
SCAPHY: Detecting Modern ICS Attacks by
Correlating Behaviors in SCADA and PHYsical

Abstract—Modern Industrial Control Systems (ICS) attacks
evade existing tools because they use knowledge of ICS elements
and victim’s environment to blend their activities with benign
Supervisory Control and Data Acquisition (SCADA) operation,
causing physical world damages. We present SCAPHY to detect
ICS attacks in SCADA hosts by leveraging the unique execution
phases of SCADA to identify the limited set of legitimate be-
haviors to control the physical world, which differentiates from
attacker’s activities. For example, it is typical for SCADA to
setup new ICS device objects during initialization, but anomalous
during process-control. To extract unique behaviors of each
SCADA execution phase, SCAPHY first leverages ICS open
platform communications (OPC) conventions to generate a novel
physical process dependency and impact graph (PDIG) to identify
disruptive physical states. SCAPHY then uses PDIG to inform a
physical process-aware dynamic analysis, whereby code paths of
process-control operations are induced to execute API call be-
haviors unique to legitimate process-control phase. Through this,
SCAPHY selectively monitors attacker’s physical world-targeted
activities that violates legitimate process-control behaviors. We
evaluated SCAPHY at a U.S. national lab state-of-the-art ICS
environment. We operated 24 diverse ICS scenarios, across 5 ICS
industries, and diverse attacks on realistic ICS settings including
an adapted Texas Pan Handle power grid. We detected 95% of all
attacks, including ICS malware. We analyze SCAPHY’s resiliency
to futuristic ICS attacks where attacker knows our approach.

I. INTRODUCTION

Unlike Information Technology (IT) cyber attacks, Industrial
Control System (ICS) attacks cause physical world damage
to life-dependent industrial processes such as electricity and
water supply [1, 2]. ICS physical processes are controlled by
Supervisory Control and Data Acquisition (SCADA) hosts,
which run special software and hardware to control the phys-
ical world [3–6]. Modern ICS attacks [1, 2, 7] are launched
from SCADA, where attackers utilize legitimate ICS resources
to blend their malicious activities with benign SCADA op-
erations, causing targeted process disruptions. Unfortunately,
ICS attacks continue to rise, with many attacks in 2021 alone
having real economic and safety impacts [1, 8].

To detect ICS attacks, statistical analysis of ICS traffic [5,
9–19] are effective against noisy and abnormal traffic such as
denial of service and illegal protocol fields. However, modern
ICS attacks evade them by not only using legitimate protocols,
but knowledge of ICS parameters to cause specific (not noisy)
process disruptions [2–4]. In addition, physical models monitor
sensor data to know when observed physical states deviate
from expected [20–23]. These techniques use historical sensor
data to fit a linear model. However, in real-world ICS settings,
such models may not be available or easily derived [23, 24].
Further, physical models trigger false alarms when plugged
into production due to noise and configuration changes, such

that benign physical states are outside the model [4, 21, 23].
In general, existing ICS tools are evaded by modern ICS
attacks and prone to false alarms due to analyzing traffic or
sensor data in isolation, and therefore they cannot tie their
analysis to the attack-execution context in SCADA. Detecting
ICS attack in SCADA hosts is hard because attackers use the
same behaviors (or API calls) as benign SCADA programs. For
example, the Industroyer malware, which shutdown Ukraine
power grid [2, 3], performed malicious actions that are part
of normal SCADA activity such as creating new ICS device
handles. Hence, existing host agents that monitors non-SCADA
or unknown APIs will not detect it. Similarly, Florida water
poisoning attack [1] used benign Human Machine Interface
(HMI) to dump toxic chemicals into the city’s water supply.

We found that while these attack behaviors are normal
SCADA activities, they are suspicious when performed at
certain execution phases in SCADA lifecycle. Instead of
treating SCADA as one monolithic execution, we consider its
behaviors in unique execution phases, which are initialization
and process-control. We observe that for Industroyer attack to
work, the attacker had to execute API calls that are atypical of
legitimate process-control, but needed to launch the attack. For
example, to hijack SCADA ICS device handles, Industroyer
executed many Registry Setup APIs, which are typical of
initialization but performed during process-control phase. To
attack physical processes, attackers must inject atypical execu-
tions or circumvent normal process-control behavior. Hence if
we can identify the limited set of legitimate process-control
behaviors, we can selectively monitor and detect attacker’s
physical world-targeted activities that violate them.

