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Abstract—Due to the increasing complexity of energy systems
and consequent increase in attack vectors, protecting the power
grid from unknown disturbances and attacks using special
protection schemes is crucial. In this paper, we discuss the
machine learning component of the HARMONIE special pro-
tection scheme which relies on a novel combination of graph
neural networks and Transformer models to jointly process
cyber (network) and physical data. Our approach shows promise
in detecting cyber and physical disturbances and includes the
capability to identify relevant portions of the input sequence
that contribute to the model’s prediction. With this in place, the
end goal of developing automated mitigation strategies is within
reach.

Index Terms—special protection scheme, energy system, cy-
bersecurity, cyber-physical data, network, rationale graph neural
network, transformer models, machine learning

I. INTRODUCTION

Cyber attacks targeting grid operations are increasing in
frequency and intensity, as exemplified by the 2015 and 2016
cyber attacks to the Ukrainian grid [1]. Furthermore, with the
increasing penetration of distributed energy resources (DER)
such as solar photovoltaic (PV) systems and wind farms,
new “smart” technologies are being integrated and connected
to the bulk power system. These grid-edge devices, with
novel communication and automation functionalities, are also
becoming targets to cyber attacks and can cause detrimental
impact propagation as DER penetration increases [2].

Special protection schemes (SPSs), also known as remedial
action schemes (RASs), prioritize reliability and seek to main-
tain stability, acceptable voltages, and loading limits during
disturbance. Unlike typical protection schemes, SPSs can take
actions beyond the isolation of a fault and include changes to
demand, generation, and system configuration [3]. However,
it no longer suffices for SPSs to focus solely on predefined
disturbances and reliability [4]. Resilience and unpredictable
disturbances such as extreme weather and cyber attacks must
be considered.
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An SPS that can adapt to unpredictable events (without
predefined conditions) and effectively respond to limit or
eliminate the disruption quickly is needed. Furthermore, a SPS
that is cyber-physical in analyzing collected data and taking
response actions is required; it is no longer sufficient for a
SPS to process only physical power system data and solely
take physical-side actions. Cyber-side actions are necessary to
eliminate malicious compromise [5].

To develop the capabilities needed for future SPSs, our
project team is developing a defensive, wide-area SPS that
learns system conditions, mitigates cyber-physical conse-
quences, and preserves grid operation under diverse pre-
dictable and unpredictable disturbances. This harmonized
automatic relay mitigation of nefarious intentional events
(HARMONIE)-SPS will meet the needs stated above by
processing both cyber and physical data from both relays
and out-of-band (OOB) measurements, learning actual system
conditions to adapt to both predictable and unpredictable
disturbances, and take preemptive steps to prevent further
cascading impact [6].

However, a key challenge in developing the HARMONIE-
SPS methodology is the machine learning approach for using
cyber-physical data to classify system conditions and deploy
corrective actions. This approach necessitates 1) the linking of
cyber and physical learning models to identify cyber and/or
physical disturbances, 2) the isolation of information from
the input to determine a cause of a disturbance, and 3)
continuous online learning to adapt to new system conditions.
In this paper, we explore deep learning architectures capable
of moving toward a solution to the first two requirements. We
present candidate model architectures, preliminary experimen-
tal results, and a path forward to further this line of research.

II. BACKGROUND

As can be observed by a plethora of recent literature, the
need for cross-domain analyses for cyber-physical systems is
becoming more and more prominent. Rai et al. discuss this
trend in a paper that reviews different modeling approaches
for cyber-physical systems [7]. They identified two main
directions, 1) model-based, physics informed and 2) machine
learning, as well as the growing interest in the combination
of both in a hybrid modeling approach. In future iterations on
this work, we intend to incorporate the underlying physics
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model, but in this work we focus on leveraging machine
learning on the model-less communication network data and
the underlying structured physical data.

