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Synopsis2

In this talk we

• Advocate for HPC fault tolerance, for optimizing performance on current systems and co-design 

of future heterogeneous systems

• Distinguish between global recovery and local recovery, and why the latter is better

• For hard failures in MPI applications describe the challenges for localizing recovery

• Demonstrate how pseudo-local recovery can be accomplished with existing middleware

• Show results from experiments with MPI stencil 1D app that demonstrate “failure masking”



Motivation3

Fault-tolerance could be an important knob in the design and operation of HPC 
systems

• Fault characteristics of modern HPC systems are not well understood

o Systems are still studied in retrospect (post-analysis of system error logs)

o Unexpected/unanticipated failures occur that have system-wide impact (e.g. Titan) 

• Extreme heterogeneity (systems and software) makes the fault landscape ever more complex

• Improving fault tolerance of applications, middleware can alleviate constraints

o Free up operational power budget by allowing for higher fault rates

o Co-design new systems with inherently higher fault rates, but also higher computational 

throughput.



Global vs Local recovery4

• Global recovery

o All participating processes roll back to last safe execution point and resume  

o Easier to implement, ensure correctness of execution

o Inherently limited scalability (w.r.t. problem size, fault rates); exponential scaling of recovery 
overhead

• Local recovery

o Only process near failure rolls back and resumes; others continue progress

o Harder to implement, correctness requires care

o Application may have inherent constraints on extent of localizing recovery

• Multiple studies have demonstrated the potential benefits of local recovery

o Algorithm-based detection and recovery for silent error (Mayo et al..)

o Online recovery and failure masking for local recovery from hard failure (Gamell et al.)

o Scalable recovery in MPI+AMT programming models (Paul et al.)



Global vs Local recovery & failure masking (silent errors)5

Kolla et al., “Improving Scalability of Silent-Error Resilience for Message-Passing Solvers via Local 
Recovery and Asynchrony”, FTXS-2020
• Checksums for process-local detection of silent errors
• Recovery from local in-memory checkpoints, no need for process recovery

Local recovery & failure 
masking

Exponential overhead of global 
recovery



Localizing recovery for hard failures6

• Recovery from process/node failures in MPI applications is challenging:

o Need to recover MPI environment, processes, state, messages 

o Tedious to do entirely at application level, requires middleware support

• User Level Failure Mitigation (ULFM) – spec of resilience features – only recently became 
mainstream MPI

• Gamell et al., 2015

o Bypassed MPI (ULFM) altogether, implemented recovery directly at uGNI layer

o Data Resiliency for data checkpoint, recovery message logging; Process Resiliency for 
managing spare processes, replacing failed processes

o Not compatible with general MPI applications  

• Losada et al., 2019, implemented local recovery using three components:

o ULFM, ComPiler for Portable Checkpointing (CPPC) for checkpointing, process respawn, 
communicator repair,  VProtocol for message logging

o Recovery is completely transparent to application

o Generalized approach, might lack the flexibility for application-specific refinements



Local recovery & failure masking (hard failures)7

Gamell et al., “Local Recovery and Failure Masking for Stencil-based Applications at Extreme 
Scales”, SC15

• Recovering locally from a failure introduces a delay

• Delay propagates to other ranks gradually

• Delays from successive failures mask each other, i.e. 
the delay of N failures is sub-linear w.r.t. delay of 
single failure

• Sub-linear scaling of recovery cost

• Recovery cost scales favorably to large 
number of failures, allowing runs on large 
number of ranks.



Our approach: pseudo-local recovery8

• Objective: demonstrate pseudo-local recovery from hard failures with application-specific 
refinements

• Use existing Fenix middleware (with a few enhancements) to realize failure masking for MPI 
stencil code

• Pseudo-local: all processes participate in recovery, but asynchronous progress is preserved

o In a stencil code neighbours can be ahead by one iteration; distant processes can be ahead by 
many 

• Our design is almost entirely at the application level. Only a few (straightforward) changes to 
Fenix, and no changes to ULFM.

Application

Fenix

MPI-ULFM

MPI stencil 1D code

A general framework for MPI-based fault tolerance 

Fault tolerant MPI layer



Fenix

 Fault Tolerant Programming Framework for MPI Applications

• Separation between process and data recovery

◦ Allows third party software for data recovery

◦ Multiple Execution Models 

• Process recovery

◦ Extend MPI-ULFM 

◦ Multiple modes: non-shrink (hot spare process pool), shrink, spawn

◦ Process failure is handled within custom MPI error handler and 
recovery happens automatically under the cover 

• Data recovery 

◦ In-memory data redundancy

◦ Multi-versioning (similar to GVR by U Chicago & ANL)

9

Application

Fenix

MPI-ULFM



10 Fenix process recovery interface

void Fenix_Init (MPI_Comm comm,

   MPI_Comm *newcomm,

   int *role,

                  int *argc, int ***argv,

                  int num_spare_ranks,

                  int spawn,

           MPI_Info,

                  int *error);

FENIX_ROLE_INITIAL_RANK
FENIX_ROLE_RECOVERED_RANK
FENIX_ROLE_SURVIVOR_RANK

0:NO_SPAWN
1:SPAWN

App should use 
resilient communicator 
(newcomm) instead of 
comm.