Further, because SCADA responds to physical process
changes, we can induce SCADA to execute process-control
behaviors by stimulating the change. However, this requires
a physical model of ICS processes and their possible states.
Interestingly, we found that we can leverage widely deployed
open platform communications (OPC) conventions to identify
process states via connected ICS elements. We can then toggle
each element state to induce SCADA to exhibit its process-
control behaviors, enabling us to identify them. Further, we can
derive the impact of these state changes to identify disruptive
process states. This can allow us to detect disruptive physical
world effects caused by (state-changing) control signals.

We present SCAPHY, a new hybrid technique to detect ICS
attacks by correlating SCADA behaviors with physical world
effects to identify the limited set of API calls to legitimately
control the physical world, which differentiates from attacker’s
activities. SCAPHY leverages the distinct execution phases of
SCADA to identify behaviors unique to each process-control
phase, which attacker must inject into or circumvent to attack
the physical world. To identify the channels through which

SAND2021-15349CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SCADA accesses the physical, we introduce a new reference
model, SCADA Software Stack (S3), to characterize the internal
software and hardware layers of SCADA activities. SCAPHY
uses S3 layers to selectively monitor steps along attacker’s
activities towards attacking the physical. Through S3, SCAPHY
can detect attacks that circumvent proper S3 layers (e.g.,
SCADA rootkits) but sends disruptive signals to the physical.

SCAPHY uses a physical model to identify disruptive
control signals sent to the physical world. SCAPHY generates
this model by leveraging OPC conventions (tags and alarms)
to extract and map ICS elements to their processes based
on a novel process dependency and impact graph (PDIG)
model. PDIG enables SCAPHY to assign each element state an
impact coefficient (IC(s)) based on how they impact (decrease
or increase) process outcomes. Further, SCAPHY leverages
PDIG to help induce and extract legitimate process-control
behaviors. To do this, SCAPHY performs a physical process-
aware dynamic analysis, whereby a SCADA engine [25] is
induced to execute process-control code paths by iteratively
switching ICS element states connected to the process. During
this, SCAPHY records executed API calls to establish a set
of PHYSical world Impact Call Specialization (PHYSICS)
constraints to identify legitimate process-control behavior.

SCAPHY detects modern ICS attacks that are missed by
existing tools. By correlating activities in SCADA and phys-
ical, SCAPHY provides better alerts for ICS operators and
enables them to make threat remediations at both SCADA and
physical plant. Via PHYSICS constraints, SCAPHY limits the
operations an attacker can execute to disrupt a physical process
and can detect attacker’s injected executions in each process-
control phase. SCAPHY’s physical model detects when control
signals cause a physical process to have inconsistent state or
driven outside its set point ranges. SCAPHY is device agnostic
because it uses generic OPC tags not based on any device or
controller, making it work for any OPC-based ICS deployment.
We evaluated SCAPHY at a U.S. national lab state-of-the-art
ICS testbed. We operated 24 diverse ICS scenarios, spanning
5 industries, and launched 40 attacks on realistic ICS settings
including an open-source Texas Pan Handle power grid [26].
SCAPHY detected 95% of all attacks, including ICS malware
attacks. We make the following contributions:

1) We propose a hybrid technique to detect ICS attacks by
correlating SCADA activities with physical world effects.

2) We present an ICS physical model via OPC conventions
to both identify disruptive control signals and extract
legitimate process-control phase behaviors in SCADA.

3) We introduce a new reference model, SCADA Software
Stack S3, to characterize internal software and hardware
layers of SCADA operation. Through S3, host agents can
monitor specific S3 layers to detect SCADA host attacks.

4) Using diverse ICS scenarios/attacks, SCAPHY achieved
95% accuracy and 3.5% false positives (FP), compared
to 47.5% accuracy and 25% FP of existing work [5, 20].

