
Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Asynchrony and Failure Masking
via Pseudo-Local Process
Recovery in MPI Stencil
Applications

Hemanth Kol la , Jackson Mayo, Mat thew Whi t lock,
Kei ta Teranish i , Rob Armstrong

Sandia Nat ional Laborator ies, L ivermore, CA.

SIAM PP, Feb 23-26, 2022 SAND 2021XXX-XX

SAND2022-0717CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Synopsis2

In this talk we

• Advocate for HPC fault tolerance, for optimizing performance on current systems and co-design

of future heterogeneous systems

• Distinguish between global recovery and local recovery, and why the latter is better

• For hard failures in MPI applications describe the challenges for localizing recovery

• Demonstrate how pseudo-local recovery can be accomplished with existing middleware

• Show results from experiments with MPI stencil 1D app that demonstrate “failure masking”

Motivation3

Fault-tolerance could be an important knob in the design and operation of HPC
systems

• Fault characteristics of modern HPC systems are not well understood

o Systems are still studied in retrospect (post-analysis of system error logs)

o Unexpected/unanticipated failures occur that have system-wide impact (e.g. Titan)

• Extreme heterogeneity (systems and software) makes the fault landscape ever more complex

• Improving fault tolerance of applications, middleware can alleviate constraints

o Free up operational power budget by allowing for higher fault rates

o Co-design new systems with inherently higher fault rates, but also higher computational

throughput.

Global vs Local recovery4

• Global recovery

o All participating processes roll back to last safe execution point and resume

o Easier to implement, ensure correctness of execution

o Inherently limited scalability (w.r.t. problem size, fault rates); exponential scaling of recovery
overhead

• Local recovery

o Only process near failure rolls back and resumes; others continue progress

o Harder to implement, correctness requires care

o Application may have inherent constraints on extent of localizing recovery

• Multiple studies have demonstrated the potential benefits of local recovery

o Algorithm-based detection and recovery for silent error (Mayo et al..)

o Online recovery and failure masking for local recovery from hard failure (Gamell et al.)

o Scalable recovery in MPI+AMT programming models (Paul et al.)

Global vs Local recovery & failure masking (silent errors)5

Kolla et al., “Improving Scalability of Silent-Error Resilience for Message-Passing Solvers via Local
Recovery and Asynchrony”, FTXS-2020
• Checksums for process-local detection of silent errors
• Recovery from local in-memory checkpoints, no need for process recovery

Local recovery & failure
masking

Exponential overhead of global
recovery

Localizing recovery for hard failures6

• Recovery from process/node failures in MPI applications is challenging:

o Need to recover MPI environment, processes, state, messages

o Tedious to do entirely at application level, requires middleware support

• User Level Failure Mitigation (ULFM) – spec of resilience features – only recently became
mainstream MPI

• Gamell et al., 2015

o Bypassed MPI (ULFM) altogether, implemented recovery directly at uGNI layer

o Data Resiliency for data checkpoint, recovery message logging; Process Resiliency for
managing spare processes, replacing failed processes

o Not compatible with general MPI applications

• Losada et al., 2019, implemented local recovery using three components:

o ULFM, ComPiler for Portable Checkpointing (CPPC) for checkpointing, process respawn,
communicator repair, VProtocol for message logging

o Recovery is completely transparent to application

o Generalized approach, might lack the flexibility for application-specific refinements

Local recovery & failure masking (hard failures)7

Gamell et al., “Local Recovery and Failure Masking for Stencil-based Applications at Extreme
Scales”, SC15

• Recovering locally from a failure introduces a delay

• Delay propagates to other ranks gradually

• Delays from successive failures mask each other, i.e.
the delay of N failures is sub-linear w.r.t. delay of
single failure

• Sub-linear scaling of recovery cost

• Recovery cost scales favorably to large
number of failures, allowing runs on large
number of ranks.

Our approach: pseudo-local recovery8

• Objective: demonstrate pseudo-local recovery from hard failures with application-specific
refinements

• Use existing Fenix middleware (with a few enhancements) to realize failure masking for MPI
stencil code

• Pseudo-local: all processes participate in recovery, but asynchronous progress is preserved

o In a stencil code neighbours can be ahead by one iteration; distant processes can be ahead by
many

• Our design is almost entirely at the application level. Only a few (straightforward) changes to
Fenix, and no changes to ULFM.

Application

Fenix

MPI-ULFM

MPI stencil 1D code

A general framework for MPI-based fault tolerance

Fault tolerant MPI layer

Fenix

 Fault Tolerant Programming Framework for MPI Applications

• Separation between process and data recovery

◦ Allows third party software for data recovery

◦ Multiple Execution Models

• Process recovery

◦ Extend MPI-ULFM

◦ Multiple modes: non-shrink (hot spare process pool), shrink, spawn

◦ Process failure is handled within custom MPI error handler and
recovery happens automatically under the cover

• Data recovery

◦ In-memory data redundancy

◦ Multi-versioning (similar to GVR by U Chicago & ANL)

9

Application

Fenix

MPI-ULFM

10 Fenix process recovery interface

void Fenix_Init (MPI_Comm comm,

 MPI_Comm *newcomm,

 int *role,

 int *argc, int ***argv,

 int num_spare_ranks,

 int spawn,

 MPI_Info,

 int *error);

FENIX_ROLE_INITIAL_RANK
FENIX_ROLE_RECOVERED_RANK
FENIX_ROLE_SURVIVOR_RANK

0:NO_SPAWN
1:SPAWN

App should use
resilient communicator
(newcomm) instead of
comm.