If newcomm is NULL, Fenix tacitly 
replaces comm everywhere with 
resilient communicator

void Fenix_Finalize ( );

Process failure triggers process recovery and long-jump to Fenix_init



11 Fenix process recovery mechanics
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Data Recovery using Fenix12

• In-memory checkpointing
◦ Partner-copy redundancy
◦ Fast but Memory hungry 

• Versioning
◦ Similar to GVR (U Chicago & ANL)
◦ Failure is manifested not immediately after faults/errors

• Data store and commit
◦ Data is distributed in MPI model
◦ Store operation: (1) Fenix creates local copy, (2) moves the 

local data to remote (buddy) process location
◦ Commit freezes a group of data objects in the redundant store
◦ Restore operation: transfer data from the buddy copy to local 

buffer

Group  #1

Local Copy

Remote Copy

P0 P1 P2 P3

Fenix_Data_member_store()
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Stencil 1D: Preserving asynchrony

• Stencil 1D communication pattern:
o Nearest neighbour
o No collectives

• To preserve asynchrony at recovery:
◦ Check the iteration neighbour is 

resuming from
◦ Replay message before failure if 

neighbour needs it
• Message replay using Fenix:
o Add halo data (sent messages) to 

checkpoint state
o Track iterations completed and 

committed
o Replay the previous message (local 

copy of halo), not latest, when 
appropriate
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Stencil 1D: Pseudocode excerpt

• Stencil 1D communication pattern:
o Nearest neighbour
o No collectives

• To preserve asynchrony at recovery:
◦ Check the iteration neighbour is 

resuming from
◦ Replay message before failure if 

neighbour needs it
• Message replay using Fenix:
o Add halo data (sent messages) to 

checkpoint state
o Track iterations completed and 

committed
o Replay the previous message (local 

copy of halo), not latest, when 
appropriate

Fenix_Init();

if(initial_rank)
   initialize_state();
   Fenix_Data_member_create();

if(recovered_rank)
   Fenix_Data_member_restore();

if(recovered_rank || survivor_rank)
   check_neighbour_rank_iteration();
   if(neighbour_iter < my_iter)
      if(current_iter == commit_iter)
         Fenix_Data_member_local_restore(halo_data);
      MPI_Send(halo_data);

while(current_iter < total_iters)
   communicate_halo_data();
   advance_iteration(); current_iter++;
   Fenix_Data_member_store(); 
   Fenix_Data_member_commit(); commit_iter++;



Changes/extensions to Fenix to facilitate pseudo-local recovery
• Dyadic checkpoint buddies:
o Originally, checkpoint buddies were not dyadic (I’m not my buddy’s buddy)
o Introduced transitive dependency; failure delay propagates much farther

• Null_restore:

◦ Fenix data_restore is a synchronized call between checkpoint buddies; involves comm, typically all 
ranks call

◦ For “survivor” (unaffected) ranks a checkpoint restore might undo progress; null_restore, a dummy 
operation, ensures current state is not overwritten and progress maintained

• Local_restore

◦ Originally, data_restore transferred remote checkpoint copy to local checkpoint copy & application 
buffer

◦ Some failure scenarios require replaying not the latest message, but the previous one
◦ This is available in the local checkpoint copy; local_restore allows restoring it, involves no 

communication

Fenix extensions to enable pseudo-local recovery15

Fenix was designed originally for global rollback (owing to ULFM 
constraints)

P0 P1 P2 P3

P0 P1 P2 P3
Transitive

Dyadic



16 Results
• Experiments on a Cray XC40 platform:
o Intel Haswell (32 cores per node)

• Stencil 1D run parameters:
◦ 11 nodes, 4 MPI ranks per node (42 active 

ranks, 2 spare ranks)
◦ 5 million grid points/rank
◦ 25 iterations, 20 timesteps/iteration (500 

total)
• Realistic failure injection:
o Auxiliary error injector thread on each rank
o Error injector thread calls exit()based on 

failure rate and time elapsed
• Checkpoint buddy is 21 ranks away
o Recovery delay manifests at the buddy

• Solid line – iteration completion, dashed line 
– failure detection

Failure masking with pseudo-local recovery



17 Ongoing work

• Resolving issues within ULFM
o Recently fixed issue pertaining to subsequent failure on same node

• Fenix enhancements
◦ Improving efficiency (reducing cost/latency) of error detection
◦ Periodic replenishment of spare ranks with repaired (previously failed) resources
◦ Asynchronous error detection and communicator repair

• Applications
o Stencil code: Run at greater scale (full machine), with a high enough failure rate that requires 

half ranks as spare
o Integrating silent error mitigation with hard error recovery
o Extending to iterative solvers (CG) that involve collectives