5) Due to lack of research resources to support diverse ICS
security research [27–30], we make available over 200GB
of new ICS experiment scenarios and their corresponding
attacks in both SCADA and physical aspects, and diverse
physical processes developed for the FactoryIO ICS En-
gine [25] and hardware-in-the-loop device support.

Fig. 1: Showing SCADA Process-Control Operation: A physical-model func-
tion compute a control variable CV to effect change on the physical world

II. BACKGROUND AND MOTIVATION

We present a background on ICS and use recent attacks to
motivate our problem; 2021 Florida water poisoning attack [1],
and 2016 Industroyer power grid attack [3]. In Section IV, we
detail SCAPHY’s approach using real world ICS settings.

A. Real-World Motivating Examples

Florida Water Poisoning Attack. An attacker raised dosing
rate of Sodium Hydroxide (NaOH) in FL water treatment plant
to toxic levels, endangering citizens. NaOH is used to balance
water PH but is toxic in high amounts. After gaining access
to SCADA, the attacker started an HMI program to issue
attack signals to disrupt the level control and dosing processes,
increasing NaOH from normal 100 ppm to 11,100ppm [1, 32].

Industroyer Power Grid Attack. Industroyer shutdown a
Ukranian power station by sending malicious signals from a
SCADA host to a Siemens SPIROTEC device that runs circuit
breaker Remote Terminal Units (RTUs). To perform the attack,
Industroyer hijacked host serial COM ports, stole the breaker’s
tag from OPC to address its payload, and opened the breakers.
This caused power imbalance that shutdown the station [2, 3].

B. ICS/SCADA Operations

Figure 1 describes ICS operation based on Purdue model [6,
33]. SCADA host run at Level 2 to control physical processes
which runs at Level 0-1 via actuators, sensors, and controllers.
SCADA programs constantly monitor running processes and
when change is needed, they execute physical-model functions
such as proportional integral derivative (PID) to compute a
control variable (CV), which is sent to actuators to effect the
change. For example, the level control process in the FL water
plant controls chemical level in a tank via a PID function that
control how much fluid enters and leaves the tank [30]. This is
known as process-control and is the main function of SCADA.

Unfortunately, ICS attacks are launched from SCADA due
to direct access to the physical world as in Industroyer and FL
attacks. An attacker can gain access to SCADA hosts using
IT means such as phishing. Then he can leverage host ICS
resources such as OPC and HMIs to send malicious signals
to actuators. OPC services are used in ICS for interoperability
by serving data about ICS elements in the plant.

Existing work to detect ICS attacks focus mainly on
analyzing ICS traffic such as control signals and sensor data.

2

Fig. 2: Cycles of Process-Monitoring and Process-Altering phases based on Siemens S7 WinSPS [31] control of Water Treatment Plant operation

However, they are evaded by modern attacks that use legitimate
ICS resources in SCADA hosts to produce signals that blend
with benign traffic. Due to physical world constraints in ana-
lyzing SCADA operations, existing work do not significantly
consider SCADA host executions, which can identify attacker’s
activities that originates the malicious signals. PLC-based
techniques [34, 35] tries to prevent malicious ladder logic
code from loading or executing on the PLC. However, SCADA
control signals (if it passes via a PLC) are mostly forwarded to
actuators, and not analyzed as in PLC ladder logic. Table I is a
taxonomy of recent works in ICS attack detection, categorized
by their detection data points. The Evaluation row shows
their limitations in detecting modern ICS attack in realistic
settings, such as only using one ICS scene to evaluate their
work (water plants or power grid). We found that this is due
to limited research resources to support diverse ICS security
research [27–30]. In general, existing techniques are evaded by
modern ICS attacks and prone to false alarms due to analyzing
traffic or sensor data in isolation, and therefore, cannot tie their
analysis to attack-execution context in SCADA.

Traffic Analysis. Network flow-based approaches [9, 11, 12,
36] analyze abnormal ICS channels and function codes. How-
ever, they are evaded by modern attacks such as Industroyer
and FL water plant attacks, which uses legitimate SCADA
channels and function codes. Traffic timing analysis [5, 10,
37] are effective for catching anomalous round trip time delays
and inter-arrival times. However, they are only effective against
attack behaviors that are chatty [10, 19] such as attacker scans,
but not modern attacks which are targeted.

