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Revolutionary Systems

= What do we want in the future?

= >10 TOPS/W:
» >Supercomputing at the edge

» Deep networks (100M+ parameters
execute and frain in the field

= Lots of applications interested in this:
Particle detectors, safe, full
autonomous navigation in ground,
air and space vehicles

» Getfing to this goal may require
iImperfect hardware...and this might
be ok.




State of the Art CMOS Efficiency: Apple A13

= Apple’s iPhone 11 main SoC processor
= /nm+ TSMC process

» Lightening AMX 8-core Neural Engine accelerator IP
» Apple spec: 5 TeraOps/s (TOPS) @ 8 bit precision
» Power is ~2.5-5W
= State of the art smartphone chip is ~ 1-2 TOPS/W
= ~1pJ per 8 bit operation

= von Neumann architecture has limitations, especially
when off chip data movement is needed

» CMOS research is contfinuing to push efficiency with low
voltage, weight on chip designs — how much more
possible?

= Where will the next orders of magnitude improvements Chip to Main A;\emc-:ry (i.e. DDR)

come from?
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Keep Data in Memory & Exploit Physics for
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Tunable Resistor: Oxide ReRAM

Known as ReRAM, OxRAM, “memristor”

structure
= +V pulse, R decreases. -V pulse, R increases

Fast, scalable, low switching energy, tunable resistor

Potential for 100 Tbit of ReRAM on chip

Perfect Analog In-Memory Compute Energy & Latency o | B B
candidate! SgT-RESET T.j L
...... ——— M3 Mlmcapmmmqj:/ |
oo L R€ad Window
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Neural Network Basics

Simple Network:
Inference & Training

Basic Building Block (Backpropagation)
Incorrect -
. adjustif 0 9 0 # Correct Inference
y= ,ReLU, etc. training 0 a e a Outputs
1+e™*

Neuron

(activation Eidden
function) ayer
Weights

(synapses) Inputs

Inputs X4 X, *n




Physically Mapping a Neural Network

OIO OIO A
'V/ “V 3 \i ADC| |ADC| [ADC]| |A
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To next layer




Neural Network Basics

Inference

» Feed forward operation of the network to
perform task, i.e. classification

» Ex: Image recognition

= Computationally requires ingle feed forward
pass through network

» Typical device update through write-verify

Class Probabilities

Dog (0.7)
: Cat (0.1)
Machine .
Learning Bike (0.02)
(Inference) Car (0.02)
Plane (0.02)
House (0.04)

Training
» Adjusting the weights to reduce error
and improve

» Typically done with backprop

= Parallel update possible on crossbar
architecture

backpropagation
<€

(b) Compute the gradient of the loss
relative to the filter inputs

VV. Sze, Y. Chen, T. Yang and J. S. Emer, Proc IEEE, vol. 105, no. 12, pp. 2295-2329, Dec. 2017 11



Tile Analysis

Oxide
ReRAM

Component Vector Matrix Outer Product
Multiply Update

(8-bit, Inference) (8-bit, Training)

N \\ o Two Energy/Op ReRAM (fJ) 12.2 2.1
.{) m _rD‘“@ || s Energy/Op Digital (fJ) 2718 4102
e — Wi, Array Latency ReRAM (us) 0.38 0.51
P Array Latency Digital (ps) 4 8
e tdnm
o Wy T POK

Initial results: two orders of magnitude beyond digital!

MJ Marinella, S Agarwal, et al, IEEE J. Emerging Topics in Circ. And Sys, 8, 2018. 12



Semiconductor-Oxide-Nitride-Oxide-Semiconductor

~ ~(SONOS)

= Mature, commercial technology pioneered by Sandia in the 1980’s
» Basis of modern SSD's (your iPhone uses SONQOS)
= Can be used as resistive array similar to ReRAM

» Collaborating with Infineon to evaluate 40nm SONOS In Memory Computing
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Analog Required a Paradigm Shift

Analog processing offers great benefits...
...but comes with great challenges
Digital: Deterministic, accurate results

Analog: Device characteristics affect algorithm
accuracy!

= Research challenge: analog behavior must give acceptable algorithm
-level results

Inference Accuracy Challenges (this section)

» Measured device conductance should be proportional to weight - but
this is only approximately true

= Caused by analog programming accuracy versus state, current drift,
read noise

Training Accuracy Challenges (next section)

» Actual analog device state change does not match intended weight
update

» Caused by write nonlinearity, asymmetry, stochasticity
= Device to device variation

Digital Multi-level Cell Distribution

WAAAAA

Conductance (G) «< Weight

# Devices

Neural Weight Distribution

7]
Q
2
>
Qo
Q >
* Conductance (G) < Weight
Pulse voltage
polarity changes
o Stochastic Symmetric
g A Varia ility and Linear
8 G Asymmetric,
O VAXT 00 Fe o Nonlinear
O _o
S 00 ee ove
o o o
S Oe® o, %e
Guin 02 On 8 PR