If newcomm is NULL, Fenix tacitly
replaces comm everywhere with
resilient communicator

void Fenix_Finalize ();

Process failure triggers process recovery and long-jump to Fenix_init

11 Fenix process recovery mechanics
Compute Processes

New
P1

P0 P2P1

P0 P2

P0 P2

Lost

Non-shrink model
(with spare
processes)

New
P1

P0 P2P1

P0 P2

P0 P2

Lost

MPI_Comm_spaw
n

Non-shrink model
(spawn new process)

P0 P2P1

P0 P2

P0 New
P1

Lost

Shrink model

Re-rank surviving
processes

Data Recovery using Fenix12

• In-memory checkpointing
◦ Partner-copy redundancy
◦ Fast but Memory hungry

• Versioning
◦ Similar to GVR (U Chicago & ANL)
◦ Failure is manifested not immediately after faults/errors

• Data store and commit
◦ Data is distributed in MPI model
◦ Store operation: (1) Fenix creates local copy, (2) moves the

local data to remote (buddy) process location
◦ Commit freezes a group of data objects in the redundant store
◦ Restore operation: transfer data from the buddy copy to local

buffer

Group #1

Local Copy

Remote Copy

P0 P1 P2 P3

Fenix_Data_member_store()

13

Replay la
st

messa
ge

Wall
time

Ran
k

iter k
Resume
normally

iter k+1
Restore last

message

iter k+1
Resume
normally

Hard

failure Recovered

state
Message

Replay

C
om

m
un

ic
at

e
ite

r
C

om
m

un
ic

at
e

ite
r

iter k+1
Complete iter

iter k+1
Recv/Ignore

extra
message

iter k+2

iter k+2

iter k+2

Normal

iterations

Stencil 1D: Preserving asynchrony

• Stencil 1D communication pattern:
o Nearest neighbour
o No collectives

• To preserve asynchrony at recovery:
◦ Check the iteration neighbour is

resuming from
◦ Replay message before failure if

neighbour needs it
• Message replay using Fenix:
o Add halo data (sent messages) to

checkpoint state
o Track iterations completed and

committed
o Replay the previous message (local

copy of halo), not latest, when
appropriate

14
Stencil 1D: Pseudocode excerpt

• Stencil 1D communication pattern:
o Nearest neighbour
o No collectives

• To preserve asynchrony at recovery:
◦ Check the iteration neighbour is

resuming from
◦ Replay message before failure if

neighbour needs it
• Message replay using Fenix:
o Add halo data (sent messages) to

checkpoint state
o Track iterations completed and

committed
o Replay the previous message (local

copy of halo), not latest, when
appropriate

Fenix_Init();

if(initial_rank)
 initialize_state();
 Fenix_Data_member_create();

if(recovered_rank)
 Fenix_Data_member_restore();

if(recovered_rank || survivor_rank)
 check_neighbour_rank_iteration();
 if(neighbour_iter < my_iter)
 if(current_iter == commit_iter)
 Fenix_Data_member_local_restore(halo_data);
 MPI_Send(halo_data);

while(current_iter < total_iters)
 communicate_halo_data();
 advance_iteration(); current_iter++;
 Fenix_Data_member_store();
 Fenix_Data_member_commit(); commit_iter++;

Changes/extensions to Fenix to facilitate pseudo-local recovery
• Dyadic checkpoint buddies:
o Originally, checkpoint buddies were not dyadic (I’m not my buddy’s buddy)
o Introduced transitive dependency; failure delay propagates much farther

• Null_restore:

◦ Fenix data_restore is a synchronized call between checkpoint buddies; involves comm, typically all
ranks call

◦ For “survivor” (unaffected) ranks a checkpoint restore might undo progress; null_restore, a dummy
operation, ensures current state is not overwritten and progress maintained

• Local_restore

◦ Originally, data_restore transferred remote checkpoint copy to local checkpoint copy & application
buffer

◦ Some failure scenarios require replaying not the latest message, but the previous one
◦ This is available in the local checkpoint copy; local_restore allows restoring it, involves no

communication

Fenix extensions to enable pseudo-local recovery15

Fenix was designed originally for global rollback (owing to ULFM
constraints)

P0 P1 P2 P3

P0 P1 P2 P3
Transitive

Dyadic

16 Results
• Experiments on a Cray XC40 platform:
o Intel Haswell (32 cores per node)

• Stencil 1D run parameters:
◦ 11 nodes, 4 MPI ranks per node (42 active

ranks, 2 spare ranks)
◦ 5 million grid points/rank
◦ 25 iterations, 20 timesteps/iteration (500

total)
• Realistic failure injection:
o Auxiliary error injector thread on each rank
o Error injector thread calls exit()based on

failure rate and time elapsed
• Checkpoint buddy is 21 ranks away
o Recovery delay manifests at the buddy

• Solid line – iteration completion, dashed line
– failure detection

Failure masking with pseudo-local recovery

17 Ongoing work

• Resolving issues within ULFM
o Recently fixed issue pertaining to subsequent failure on same node

• Fenix enhancements
◦ Improving efficiency (reducing cost/latency) of error detection
◦ Periodic replenishment of spare ranks with repaired (previously failed) resources
◦ Asynchronous error detection and communicator repair

• Applications
o Stencil code: Run at greater scale (full machine), with a high enough failure rate that requires

half ranks as spare
o Integrating silent error mitigation with hard error recovery
o Extending to iterative solvers (CG) that involve collectives