In the work by Fink et al., the authors examined the
use of machine learning for power system disturbance and
cyber attack discrimination [8]. Their analysis focused on
synchrophasor data, including power system quantities such
as voltage and current as well as the status of system devices
(e.g., relays, switches, transformers). However, they did not
consider the communication traffic and deep-packet analysis
within the cyber system. Wang et al. also develop a machine
learning approach for detecting power system disturbances,
including cyber attacks, in their paper [9]; they also focus
only on synchrophasor measurements.

III. METHODOLOGY

SPS efforts focus on automating triggering condition and
corrective action parameters. HARMONIE-SPS augments
these efforts and proposes novel real-time analysis of system
conditions, using both cyber and physical data, to identify
both triggering conditions and corrective actions. More details
and discussion of the HARMONIE-SPS approach are given
in [10]. For developing the machine learning component of
HARMONIE-SPS, we will focus on a hybrid model-based and
machine learning-based framework such that disturbances are
not only classified correctly but also provide some insight to
subsequently determine a suitable response for deployment.

One of our goals for HARMONIE-SPS is to jointly process
both network data and physical data. This is a challenge
given the different modalities of these disparate data types.
Network traffic is typically modeled as a temporal graph with
packets arriving at irregular intervals. Properties of network
packets or flows are often discrete, such as port number and
protocol. Physical data, however, is often expressed as a fixed-
length vector of floating point values and is sampled at regular
intervals.

To facilitate interleaving these two data streams, we elected
to model the cyber-physical system as a graph (see Fig.
1), adding vertices for each node in the network and each
synchrophasor and connecting these with edges that most
closely mimic the cyber-physical system.

Using this data format, we can process data as either graph-
ical, as messages being passed between vertices in a graph, or
sequential, ordered by timestamp. For HARMONIE-SPS, a
”timestep” would be either a message from a synchrophasor
or a network packet or flow. In Section III-B we discuss the
graphical processing of the data using a graph neural network
(GNN) and in Section III-C we discuss processing the data
as a stream using Transformer models. We can also chain
these together, using the output of the GNN as input for
the Transformer, creating a graphical-temporal deep learning
model.

A. Data collection

To collect our data samples, we created various cyber
and physical disturbances and contingencies on the Western

Systems Coordinating Council (WSCC) 9-bus power system,
consisting of 9 buses and 3 generators, with a representative
communication network within a cyber-physical testbed [11].
The network diagram is outlined in Fig. 2 and the diagram of
the physical system is given in Fig. 3. The disturbances were
denial of service (DOS) attacks, false command injection (FCI)
attacks, time delay (TD) attacks, and contingencies like single
line-to-ground (SLG) faults.

Ultimately, we had 50 total scenarios, most of which con-
tained cyber disturbances, physical disturbances, or both. Each
scenario is roughly two minutes long with the disturbance
(if present) happening at the one-minute mark. To allow our
machine learning system to isolate rough temporal regions
where disturbances happen, we treat each two minute capture
as a training, validation, or test example and split it into over-
lapping 30-second time windows. (More details on splitting
our dataset into folds are provided in Section IV.)

The models will be trained to identify whether or not a
disturbance is present in a 30-second window of data. The
advantage of splitting data like this is that it has low theoretical
latency: The moment a disturbance happens, the machine
learning model is capable of detecting it in the next data
window it processes. The actual latency in a deployed system
would depend primarily on system resources, configuration,
and the latency of the underlying network. In our testbed
environment, we could process an average of around one
window per second, though we believe this can be optimized.

B. Graph neural network (GNN)

To capture and process the graphical component of the
cyber-physical dataset, we employ a graph neural network
(GNN) [12]. Simply put, we are using a graph neural network
as a neural message passing algorithm: each vertex in the
graph contains its own state vector and messages are passed
along edges between neighbor nodes for a fixed number of
iterations, updating the state vector for each vertex at each
iteration as a function of its incoming messages. Since the
edges (network flows or phasor readings) contain attributes,
the messages being sent must be a function of the state vector
of the source vertex and a vector representation of the edge
attributes. At the end of this process, each vertex will have a
state vector and each edge can also be represented as a function
of the vector representation of the edge attributes and the state
vectors of its two vertices.

