This paper describes obijective technical results and analysis. Any subjective views or opinions that might/be expressed|in SAND2022-0717C
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Asynchrony anc
via Pseudo-Local Process
Recovery in MP| Stencil

A

Hemanth Kolla, Jackson Mayo, Matthew Whitlock,
Keita Teranishi, Rob Armstrong

Sandia National Laboratories, Livermore, CA.

— — — @kiiRoy ANOSA

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.
S IAM PP Feb 23_26 2022 Sandia National Laboratories is a multimission laboratorimanagedyand’operated by National Technology & Engineering Solutions|of Sandia,/LLC, a wholly.owned
) ’ subsidiary of Honeywell International’Inc., for' the=U.S .-Departmentof“Energy's National Nuclear Security Administrationfunder contract! DE-NA0003525.

2 I Synopsis

In this talk we

» Advocate for HPC fault tolerance, for optimizing performance on current systems and co-design

of future heterogeneous systems
* Distinguish between global recovery and local recovery, and why the latter is better
 For hard failures in MPI applications describe the challenges for localizing recovery
* Demonstrate how pseudo-local recovery can be accomplished with existing middleware

» Show results from experiments with MPI stencil 1D app that demonstrate “failure masking”

3 1 Motivation

 Fault characteristics of modern HPC systems are not well understood

- Systems are still studied in retrospect (post-analysis of system error logs)

- Unexpected/unanticipated failures occur that have system-wide impact (e.g. Titan)
» Extreme heterogeneity (systems and software) makes the fault landscape ever more complex
 Improving fault tolerance of applications, middleware can alleviate constraints

- Free up operational power budget by allowing for higher fault rates

- Co-design new systems with inherently higher fault rates, but also higher computational

throughput.

Fault-tolerance could be an important knob in the design and operation of HPC

I I Em B

+ | Global vs Local recovery

 Global recovery
- All participating processes roll back to last safe execution point and resume
- Easier to implement, ensure correctness of execution

- Inherently limited scalability (w.r.t. problem size, fault rates); exponential scaling of recovery
overhead

* Local recovery
- Only process near failure rolls back and resumes; others continue progress
- Harder to implement, correctness requires care
- Application may have inherent constraints on extent of localizing recovery
* Multiple studies have demonstrated the potential benefits of local recovery
- Algorithm-based detection and recovery for silent error (Mayo et al..)

- Online recovery and failure masking for local recovery from hard failure (Gamell et al.)

Qf\ﬁlﬁl"\lf\ o aYaYaA\WTlTaY a2Vl in “ADI_LA“AT nrnnrnmminn mf\AAIO IDﬂIII f\‘l‘ f!l \

s | Global vs Local recovery & failure masking (silent errors)

Kolla et al., “Improving Scalability of Silent-Error Resilience for Message-Passing Solvers via Local
Recovery and Asynchrony”, FTXS-2020

» Checksums for process-local detection of silent errors
* Recovery from local in-memory checkpoints, no need for process recovery

Exponential overhead of global Local recovery & failure
500 - recovery 26.4 - masking

26.2 e °

w global recovery v 26.0

Q (]

£ -

+ 100 7 258

S S

g 50 - local recovery % 2567

- =3 _:'___-:—___o ° 25 4 4

| eo—t——e- == - - '
baseline
25.2
10 1 1 1 1 I I 1 250 1 1 I 1 I 1 I
0 500 1000 1500 2000 2500 3000 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
MPI ranks number of restarts

I I Em B

« | Localizing recovery for hard failures

* Recovery from process/node failures in MPI applications is challenging:
- Need to recover MPI environment, processes, state, messages
- Tedious to do entirely at application level, requires middleware support

» User Level Failure Mitigation (ULFM) — spec of resilience features — only recently became
mainstream MPI

* Gamell et al., 2015
- Bypassed MPI (ULFM) altogether, implemented recovery directly at uGNI layer

- Data Resiliency for data checkpoint, recovery message logging; Process Resiliency for
managing spare processes, replacing failed processes

- Not compatible with general MPI applications
» Losada et al., 2019, implemented local recovery using three components:

- ULFM, ComPiler for Portable Checkpointing (CPPC) for checkpointing, process respawn,
communicator repair, VProtocol for message logging

- Recovery is completely transparent to application

7 | Local recovery & failure masking (hard failures)

Gamell et al., “Local Recovery and Failure Masking for Stencil-based Applications at Extreme
Scales”, SC15

§ 114 1 failure
£ 112 Sfaliros
P e VA A — § 1.1 4 failures m—
ﬁ_\x__‘; 2 108 : ;gﬂﬂﬁgg —
-, g 1.06/ 7 failures
1 W i 104 8 failures mmmm
I . e TN S
1 Ao— — e S 102
_.-":\\ » e 14
Y 0.98
E 0.96]
o 512 4096 8000 13824 32768 64000 140608
Number of cores
* Recovering locally from a failure introduces a delay » Sub-linear scaling of recovery cost
» Delay propagates to other ranks gradually * Recovery cost scales favorably to large

number of failures, allowing runs on large

* Del from ive failures mask h other, i.e.
elays from successive failures mask each other, i.e aumber of ranks.

the delay of N failures is sub-linear w.r.t. delay of
single failure

s I Our approach: pseudo-local recovery

* Objective: demonstrate pseudo-local recovery from hard failures with application-specific

refinements

» Use existing Fenix middleware (with a few enhancements) to realize failure masking for MPI

stencil code
* Pseudo-local: all processes participate in recovery, but asynchronous progress is preserved

- In a stencil code neighbours can be ahead by one iteration; distant processes can be ahead by

many

* Our desi Application caltibti steaciOriycaémn (straightforward) changes to
Fenix, a i
A general framework for MPI-based fault tolerance

MPI-ULFM Fault tolerant MPI layer

s | Fenix

Fault Tolerant Programming Framework for MPI Applications ;

* Separation between process and data recovery SANDIA REPORT
> Allows third party software for data recovery Poied Sapomonr 206
o |\/|u|tip|e Execution Models ﬁg::ri;lcation of Fenix MPI Fault Tolerance
version 1.0
® P ro CeSS re Cove ry Marc Gamell, Rob F. Van der Wijngaart, Keita Teranishi and Manish Parashar
o) Extend MPI_ULFM m:m&?m?}wsmlwm.whmum

o Multiple modes: non-shrink (hot spare process pool), shrink, spawn

> Process failure is handled within custom MPI error handler and

recovery happens automatically under the cover
- Data recovery Application

i
B
> In-memory data redundancy Fenix ‘

o Multi-versioning (similar to GVR by U Chicago & ANL)

0 | Fenix process recovery interface

If newcomm is NULL, Fenix tacitly
7 replaces comm everywhere with

void Fenix_Init (MPI_Comm comm, resilient communicator

PI _Comm *newcomm,
> FENIX_ROLE_INITIAL_RANK
int *role, FENIX_ROLE_RECOVERED RANK
—> FENIX_ROLE_SURVIVOR_RANK

i * i %k %k %k
App should use int *argc, 1int argv,

resilient communicator int num_spare_ranks, ©:NO_SPAWN

E:réer:\vrﬁomm) instead of it spawn, 1:SPAWN

MPI Info,

int *error);

Process failure triggers process recovery and long-jump to Fenix

void Fenix Finalize ();

1 I Fenix process recovery mechanics

Compute Processes

e e

(00000000
9000'0000

Non-shrink model Non-shrink model

(with spare C X ’ (spawn new process)

ﬁcesés Q m 0 e
MPI_Comm_spaw
/ - N . " / - N N
[Lost 1) [Lost 1
* ~ e / II \ /
-— , S~
/
1

1
/
/
/
4
-
-,
e
”
-
<€---"

Shrink model

/’ - \\
[Lost 1
\ /

NS

Re-rank surviving

@ processes

(= |
=0

2 | Data Recovery using Fenix

* In-memory checkpointing
o Partner-copy redundancy
o Fast but Memory hungry
* Versioning
o Similar to GVR (U Chicago & ANL)

Loca

o Failure is manifested not immediately after faults/errors

e Data store and commit
o Data is distributed in MPI model

Remote

Fenix_Data_member_store()

