance in all cases

▪Data labeling and curation will be explored to improve supervise learning process



Thank You!!!



Porous Media and Pore Network (PN) Systems17

Glass bead pack 

(100 m-1mm)
Sandstone

(10’s-100’s m)
Chalk 

(10 nm - 100m)

Shale

(1 nm - microns)

PN from microCT image

Binary

3D images

PN from FIB-SEM imageXtlas.pergeos.com

▪ Generating accurate segmentations of rock images is critical to geomaterial 
characterizations

▪ Challenges: Complexity in geometry, size, scale, and compositions



Predictions for 
Sandstone Data
(Only Base Models 
Shown)

Sample images, predictions, 

and error maps from the 

testing split of the sandstone 

dataset. On the error maps, 

white indicates label and 

prediction agree, blue 

indicates pore was predicted 

but expected solid, red 

indicates solid was predicted 

but expected pore. 



Predictions for Liege 
Chalk Data
(Only Base Models 
Shown)

Sample images, labels, 

predictions, and 

corresponding error maps 

from liege chalk dataset. For 

the error maps, white 

indicates label and 

prediction agree, blue 

indicates pore was predicted 

but expected solid, red 

indicates solid was predicted 

but expected pore. 



Predictions for Shale 
Data
(Only Base Models 
Shown)

Sample Images, Labels, Predictions, and 

Corresponding Error Maps* from the Shale dataset.

* Error maps key:

Error Map 1 (EM 1):

o White: Label and prediction agree

o Blue: Pore predicted, expected organic

o Red: Solid predicted, expected organic

o Light-grey: Other error

Error Map 2 (EM 2):

o White: Label and prediction agree

o Blue: Pore predicted, expected solid

o Red: Organic predicted, expected solid

o Light-grey: Other error

Error Map 3 (EM 3):

o White: Label and prediction agree

o Blue: Organic predicted, expected pore

o Red: Solid predicted, expected pore

o Light-grey: Other error