C. Transformer model

To capture the sequential and temporal aspects of our cyber-
physical data, we seek to employ a sequence processing
architecture into our deep learning model. Traditionally, a
recurrent neural network such as a Long Short Term Memory
(LSTM) [13] or Gated Recurrent Unit (GRU) [14] would be
employed for neural processing of sequential data. In recent
years, however, the Transformer model [15] has been shown
to yield superior performance on most tasks, especially in the
natural language processing domain, which deals primarily



Fig. 1. The graph representation of the cyber-physical network as inputted to the neural network. Note the PHASOR_ nodes in the top center connecting the
network and physical systems together. Some IPv6 nodes have been omitted for simplicity.

Fig. 2. The diagram of hierarchies for the simulated grid.

with long sequences of input. The Transformer architecture
has also been successfully applied to physical systems [16].

One limitation of Transformer models is their inability to
efficiently process long sequences simultaneously. Due to the
O(n2) memory complexity of traditional Transformer models,
modern hardware typically limits the size of a sequence to
512 timesteps. A naive solution to this would be to slice
the sequence into 512-timestep windows and process each
independently, but this loses the ability to model longer
term dependencies, the very issue that Transformers were
designed to address. To combat this, the Longformer [17]
uses a combination of sliding window and global attention
mechanisms to sparsify the attention matrix and the Reformer
[18] uses Locality Sensitive Hashing [19] to more selectively
compute attention scores.

Recently, the Big Bird Transformer architecture was pro-
posed which used both a global and a randomized attention
mechanism [20]. In our problem space, we expect each
timestep to be related to temporally nearby timesteps. But,

Fig. 3. The cyber-physical model for the WSCC 9-bus case.

since the cyber and physical data streams are interleaved,
related inputs may be separated by many timesteps. This would
limit the usefulness of the sliding window component which
only inspects a handful of adjacent inputs.

As such, we propose keeping only the randomization com-
ponent by randomly assigning each timestep into one of N
windows, each of a fixed size, and using full attention matrices
within those windows. This allows information to spread
across all regions of the sequence. The randomness innate with
this approach would also serve as regulation for the complex
neural network. A visual example of these attention weights is
shown in Fig. 4. In this paradigm, each subwindow would be
a sequence of 512 timesteps that has the potential to process



pieces of data across all 30 seconds of its sliding window.

D. Rationales

Given our stated goal of isolating inputs to identify a cause
of a disturbance, we seek a solution to interpret our network’s
prediction to understand which timesteps (packets or physical
data) are most relevant in making an assessment of a time
window. Though deep learning models are powerful, they are
notoriously difficult to interpret [21]. One advance in this
area is Rationale Neural Networks [22]. In this architecture,
the model is trained with a masking layer as the first layer
of the model, and it learns to identify which timesteps are
necessary for subsequent layers of the network and which can
be masked or hidden. For each input, a mask probability is
learned and timesteps are kept or removed by sampling using
this probability. By regularizing the number of unmasked input
timesteps, we encourage the model to present only the most
relevant input features to the GNN and/or the Transformer.
The rationales for our model’s prediction, then, are simply the
timesteps that remained unmasked.

The Rationale Neural Network in our case varied greatly
across training runs, with some models masking around 95%
of the edges to some masking almost none.

IV. EXPERIMENTAL RESULTS

To test the efficacy of our method, we trained 20 versions
of the model on various slices of data. Only 50 scenarios were
available to us, so to make the most of this small dataset
we report all our results using cross validation. We split our
data into five random folds, each with ten scenarios. Since
scenarios are further broken down into overlapping sliding
windows, each window will not be independent from some
others within the same scenario, so all sliding windows from
the same scenario were placed into the same fold.

After this, we train independent models for each fold,
withholding that ten-scenario test fold for evaluation. Within
the four remaining training folds, we reserved one as the
validation set for model selection, choosing the model which
performed best on this validation fold. In summary, of the five
folds, we assigned one as the test fold, one as the validation
fold, and the remaining three as the training folds. In all of our
experiments, one model was trained for each of these settings
for a total of 20 distinct models.