-~

| Copy

Copy

Group #1

"0 |l P2 P3

A

~

>

o Store operation: (1) Fenix creates local copy, (2) moves the

local data to remote (buddy) process location
o Commit freezes a group of data objects in the redundant store

- Restore operation: transfer data from the buddy copy to local

buffer

. ‘ Stencil 1D: Preserving asynchrony

Vv

« Stencil 1D communication pattern:

5
)

- Nearest neighbour

- No collectives
Ran

» To preserve asynchrony at recovery:

o Check the iteration neighbour is
resuming from

Communicate
iter
<—>

- Replay message before failure if
neighbour needs it

* Message replay using Fenix:

- Add halo data (sent messages) to
checkpoint state

Communicate

- Track iterations completed and
committed

T ™Y

- Replay the previous message (local
&eﬁq\,&q @(\006 copy of halo), not latest, when
appropriate

) Stencil 1D: Pseudocode excerpt

if(initial rank) - Nearest neighbour

initialize state(); - No collectives

Fenix_Data_member_create();
’ * To preserve asynchrony at recovery:

if(recovered_rank) > Check the iteration neighbour is

Fenix_Init(); « Stencil 1D communication pattern: E
i
Fenix_Data_member_restore(); |

resuming from

- Replay message before failure if
neighbour needs it

if(recovered_rank || survivor_rank)
check_neighbour_rank_iteration();
if(neighbour_iter < my iter)
if(current_iter == commit_iter)
Fenix_Data_member_local -t+estore(halo data);
MPI Send(halo _data);

* Message replay using Fenix:

- Add halo data (sent messages) to
checkpoint state

Track iterations completed and
committed

while(current_iter < total iters)
communicate_halo data();
advance_iteration(); current_iter++;
Fenix_Data_member_store();
Fenix_Data _member_commit(); commit iter++;

- Replay the previous message (local
copy of halo), not latest, when
appropriate

15 I Fenix extensions to enable pseudo-local recovery

Transitive
Fenix was designed originally for global rollback (owing to ULFM PO | Pl P2 P3

constraints)
Changes/extensions to Fenix to facilitate pseudo-local recovery

* Dyadic checkpoint buddies:
- Originally, checkpoint buddies were not dyadic (I'm not my buddy’s buddy)

- Introduced transitive dependency; failure delay propagates much farther

* Null_restore:

o Fenix data_restore is a synchronized call between checkpoint buddies; involves comm, typically all
ranks call

o For “survivor” (unaffected) ranks a checkpoint restore might undo progress; null_restore, a dummy
operation, ensures current state is not overwritten and progress maintained

* Local_restore

o Originally, data_restore transferred remote checkpoint copy to local checkpoint copy & application
buffer

o Some failure scenarios require replaying not the latest message, but the previous one

16 I Results

Wall time (s)

Failure masking with pseudo-local recovery

50 A

40 -

30 -

20

10 -

UL LI L I BN BN LN BB LRI B
O 4 8 12 16 20 24 28 32 36 40

MPI rank

* Experiments on a Cray XC40 platform:
o Intel Haswell (32 cores per node)
« Stencil 1D run parameters:

> 11 nodes, 4 MPI ranks per node (42 active
ranks, 2 spare ranks)

> 5 million grid points/rank

o 25 iterations, 20 timesteps/iteration (500
total)

* Realistic failure injection:
o Auxiliary error injector thread on each rank

- Error injector thread calls exit()based on
failure rate and time elapsed

» Checkpoint buddy is 21 ranks away
- Recovery delay manifests at the buddy

» Solid line — iteration completion, dashed line
— failure detection

17 1 Ongoing work

* Resolving issues within ULFM
- Recently fixed issue pertaining to subsequent failure on same node
* Fenix enhancements
o Improving efficiency (reducing cost/latency) of error detection
o Periodic replenishment of spare ranks with repaired (previously failed) resources
o Asynchronous error detection and communicator repair
* Applications

- Stencil code: Run at greater scale (full machine), with a high enough failure rate that requires
half ranks as spare

- Integrating silent error mitigation with hard error recovery
- Extending to iterative solvers (CG) that involve collectives