Pulse Number
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Multiscale CoDesign Framework Enables Accuracy Prediction

Energy (J)
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95

Accuracy
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Compact Modeling Dataset for Neural Accuracy Model

Assess Neural

| | 1 —-200
0 200 400 600 8001000 -300

Pulse Number —400

Measure Devices Construct Lookup Tables Model Array Algorithm
Circuitry, Agcgracy,
Archltecture & Efficiency,
100 Performance,
400 NS . Radiation
300 100 =
00 ' = 80 1

20000 25000 0 2 4 6 8 10

State-independent error a (%)

1200

1000 :
a b

(@ start ®)_ 50T ral t = 1 se0) 800
¥ 3 40 group 600 '

Soft erase o 30 mean 400
pulse £ 20 ,4'_, group '

- @ 10 | | stelev 200
Program = J 0 .

, pulses % 04 08 T2 16 200
IRefill xN Drain current (MA) .

Component VMM OPU
= |
E3Fd Energy/Op 122 21
(©) 20000 25000 (e
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| |
o C1{ =)
Xiao et al TCAS, accepted, 2021. 18
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Conductance Error as a Function of

: 10 Conductance Target
Sandia TaOx ReRAM Error Modelg

« Conductance error approx parabolic with
conductance target - this is ideal:

* Lower conductances have lowest error and
map to weights near zero.

» Weights near zero hold most information,
hence device error is minimized

o
—

Conductance error (u

 Modeled Accuracy in CrossSim Inference
 ResNet50 CNN, ImageNet Dataset 0.01
1000 image average
« 8-bit ADC, 8-bit weight quant
* Assume Gg,\/Ggoi = 10

0 100 200 300 400 500
Conductance target (uS)

Conductance-Weight Distribution
 ReRAM accuracy on ImageNet: 107

* Top-1 M § 108 ResNet50

 Top-592.91% > 105
2 104
- Compared to Digital (32 bit FP) Z 10°
+ Top-177.18% (analog loss = 0.78%) E 102
« Top-5 93.06% (analog loss = 0.15%) 3 10;
100 |

- Analog Inference predicted <1% loss! 0 100 200 300 )400 500

20
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Effect of Network and Dataset on Accuracy

Different common datasets and CNN
architectures often analyzed

MNIST (uses simple CNN)

ImageNet, CIFAR-10, & MNIST Accuracy

» 28x28 pixel grayscale

= 10 classes 901
= 460k training images _ 89
= 10k test images ) ;8
>
ImageNet (requires large CNN arch.) 8 50
= 224x224 pixel color g 40
= 1000 classes < 30
= 1.3M training images ?8
= 100k test images ol

10—

MNIST
6-layer CNN
119K weights

ImageNet (top-1)
ResNet-50
25.6M weights

ImageNet represents production-grade
dataset
= Sometimes smaller nets like MNIST are used due

to computing constraints, esp for modeling
training

» Excellent accuracy on MNIST does not translate
to excellent accuracy on ImageNet!

1

2 3 4 5 6 7 8
Uniform write error 0 rite (% Of Imax)

9

10
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40nm SONOS Deep CNN Inference Modeling

(a)

Infineon 40nm SONOS Characterization Chip Data

start
A\
Soft erase
pulse
v
Program
pulses
Refill xN |

- W S O
o O O O OO

(@]

N

Device count

0.4 0.8 1.2

Y

~—~
(2]
S

intial (t = 1 sec)

group

Drain current (pA)

mean
$ group

stdev

Modeled 7-bit Weight
Distribution and Mapping

Probability

(arbitrary units)

1.6

o

,| Short program
or erase pulse

w S N

ID = Itarget?

Device count

0.4

t =5 days

0.8 1.2
Drain current (pHA)

o
S

Device count

108
104
102
100

108
104
102
100

T.P. Xiao et al, IEEE TCAS, in press, 2021.

0 0.2 04 06 0.8 10 0.2 04 0.6 0.8

0 0.2 04 0.6 0.8

“0.05

Drain current (pA).

| ResNet50

1

InceptionV3 MobileNetV2

10 0.2 04 06 0.8
Normalized conductance

1
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Infineon 40nm SONOS for CNN Inference - ImageNet

880

> | 7646 7620 76.08 74.30 73.43 4,44

o 66.61
& -0 +2.62
O

1T

L 65

®

£

| Floating + 8-bit + 8-bit + Write +1 day +2days +5days
point weights ADCs errors &
read noise SONOS
Add Analog

non-idealities > State drift >

T.P. Xiao et al, IEEE TCAS, in press, 2021. 23



Error and Inference Accuracy Summary: ReRAM, SONOS,

- PCM

5%

° A
e |1 ] e a---)
g 40/0 ,,1’1 A
@ o

0 | ”
8 3 /0 L’/‘ o ___-
N J’ e--- ®
© 20/0'-'-',"'/"-!-____ !,!" y
£ , oo -v--I__ -
4 - —

CZD 1% og® Y 294

0%

® SONOS
A PCM?%

v HfO,
ReRAM?3”

¢ SNL TaO,
ReRAM

0O 02 04 06 08 1

Normalized conductance

References and notes:

T.P. Xiao et al, IEEE TCAS, in press, 2021.
2\/. Joshi et al, Nat Comm. 11, 2020.
3Milo et al, IEEE IRPS, 2021.