To further reduce the high variance of our models incurred
by training on such a small dataset, we elect to use bagging to
combine multiple models into one. Specifically, we average the
output of each of the four models trained on each test fold.
The result is five aggregate models, one per test fold, each
consisting of four models, one per validation fold. To reduce
variance further, we ran each sliding window through the
model four times, each time resampling which edges are kept
in the Rationale Neural Network layer. The outputs predictions
of all four runs are averaged to create the overall prediction
for that sliding window. (Due to this innate randomness, these
metrics are approximate and running the evaluation again on

the same models would produce results differing by around
0.02.)

For each model architecture, we present Receiver Operator
Curve (ROC) plots and Area Under the Curve (AUC) scores
for detecting cyber disturbances and physical disturbances.
Additionally, we include a confusion matrix for a decision
threshold of 0.5 and its corresponding Matthew’s Correlation
Coefficient (MCC) scores. We also analyze the average per-
centage of edges that are selected by the Rationale Neural
Network for propagation to the GNN and/or RNN. A low
percentage indicates that the Rationale Neural Network sig-
nificantly downsampled the edges being used. A summary
of the experimental results is included in Table I. Detailed
explanations and analyses of the experiments are provided in
the subsequent subsections.

A. Traditional Transformer

To understand the effects of our random-windowed Trans-
former variant, we will first replace it with a sliding window
Transformer operating on 512-timestep chunks, illustrated
in the center of Fig. 4. This is, in essence, the same as
the random-windowed Transformer without shuffling across
timesteps. In Fig. 5, we present the confusion matrices and
receiver operator curve for this experiment.

B. Random-windowed Transformer

In this experiment, we analyze the performance of our
model using only the random-windowed Transformer de-
scribed in Section III-C. In Fig. 6, we present the results for
the random-windowed Transformer.

We see that the ROC and MCC scores for detecting cyber
disturbances are better than those for physical disturbances.
We suspect this is because many of the cyber disturbances
are caused by single packets which are much simpler for a
statistical model to identify. Physical disturbances, on the other
hand, may require inferring patterns from long sequences of
incoming data before arriving at a conclusion.

Surprisingly, we observe that the traditional non-randomized
Transformer performs on par with the random-windowed
Transformer. Due to this and the fact that the traditional
approach to Transformers is more studied in literature, we
intend to use a traditional Transformer as opposed to the
random-windowed Transformer in future iterations of this
project work.

C. GNN only

We will also examine the effects of removing the Trans-
former entirely and only using the graph neural network. The
results of this experiment will help give a rough estimate of the
relative contribution of the GNN. In Fig. 7, we present ROCs
and confusion matrices, along with AUC and MCC scores for
detecting cyber disturbances and physical disturbances.

As in Section IV-B, the ROC and MCC scores for de-
tecting cyber disturbances are better than those for physical
disturbances, but here the difference is even more pronounced.
Because a vanilla GNN does not effectively process temporal



Fig. 4. Various Transformer attention mechanisms. The green squares are timesteps with nonzero attention weights. Left: Full attention matrices where
memory usage is O(n2). Center: Long sequence split into fixed-sized windows with constant memory usage but no long term dependency modeling. Right:

Randomized attention windows with constant memory usage and information spreading out across the entire sequence.

TABLE I
EXPERIMENTAL RESULTS SUMMARIZED

Cyber Disturbance Detection Physical Disturbance Detection
Architecture Rationale % MCC AUC MCC AUC

Traditional Transformer 39.3% 0.77 0.98 0.57 0.85
Random-windowed Transformer 46.1% 0.70 0.95 0.63 0.87

GNN 48.0% 0.85 0.96 0.18 0.68
GNN + Transformer N/A 0.74 0.97 0.30 0.77

Fig. 5. The confusion matrices, MCC scores, receiver operator curves (ROCs), and AUC scores for the traditional Transformer model detecting cyber and
physical disturbances.

data like sensor measurements, it is unsurprising that the GNN
alone is unable to identify physical disturbances consistently.
Our GNN includes an edge attribute for the timestamp of
each measurement in addition to the measurement values
themselves, but as seen in these results, that is insufficient
for the graph neural network to make accurate assessments of
the physical system.

