

Time-integration of coupled-component Earth system models via discontinuous-Galerkin-in-time methods

Andrew Steyer (Sandia National Laboratories), Kenneth Chadwick Sockwell (Sandia National Laboratories), Jeffrey Connors (University of Connecticut)

Introduction

Realistic Earth system models are typically composed of several component models (e.g. atmosphere and ocean) coupled across an interface. Each model component is usually governed by a system of partial differential equations (PDEs) that, when coupled across an interface, results in a monolithic differential-algebraic equation (DAE). While this monolithic approach results in a succinct mathematical formulation, numerical modeling is complicated by physical processes in separate model components that evolve on disparate time-scales. Therefore, traditional time-stepping approaches for such models have been "bottom-up" - an optimized time-stepping method is derived for each component model and a coupling procedure is then derived that links these two methods in a (hopefully) stable and accurate way. An alternative is a "top-down" approach - starting from the coupled DAE problem we derive time-stepping methods that are stable and accurate for the monolithic formulation. We present a methodology for deriving and analyzing methods arising from either the top-down or bottom-up approach by casting time-stepping methods for coupled problems in a discontinuous Galerkin (DG) framework.

Model problem

Let Ω_1, Ω_2 be two open domains with common interface Γ and consider the following advection-diffusion model problem:

$$\begin{cases} \dot{u}_j = \mathcal{L}_j(u_j) + f_j \text{ on } \Omega_j \times (0, t_f] \\ u_j = 0 \text{ on } \Gamma_j \times (0, t_f] \\ T(u_1, u_2, F_{\Gamma,1}, F_{\Gamma,2}) = 0 \text{ on } \Gamma \times (0, t_f] \\ u_j(x, 0) = u_j^0(x) \text{ on } \Gamma_2 \end{cases}$$

$\dot{u}_j = \frac{d}{dt}u_j$, f_j - forcing functions

$F_{\Gamma,j}$ - oriented fluxes

$\mathcal{L}_j = \nabla \cdot (\nu_j \nabla u_j - s_j u_j)$

$\nu_j > 0$, s_j - steady advection field

$$T = \begin{bmatrix} T_1 \\ T_2 \end{bmatrix} = B \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} - C \begin{bmatrix} F_{\Gamma,1} \\ F_{\Gamma,2} \end{bmatrix} - \begin{bmatrix} g_1 \\ g_2 \end{bmatrix}$$

$B, C \in \mathbb{R}^{2 \times 2}$, g_1, g_2 - prescribed forcings

We assume flux conservation:

$$F_{\Gamma,1} + F_{\Gamma,2} = 0 \text{ a.e. on } \Gamma \times (0, t_f]$$

This general form incorporates both jump-type and Robin boundary

conditions

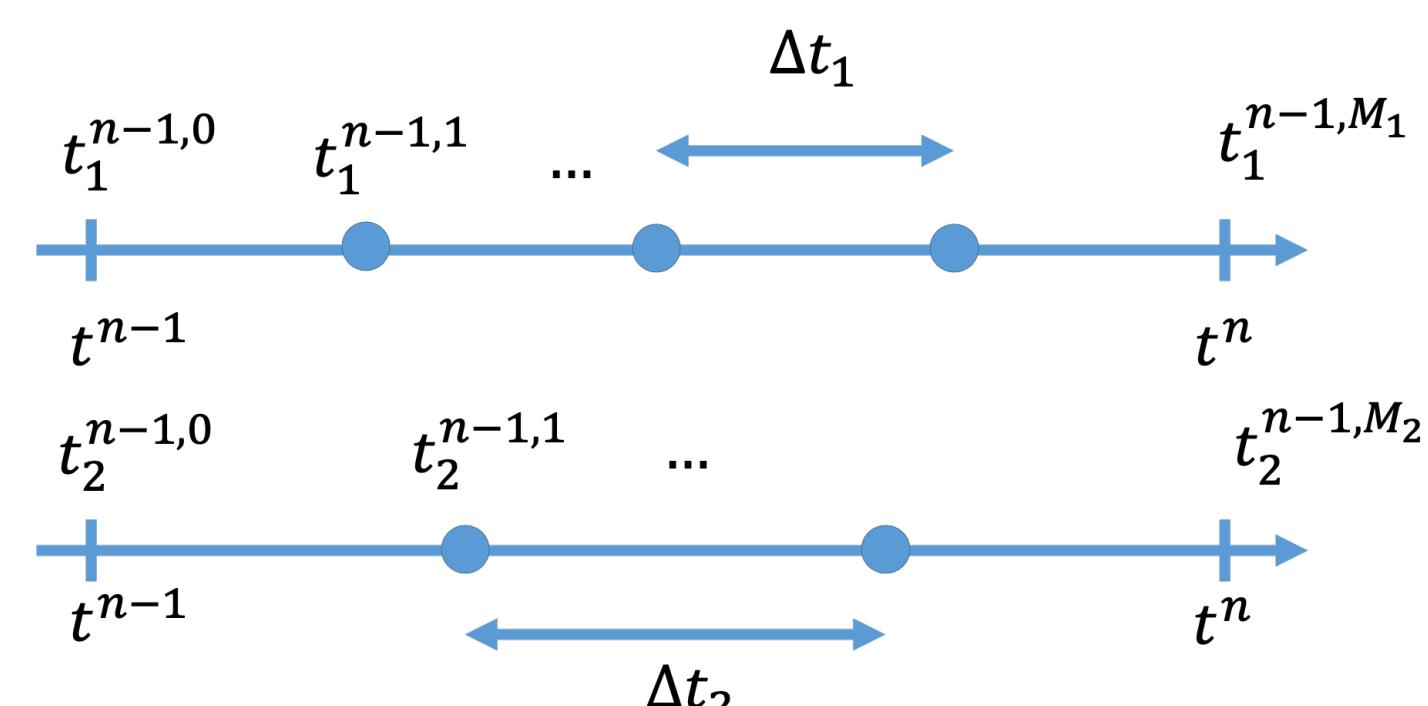
and is useful for analysis.