Technology* Top-1 Top-5
gy accuracy accuracy

Floating point
digital

SNL TaOx
ReRAM

SONOS'

PCM?

77.5%

76.4% *
0.2%

74.0% +
1.0%

28.2% +
6.4%

*All analog simulation also includes 8-bit weight quantization, 8-bit activations, and 8-bit ADCs
h *PCM and HfO, error are modeled entirely from data and programming used in publication only.

93.3%

93.3% +
0.1%

92.5% +
0.4%

49.7% =
7.8%
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Device-Level Radiation Impacts Algo Accuracy (
] - . S
How will the accuracy ( g
Prior Work: Commercial SONOS degrade in radiation 4
Abisko: ReRAM, ECRAM environments ?

Select gate  Control gate

Algorithm Accuracy Degradation due to

C . : . 100 TID
Threshold Distribution Shifts due to 90
7 erase ‘1’ 1Y program ‘0’ g 80
c 10 > 70
3 @ one-sided
> 10° Total ionizing 3 60
g dose (Si) @ 50
S 5 ©
p-weII N 10 —— Prerad % 40 two-sided
g s —— 25 krad 2 30
.. T @ 10 — S
lonizing Radiation 8 i -
g _1
+ Aé/ ./ + //-/ 3 10 —— 150 krad 10
£ 174:‘ r”-gﬁ—g 5 . i 0 0 20 30 40 " 50
T T ’ T 310 — 300 krad Total ionizing dose, krad (Si)
. / . J A . £ 500 krad
L ‘K L | K’ L / pd 101 7 ImageNet
r =L X I L o Convi/256/2" | G
° + ° T/ ° + ° 7/ —Con\uff:‘»4n'2224 - é:nonrvﬁngze‘t
AS I K T 2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 e —
b H‘Hf. b b Conv1/64 Convil512127 | M Eonv
lJ'r_l_fﬁ L lJ'rﬂ___'_r el Y. Threshold voltage (V) g S
x E x3 E3,
I T T ¥ Convi/12812"] (Gomvi #
,I-| ey ey P Jhce Comviais !5122* =
e f— — == x = ‘snow leopard’
- - - - - - TP Xiao et al, IEEE Trans Nuclear Sci, 2021 R (1600 categorios) 25
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Device Challenges for Training

* Training has an overlapping set of

challenges
» |deally weight increases and decreases
linearly proportional to learning rule result I':g,'jfitfc'fg:ges
= |ssue for open loop nonvolatile memory: e y(rjnlr_netrlc
an Inear

altered the relationship between intended
and actual update
= Nonlinear and asymmetric state change

O L

= Cycle to cycle random variability (write °® °
S'l'OChCISﬁC“'Y) Gun 6.2 °o Cn e 3

. . . . Pulse Number
» Device to device random variability

A
G Asymmetric,
MAX g o O Nonllnear

O
Q

Conductance

= Also: very high endurance (>10'2)
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Characterization for Training

Ta (15 nm)

TaO,
(5-10 nm)

TiN

TiN

h

RESET

SET

2000 4000
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10 ns 100 ns

400 )
800 Lo 300
=600 08 200
E! 0.6 100
) 400 ! 0

@
= 0.4 -100
8200 -200
0 0.2 -300
0.0 —400
1000 2000 ' 20000 25000

1.0 .
800 1200
% 600 0.8 1000
2 06 800
© 400 a 600
S 0.4 © 400
8200 200
o 0.2 0
0.0 -200

1000 2000 20000 25000
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8000
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o

—-500

-1000

10000
8000
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4000
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=
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Accuracy

—

TC.mIaIIIDigitls |

1004+

NS BR O
o O O O

0

~_Initial TaOx ReRAM Training Accuracy Modeling
(MNIST)

Performance
Gap

— Exp. Derived
— |deal Numeric

| | | | I | I |
0 510152025303540
Training Epoch

*ZROSS SIM

100

I | I:ille -Il_yplesl ]

o
T 7

EY
T
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Accuracy
Accuracy

N
o
|

N
Performance
Gap

— Exp. Derived
— |deal Numeric

0

Training Epoch

T 1T T T T 1
0 510152025303540

100

o
T

(o)}
o

=
T

N
o
|
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| %arrgelDlrgmls |

Performance
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— Exp. Derived L
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T T T T T 1
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Unexpected results:

TaOx ReRAM was not ideal
device for open loop
training

N
HEIDN

Training is significantly more challenging than inference!
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Physical Insight from Multiscale Model - CrossSim

Challenges using Filamentary ReRAM for Training

MNIST Training Accuracy
SNL TaOx ReRAM

100 ——0————r——r—r—r————

90 -N_ . . .
soll Linear Resistive Device

< 70}

> 60

£ s0ff Loss due to fabrication

S 40

< :
30 } —— Numeric
20 Linearized
10 No Noise
0 —— No Manipulation )

0 5 10 15 20 25 30 35 40
Training Epoch (#)

R. Jacobs-Gedrim et al, Proc. 2017 IEEE ICRC, 2017.

Nonlinearity

1. Tunneling current, esp in high resistances
2. Current crowding — high temperature

Displaced required for change give runaway effect
Oxygen 3. Nonlinear E-field
Anions (0?)
Positively Asymmetry
Inherent property
Charged v - i -
Vacancies 5o / of bipolar f:lewce =
(V") \\®® Schottky-like and
beioNd ohmic junctions
Vigo— Baw —| |
[ Stochasticity
OE G depends on
Ta TaO, Pt position of a few
" atoms
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Electrochemical RAM (ECRAM) Synapse. Conductance vs Voltage

250F
= As we used codesign to understand the challenges — 200}
with ReRAM, Sandia was exploring doping E
modulation of Lithium battery cathode 8T
100
= Novel device discovery: resistivity across cathode
changes linearly with battery charge/discharge S0r
= Battery can function as an analog nonvolatile e
transistor! Ve V)

I current collector
500 nm anndefgate

|

@

Va

anode/gate

T
electrolyte/insulator *

LiCoO, = LisxCop + xLi* + xh

source  cathode/channel  drain

Vs_n-r_ —— T

v source cathode/channel SlOz drain

"1 E. Fuller et al, Adv Mater, 2017




a 250

Gso (uS)

Analog State Comparison

200

10 20

30 40
t (ks)

ECRAM

0.0 —

"1 E. Fuller et al, Adv Mater, 2017

200

| |
220 240
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50

800
%600
© 400
S
2200

0

60

TaOx ReRAM

1000

2000
Conductance (uS)

70

ECRAM-MNIST
99 | | I | | [ |

Accuracy
©
o

Exp. Derived

Ideal Numeric ]

05 [ R S N T B B
0 510152025303540

Training Epoch

PCM Array

gl Measured
I AG-per-pulse
[uS]

O From all 31 million
| partial-SET pulses

5 10 15 20

GW Burr et al, IEEE TED 2015
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Electrochemical Neuromorphic Organic Device
T TAKNKIAAARN

[ |
| |
I I
| @ A
: o 0 g 0 ' ® >
| \—/ \/ 3
| | 0
! Reduction EZ\/\ !
| _— ~ [
! Oxidation L !
: — ! -1
I I 600 700 800
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Source : :
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Accuracy
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Proton-based polymer ECRAM synapse: fast, better endurance

van de Burgt et al, Nature Mater., 16, 414, 2017 33




ECRAMs Array Parallel Update Training

Demonstration

99
- - MNIST
control gate i
g_ N o C 2‘98-

Ag' Y Go S b -

migration Si0, E 97F ¥ o |deal array Near ideal

(ON) = i go o |FG array accuracy
96k ; ;

0 10 20 30 40
Training epoch

20h
- 0.5
:'." 0.0
-0.5 [
~ 0.5 [ e
- Q.OF TR E R E AL
L5k oo T i
. 05F F e
= (0.0 T e T T
0.5h T

0 25 50 -] 100
read-write operation

ﬂ E. J. Fuller, S. T. Keene, A. Melianas, Z. Wang, S. Agarwal, Y. Li, Y. Tuchman, C. D.
James, M. J. Marinella, J. J. Yang, A. Salleo, A. A. Talin, Science 364, 570, (2019). 34



Outline

* Motivation and Background

* Analog In-Memory Compute Energy & Latency
*Devices for Accurate Inference

»Devices for Accurate Training
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Requirements for Inference versus Training

Property

Inference

Training

Analog programing error (w/ write verify)

Long term retention

Read noise

Conductance Range
Short term state drift
Device to device variability

Write stochasticity

Write speed
Write linearity
Write symmetry

Endurance

Critical
Important
Important
Important
Important
Important
Less Important
Less Important
Less Important
Less Important

Less Important

Less Important
Less Important
Less Important
Important
Important
Important
Important
Important
Important
Critical