D. GNN and Transformer

Finally, to quantify the advantage of using the GNN and
random-windowed Transformer jointly, we train and evaluate
models where the output edge vectors of the GNN are fed
as input to the Transformer. As described in Section III, this
architecture is expected to model both graphical and temporal
aspects of our data and thus outperform the others. The results
of this experiment are shown in Fig. 8.

Unsurprisingly, the GNN with the Transformer outper-
formed the GNN alone in terms of AUC in detecting a



Fig. 6. The confusion matrices, MCC scores, receiver operator curves (ROCs), and AUC scores for the random-windowed Transformer model detecting
cyber and physical disturbances.

Fig. 7. The confusion matrices, MCC scores, receiver operator curves (ROCs), and AUC scores for the graph neural network model detecting cyber and
physical disturbances.

physical disturbance, though the difference in detecting a cyber
disturbance is negligible.

V. CONCLUSION

These experimental results provide a number of insights that
will guide the HARMONIE-SPS machine learning framework
and can guide other SPSs in the future.

First, we see that in our scenarios and contingencies, cy-
ber disturbances are generally easier to detect than physical
disturbances. As noted above, we suspect that modeling the
long-term trajectory of the physical data is a more difficult
task for our deep learning model than searching for a small
number of malicious or problematic network packets. Along
these lines, as expected, we observe that the GNN has the
most difficulty identifying a physical disturbance.

Second, we see that using the GNN and Transformer
together in this way does not yield the performance increase

we expected. While the GNN and Transformers perform well
on detecting cyber disturbances and physical disturbances
respectively, the GNN + Transformer model underperforms
the best model in each of those categories. This suggests
that while the GNN and Transformer model each contribute
valuable information to the process, there is room to improve
the way we link them together into a cohesive model.

Third, we see that the Rationale Neural Network kept 40-
50% of the edges (packets or phasor datapoints). Upon closer
inspection, the edges most often kept are TCP packets, and
all phasor measurement edges seem to have been assigned
approximately the same probabilities. While removing 50-60%
of edges is a good start, we see value in exploring techniques
to reduce the number of edges retained and thus further isolate
the source of the disturbance.



Fig. 8. The confusion matrices, MCC scores, receiver operator curves (ROCs), and AUC scores for the GNN and random-windowed Transformer operating
in series to detect cyber and physical disturbances.

A. Future work

In this paper, we have shown a deep learning framework for
analyzing the cyber and physical states of the WSCC 9-bus
system and related communication network. Next steps include
deploying this framework in the real-time HARMONIE-SPS
testbed defined in [23]. On the machine learning side, future
work on this effort may include scaling beyond the WSCC
9-bus system into a more complex power system. Since the
model proposed in this framework is generally applicable to
any cyber-physical system structured as a graph of information
flows, we do not anticipate any structural changes necessary
to the underlying model architecture. Instead, we anticipate
requiring more training and validation data consisting of more
instances of the same contingencies discussed in Section III-A.

Furthermore, we see potential for our model to identify
and isolate more complex cyber disturbances. The cyber
disturbances used in this paper are relatively simple and are
able to be detected even without the full utilization of the
graph neural network module. We propose developing more
complex cyber contingencies to test the bounds of the graph
neural network’s capabilities. One such contingency could be a
malicious insider progressively gaining access to various nodes
on the network before deploying an attack.

Finally, there is value in a future rigorous exploration of the
model architecture and hyperparameter space. In particular,
this work assumes that the best way to combine the GNN
with the Transformer is to link them in series, with the output
of the GNN being fed to the input of the Transformer. It is
not clear that this would outperform a parallel implementation
with the GNN and Transformers each running in parallel on
the original data and having their results concatenated together
when making the final predictions.
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