For suitably defined finite element spaces U_1, U_2, U_{Γ} , the spatially discrete problems is to find functions $u_j: [0, t_f] \rightarrow U_j, u_{\Gamma,j}: [0, t_f] \rightarrow U_{\Gamma}$ and fluxes $F_{\Gamma,j}: [0, t_f] \rightarrow U_{\Gamma}$ so that:

$$\begin{cases} (\dot{u}_j, v_j) = -L(u_j, v_j) - (F_{\Gamma,j}, v_j)_{\Gamma} + (f_j, v_j) \quad \forall u_j \in U_j, t \in [0, t_f] \\ (u_j(0), v_j) = (u_j^0, v_j) \quad \forall v_j \in U_j \\ (u_{\Gamma,j}, \mu_j)_{\Gamma} = (u_j, \mu_j)_{\Gamma} \quad \forall \mu_j \in U_{\Gamma}, t \in (0, t_f] \end{cases}$$

DG in time formulation

We want method that can handle different sub-steps $\Delta t_1, \Delta t_2 > 0$ for each model component. To ensure accuracy at the coupled model time-step $\Delta t > 0$ we enforce that there exists integers $M_1, M_2 > 0$ so that $M_1 \Delta t_1 = \Delta t = M_2 \Delta t_2$. We illustrate this in the following diagram:



Associated to this sub-stepping structure are intervals $I^n = (t^{n-1}, t^n)$ and $I_j^{n,k} = (t_j^{n,k-1}, t_j^{n,k})$ where $t^n = t^{n-1} + \Delta t$ and $t_j^{n,k} = t_j^{n,k-1} + \Delta t_j$. Our DG approach is to first define spaces U_j^q and V^q to be the spaces of all U_j and U_{Γ} valued functions whose restriction on each interval $I_j^{n,k}$ and I^n is a polynomial of order q in time. Second, time-stepping is defined from these spaces by finding $\tilde{u}_j \in U_j^q, \tilde{U}_j^{n,k} \in U_j, \tilde{u}_{\Gamma,j} \in V^{r_j}, \tilde{F}_{\Gamma,j} \in V^{r_j}$ so that:

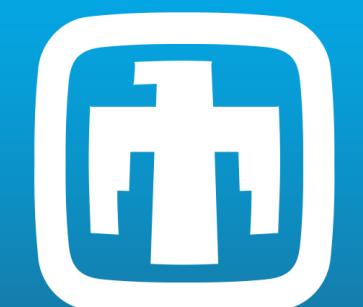
$$\begin{cases} \sum_{k=1}^{M_j} (\tilde{U}_j^{n,k}, \tilde{v}_j^-(t_j^{n,k})) - ((\tilde{u}_j, \dot{\tilde{v}}_j))_n - \sum_{k=1}^{M_j} (\tilde{U}_j^{n,k-1}, \tilde{v}_j^+(t_j^{n,k-1})) \\ = -L(\tilde{u}_j, \tilde{v}_j)_n - ((\tilde{F}_{\Gamma,j}, \tilde{v}_j))_{\Gamma} + ((f_j, \tilde{v}_j))_n, \\ \forall \tilde{v}_j \in U_j^{q+1-n_s}, \\ (\tilde{U}_j^{1,0}, v_j) = (u_j^0, v_j), \quad \forall v_j \in U_j \\ ((\tilde{u}_{\Gamma,j}, \mu_j))_{\Gamma}^n = ((\tilde{u}_j, \mu_j))_{\Gamma}^n, \quad \forall \mu_j \in V^{r_j} \end{cases}$$

where $\tilde{u}_j|_{I_j^{n,k}} \approx u_j|_{I_j^{n,k}}, \tilde{U}_j^{n,k} \approx u_j|_{t=t_j^{n,k}}, \tilde{u}_{\Gamma,j}|_{I^n} \approx u_{\Gamma,j}|_{I^n}, \tilde{F}_{\Gamma,j}|_{I^n} \approx F_{\Gamma,j}|_{I^n}$

This formulation includes standard multirate Runge-Kutta and linear multistep methods as special cases. The properties and convergence of this method are investigate in (Connors and Sockwell, 2021).

Results

We show results for a fully coupled, multirate Crank-Nicholson method.



Title up to two lines

- Color transparent boxes below are for resizing and using to highlight content. Delete if not needed.