Critical
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Inference

Both

Training

Perspective: IMC Devides

Property

SONOS/FG

Analog programing error (w/ write verify)
Long term retention
Read noise

Conductance range

Short term state drift

Device to device variability
Write stochasticity

Write speed

Write linearity

Write symmetry

Endurance

®©l J 1G] I |BIelCIel®,

@l I 6] 16lGIelGIeI®

OOOOOOCLOEOCOOG

OOOCLOOLOOOLO

h

Inference ©

Inference ©

Training ©
3
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Final Thoughts

= Traditional digital CMOS computing is hitting disruptive roadblocks for
confinuing energy efficiency

* Analog In Memory Computing offers path to >10 TOPS/W
» |[dea for deep neural nets/convolutional nets

= Analog In Memory Computing has significant new challenges
= Algorithm accuracy depends on the device
» Inference and training have distinct challenges, with some overlap.

» Inference: excellent behavior predicted with commercial SONOS and
ReRAM

» Training: more challenging, future devices such as ECRAM and related
nonfilomentary devices may provide a path forward
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Thank You — Questions?
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Novel Devices for Accurate Inference/Training

= Battery Inspired Devices a Filamentary-RRAM  d Bulk-RRAM
= Bulk ReRAM Probabalistic & stochastic Statistical & deterministic
= Bulk nanoionic devices P B B MG Contact 1
. kg A N 65 - _Base layer
= Two terminal charge tunnel e ¥ s ¥ (ion reservoir)
jun ction :g% Solid electrolyte
= Organic and bio compatible . ..;:}7 - hotonat
switches v. @
AT . 3 So T N
= Linear write: dG does not ) val

YSZ electrolyte
e TiO, switching - -

depend on G.
» |deal for training

od
-od
od

99, %)
: £ 400
3 3
o 98} 5 300
A g --
a A 2 200 —6— ——First ramps
B —7——<— Final ramps
2 97F < o |deal array S 100 —+ N
B
i © IFG array 0 50 100 150
— : : Pulse count
E. J. Fuller et al, Science 364, 570, 2019, Vet s 0O 10 20 30 40

. - Y. Li et al, Adv Mater. 2020.
Y. Li et al, Adv Mater. 2020. Training epoch 4




Physical Weight Properties is Critical

Error accumulation

o State-independent error
Gl.j dlsjtrlbutlon P

AG =aG, .,
|A A A A A A A ,\ ImageNet Accuracy (7 bits/cell)
100
G —e— State-proportional error
/\\%\ 80 —&- State-independent error

X,G,x, distribution 40
20

]
# devices

State-proportional error

Typical Weight Distribution oL | I N N N B e
= 1 ReNeBovi S 2 AG = 4G 0 5 10 15_20 25 30 35 40
3 10°] = Error a (%)

- | )
%10{ g G
2 10?]

State-proportional error is ideal

TP Xiao et al, submitted, Intl Symp Micro Arch, 2021 42



Collaboration with

Exploration of Novel Magnetic Synapses for Training w

INC Lab
Professor
. . A H = Jean Anne Incarvia
Low-energy domain wall Integration in a crossbar array Demonstrating linear
synapses updates and neural
High-Z High-Z High-Z network accuracy
ouT 1 .

IN CLK v,

E 900
G, G, G @
v, 11 12 13 S 300 \/ \/
g ) Magnetic tunnel % 0
1 Domain wall (DW) junction (MTJ) , , 0 150 300 450 600 750 900
: x V. Gy" G Gz3" Time (ns)
3 —~ 85
NS [AN=" =N :
e
>
- ' ' S 80
Gs" . Ga' l Gs3 l ©
I I l5 3
(8]
= = | = | I(—“ &
2]
Z 70 —e— STT 300K
ADC ADC ADC = —8— STT 400K
| | | 2 65 —e— SOT 300K
@ —— SOT 400K
L 60
0 4 8 12 16 20

m S. Liu et al, Apl Phys Lett, 2021 (under revision)
M. Almadar, Appl. Phys Lett, 2021 (in press) 43




Training Accuracy and Tile Energy/Summary

Codesign to Model Performance & Energy

Component Vector Matrix Vector Outer
Matrix Multiply Product

Multiply Update

Energy/Op ECRAM (fJ) ';1_1'_9 _______ 1 _1._9________0._2 ______
Energy/Op ReRAM (fJ) 12.2 12.2 2.1
Energy/Op SONOS (fJ) 13.7 13.7 68.2
Energy/Op SRAM (fJ) 2718 4630 4102

Array Latency ECRAM (us) 039 039 19
Array Latency ReRAM (ps) 0.38 0.38 0.51

Array Latency SONOS (us) 10.40 0.40 20 1
Array Latency SRAM (us) 4 32 8

SONOS: While accuracy, program
is slow: use for inference

ECRAM: Use for training
& inference

100 ] , ,

95 -
> 90 — Ideal 4
© — IFG
S 85 — ECRAM"
< 80 — TaOx

Je \,\NV\/J"\/\/'\/\,\/\:

70 ] | ]

0 10 20 30 40
Training Epoch

ReRAM: Training is not

accurate: better for
inference
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View from the Semiconductor Industry

1.E+22 100000 » 100,000 ZIPS

New computl 4

World's enefgy production e trajectories /10,000 ZIPS

'Market dynamics limited' scenario

1,000 ZIPS max

10al

11

Compute Energy in J/year

v
=
1,000 ZIPS max N 1000 o or——
1.6420 gt LU A o= L~
S / 'Market dynamics limited’ scenario
E
© 100
£
e
£
2] Q 10
o
0.01 ZIPS @
1.E+18 =
o
£
Q
o

0.1
o
e
o /
ER2E 0.01
2010 2020 2030 2040 2050 2010 2020 2030 2040 2050

®

Semiconductor
Research
Corporation

SRC Decadal Plan for Semiconductors, 2020
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Flexible eNode

PEDOT:PSS
presynaptic electrode ~

Nafion electrolyte —»

PEDOT:PSS/PEI =~
postsynaptic electrode

b

Postsynaptic electrode

PET substrate

7

Conductance (uS)

1,750

1,800 -

1,850

1,900

T
2,000

I
2,500

T £ T T T T T
3,000 3,500 4,000 4,500

Time (s)
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Comparison of State of the Art Accelerators

TABLE II. Comparison of selected digital and mixed-signal neural network inference accelerators from industry and research.” TOPS: Tera-Operations per second. We have
counted MACs as single operations where possible. Note that performance (TOPS) is measured at the specified level of weight and activation precision, which differs
between accelerators. The results for NVIDIA T4, TPU, Goya, UNPU, and Ref. 122 are measured; others are simulated. TOPS/mm? values are based on the die area, where
provided.

Google Habana Reference 122

NVIDIA T4'"” TPU v1**" Goya HL-1000""°  DaDianNao™* UNPU™ mixed-signal®
Process 12 nm 28 nm 16 nm 28 nm 65 nm 28 nm
Activation resolution 8-bit int 8-bit int 16-bit int 16-bit fixed-pt. 16 bits 1 bit
Weight resolution 8-bit int 8-bit int 16-bit int 16-bit fixed-pt. 1 bit* 1 bit
Clock speed 2.6 GHz 700 MHz 2.1 GHz (CPU) 606 MHz 200 MHz 10 MHz
Benchmarked workload ~ ResNet-50""" Mean of six MLPs, ResNet-50 Peak Peak Co-designed binary

(batch =128) LSTMs, CNNs (batch =10) performance  performance CNN (CIFAR-10)
Throughput (TOPS) 22.2, 130 (peak) 214, 92 (peak) 63.1 5.58 7.37 0.478
Density (TOPS/mm?) 0.04, 0.24 (peak)  0.06, 0.28 (peak) 0.08 0.46 0.10
Etficiency (TOPS/W) 0.32 2.3 (peak) 0.61 0.35 50.6 532

*To enable performance comparisons across a uniform application space, we did not consider accelerators for spiking neural networks.

®The TPU v2 and v3 chips, which use 16-bit floating point arithmetic, are commercially available for both inference and training on the cloud. MLPerf inference benchmarking
results for the Cloud TPU v3 are available,'” but power and area information is undisclosed. The TPU v1 die area is taken to be the stated upper bound of 331 mm?; the listed
TOPS/mm? values are therefore a lower bound.

“The mixed-signal accelerator in Ref. 122 performs multiplication using digital logic and summation using analog switched-capacitor circuits.

4The UNPU architecture flexibly supports any weight precision from 1 to 16bits. The results are listed for 1-bit weights.



Impact of lonizing Radiation on Deep Net Accuracy

Select gate  Control gate

lonizing Radiation

Threshold Distribution

Uniform Gamma Shifts Across Array
Irradiation
+ K/ . / . //‘/ o eriie‘T program
= = cAVaEd % 10° Total ionizing
e /o J A o dose (Si)
L ¥ L ¥ RS / = 105 I
Epap :‘"—;LL—'/A‘%—A;.—“ Epap! C —
T T T T/ a 25 krad
/ / g 10 50 krad
T I 7T X 3 —— 100 krad
Lt Tt ;{u—‘_ '/ S 10° —— 150 krad
T T b 3 5 —— 200 krad
T T T T 4 g 10’ —— 300 krad
o 7594 T4 79 lf. £ 500 krad
T T T T Z 10’

20 15 10 -05 00 0.5 1.0 1.5 2.0
Threshold voltage (V)

TP Xiao et al, IEEE Trans Nuclear Sci, 2021 (in press). 48



Analog Neuromorphic SONOS In Space: Physics to
Algorithmegram

state
(A)
ionizing% _
radiation | 2N V; versus Total lonizing
E, R N Dose: Model and
control channel Experiment
gate nitride 15
E, — )
_ < synapse range (two
blocking < P \ E)li(rilgsl(TO) 10 “sided)
oxide (BO) ) <
S 05
Erase %
state _; 0.0
[e
(A)\Li ®.05
=
— ==
-1.01 __
CZZ:;OI channel 15 W/’
0 200 400 600 800 1000
Total ionizing dose, krad(Si)
—

TP Xiao et al, IEEE Trans Nuclear Sci, 2021 (in press). 49



~ Analog Neuromorphic SONOS In Space PhyS|cs to

~ Algorithm

CIFAR-10

image (32x32)

Conv3 / 64

Conv3 / 64

MaxF‘lunl -2

Conv3 /128

Conv3 / 128

MaxPool-2

I

Dense-500

Dense-10

‘automobile’
(10 categories)

CIFAR-10 accuracy (%)

6-layer CNN for CIFAR-10
4.36M weights, 100.4M ops

one-sided

two-sided

0 50 100 150
Total ionizing dose, krad(Si)

200

c5| ImageNet
S0y | image
| 224x224

MaxPool3/2

Conv7/64/2

Conv1/64

Conv3/64

Conv1/256

Conv1
256*

x3 0O

Conv1/128/2

*

Conv3/128

Conv1/512

Conv1

512/2*

x4 &

How will the accuracy degrade in space‘7 4 "

ResNet-50 for ImageNet
25.6M weights, 4.1B ops

100
90
——
g %
Conv1/256/2*
Conva/2s6 || o1 | 2 70
Conv1/1024 |[1024/2 &
6 ¥ 5 60
&)
—
Convi/512/2° | MGonv] 8 50
Conv3/512 .
Conv1/2048 |12048/2 =
I z 40
AvaPool7
Den53/1000 =X 30
‘snow leopard’ § 20
(1000 categories)
10
0

one-sided

two-sided

0 10 20 30 40 = 50
Total ionizing dose, krad (Si)

CoDesign provides insight for fielding neuromorphic devices

TP Xiao et al, IEEE Trans Nuclear Sci, 2021 (in press).
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Example Standard Visual Recogntion Datasets

MNIST ImageNet
FeY/ 79 6b6al
6757¢634¢9¢%
21790/ av+5
4L 71 90| ¢ %9y
Tl ¥4d /560
1789265 % 97
A22JAddD¥YFO
03 § 073657 _ )
Ol by b2« 3D it :=';.-";"-- Eoaat-d e
7/ 28N0bg 886/ '. ’L‘H .‘7""".-':;."-':- -3_ E '
» 28x28 pixel grayscale « 256x256 pixel color
* 10 classes * 1000 classes
* 60k training images * 1.3M training images
* 10k test images * 100k test images

VV. Sze, Y. Chen, T. Yang and J. S. Emer, Proc IEEE, vol. 105, no. 12, pp. 2295-2329, Dec. 2017

"l. .
21
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How much computing needs to be done?

Metrics LeNet AlexNet Overfeat VGG GoogLeNet ResNet
5 fast 16 vl 50
Top-5 error n/a 16.4 14.2 7.4 6.7 5.3
Top-5 error (single crop)’ n/a 19.8 17.0 3.8 10.7 7.0
Input Size 28 %28 227 %227 231x231 224 %224 224 %224 224 %224
# of CONV Layers 2 5 5 13 57 53
Depth in # of CONV Layers 2 5 5 13 21 49
Filter Sizes 5 3.5,11 3.5,11 3 1,3,5.7 1,3,7
# of Channels 1, 20 3-256 3-1024 3-512 3-832 3-2048
# of Filters 20, 50 06-384 96-1024 64-512 16-384 64-2048
Stride 1 1.4 1,4 1 1,2 1,2
Weights 2.6k 2.3M 16M 14.7TM 6.0M 23.5M
MACs 283k H66M 2.67G 15.3G 1.43G 3.86G
# of FC Layers 2 3 3 3 1 1
Filter Sizes 1,4 1.6 1,6,12 1,7 1 1
# of Channels 50, 500 256-4096 1024-4096 | 512-4096 1024 2048
# of Filters 10, 500 | 1000-4096 | 1000-4096 | 1000-4096 1000 1000
Weights 58k 58.6M 130M 124M IM 2M
MACs 58k 58.6M 130M 124M 1M 2M
Total Weights 60k 61M 146M 138M ™M 25.5M
Total MACs 341k 724M 2.8G 15.5G 1.43G 3.9G
Pretrained Model Website [56] [57, 58] n/a [57-59] [57-59] [57-59]

52



Key Circuit Block/Kernel Analysis

Rank-1 Update

Vector Matrix Multiply (Training)

(Inference)

Vi, Vo, —V5, = V4]
mn

o
o
r

§ 7V0]tagc Coding

Temporal | Row

< ® * Temporal | Row T
Coding | Drivers Two \%\ ‘%\ \%\, Coding Drivers wo
Til= Logic 1024 x 1024 . T;| - Logic 1(():24 xb1024
5 Crossbars = . . . 5 rossbars =
D R A DT :
(a4 >, o ;

Edge Logic ‘ /‘ /e
(¥

Counter

Edge Logic ‘ / ‘ /
(5]

Counter

Offset
Correction

[
Integrators ramp
generator

A
i
)>

/
ADC]| | Ramp _/ =>(_;j Comparators
{
W T [ _'__| : digital
— ijLq Register 2 counter

93

registers

N
~ <~. 7L ol o] A
: 2

_<~.
~ <E

|
S 7 $| :] Register 2

"1 Marinella, Agarwal, et al, IEEE JETCAS, 2018




Neural Network Inference Architecture

Neural network

Pipelined MVM tile Analog MVM core

! o .F—A\ Row SONOS array
A - "
: oy Lo
Recaiva|Receaivel = 2kB 2kB N OV 01v
FIFOs | FIFOs D D— ﬁ;'-tiéﬂ | — .
4kB | 4kB P . i . ’ . ?
- ALUin :MF'IAF'IE ‘LlﬂrJ_—T_— L L J_é‘_‘J_L
7 1kB 12s  ||MaxPool| AvgPoaol [{ evel |3 TETT g TETEqg Tt SR
Analog Analog o i ] shifters Iy )
—J b mmm——— 4 512 i °
5 Mviin|| MVM MVMin|| MVM ALUinl Y f—a Range | Vi , . ’
1125 || ©Or¢ 1125 || o kB |1les!| adders |l conversion x 64 ! - LI 1L ._1J:r I1LlL
——— kB ||1152%256 kB ||1152x256 ALUIn| 1] kg ReLU <64 | | mulnder Ikl T T T
: 64 kB l; N 1% E 256 512 i Bit line l Bit line l
e fnainany. | 54 AR i| adders |512| adders !
53 conv, 128 N | =16 =16 ] 1
MVMin|| Analog MVMin|| Analog A [ — ez 1 . |¢ Bt ine
1125 || MM 1125 || Mvm ALUIN [y ! _ : intearator  OPeETa
kB core kB core 1 kB ! 3;’" e | ntegrator  amplifier
m 1| adders 1
1152x256 1152x256 ﬁ'—:c-'é" Y x18 1.5kB !
gy e ———— i
N
Control 54 ALUIn|[y ™8  Arithmetic logic
unit D D 1kB N unit (ALU)
H 64 &4 ALUin N
Mesh architecture os 1KB B }
\\ s &bit |1
N ragistar
A Y
Convi Convi Conv2 Convz Data batch 1 AN
N i
N ~ Analog
[E] @ | SR MVM ADC ALU O t \\ pipeline buffer
n u
Convi Conv1 Conv2 Comz2 W [T EICIE
CLK (extamal to cona)
SR
Conv3 Conv3 Conv3 Conva In W MVM ADC ALU Out
® ® Circuits designed and simulated
> . .
using commercial 40nm PDK
Comv3 conva| [conva Conva Data batch 2 295 clock g
cycles

T.P. Xiao et al, In preparation, IEEE J. Circuits and Systems, 2021.
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Forward Propagation — Inference

. . . O(N?) O(N)

*in j W?ﬂ s W;?‘}

\
"‘ ijzi:yixwg_
Yi

A

\ Operations Operations
T out 5 Neural Core X{
% wa w4
‘ ‘ ‘ }W” Wazp War Digital Core
W Wl w7 o
T l4e

C
4
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Backward Propagation — Training

error o,

Wirl W?z% W34

*A, = O
k Wa1 Waol Wi ‘ ;wﬂc g
W37 Wapl W;?q‘ lAk \l,fyxéj
W w2 W;?a. Digital Core I
. [ . _dy —>
J Vi Wyt W3 W;?" Z bJ_E(ZJ)OAk Vi Wyt Wy W::z%'
Wt W?ﬂ W‘;’% ;3‘?‘? W32 W::?}
v
;=D VX W, "
i I
|
O(N2) Read Vi O(N) O(N?) erte
Operations Operations Operations
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Neural Core Energy Analysis

8 bits In/out 4 bits In/out
8 bit weights 8 bit weights

Analog
ReRAM

> <

28 nJ 2.7 nd

12,010 nJ 10,150 nJ

2 bits In/out

8 bit weights : B ADC ;

S04
\

1.3 nd

8,970 nJ

Integrator

Array Write
Array Read
Temporal Drivers
Voltage Drivers
Data Movement

1 Multiply & Add -i
1 _DRata Movement]
1 Write Memory
B Read Memory
I Read Transpose
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