Physical Models. use sensor data to know when observed be-
havior deviates from expected [21, 23]. Expected behavior can
be learned by fitting historical sensor data into a linear dynamic
state space or auto regressive model [20–22]. However, in real-
world ICS settings, such models may not be available or easily
derived [23, 24]. Further, physical models trigger false alarms
when in production due to noise and config changes, such
that benign states are outside the model [21, 23]. We found
that existing physical models cannot reason across multiple
processes, which leads to false alarms when a high sensor
deviation is benign in one process but anomalous in another.

C. SCADA Host Attacks and Security Challenges

Due to physical ramifications of SCADA executions, existing
host analysis techniques cannot be directly applied to secure
SCADA hosts [2, 42]. SCADA platforms contain many pro-
prietary and domain-specific programs such as ICS drivers
and physical-model libraries, due to complex safety constraints
in physical tasks. Due to legacy and third-party components,
code-signing cannot be strictly enforced to whitelist benign
programs, enabling attackers to modify benign programs. For

Techniques Y
an

g
[3

8]

Ih
ab

[3
9]

Po
no

m
a.

[5
]

G
ha

ei
ni

[2
0]

D
in

a
[2

2]

A
ou

di
[2

3]

N
ia

ng
[4

0]

M
ul

de
r

[3
4]

Fo
rm

by
[3

5]

L
ee

[4
1]

S
C

A
P

H
Y

ICS Traffic Analysis
protocol fields/func code • • • •
time analysis • • •
Physical Behavior
deviation (LDS/AR) • •
deviation (SSA) •
disruptive impact •
PLC Control Logic
logic execution • •
logic verification •
SCADA Host Behavior
detects DLL inject • •
PHYSICS constraints •
Evaluation
tested in-the-wild attacks • •
tested diverse ICS apps •

TABLE I: Taxonomy of Recent Related works in ICS Attack detection

example, Industroyer executed custom DLLs, and Stuxnet [7]
injected into Siemens programs. In contrast to IT apps,
SCADA programs are hard to analyze due to physical domain
requirements. As such, analysis using state-of-the-art concolic
tools [43–45] will be intractable due to hardware-constrained
code paths and dynamic environment need [43, 45].

Our Insight. We found that the nature of physical world tasks,
which happen in sequence of repeated steps, requires SCADA
to exhibit two distinct execution phases: initialization and
process-control. SCADA uses process-control to make changes
in the physical via process-monitoring and process-altering
sub-phases. We observe that for SCADA host attacks to work,
the attacker has to execute operations that are atypical of
legitimate process-control behavior but needed to launch the
attack. For example, Industroyer made OPC calls in process-
monitoring phase to access its target’s device tags. However,
OPC calls are typical for initialization. In addition, Industroyer
created new ICS service handles while already in the process-
altering phase (to hijack access to the physical world), which
is a process-monitoring behavior, and suspicious as an attack.

SCADA Execution Phases. SCADA starts with initialization
which is performed once and involves setting up the envi-
ronment such as reading config files and loading ICS drivers
and services. After initialization, process-monitoring starts.
It involves updating physical process states in memory and
checking for events. Data from here is presented to operator
HMIs and recorded in Historians. When process change is
needed, process-monitoring transitions into process-altering to
perform the change, and then returns until change is required
again. Process-altering involves invoking physical-model func-
tions that takes a setpoint variable SV and sends a domain-
specific CV to the process. Figure 2 shows the unique pattern

3

Fig. 3: SCAPHY Architecture: ICS scenario file is parsed. Extracted ICS elements are analyzed to identify processes and dependency elements. Each dependency
element state is toggled to measure impact on process output, during which SCADA process-control PHYSICS constraints are identified for each process.

of API call stack behavior of process monitoring and process-
altering phases of SCADA process-control of a water treatment
plant based on Siemens S7 WinSPS SCADA platform [31].

To identify behaviors unique to each process-control phase,
SCAPHY first leverages OPC conventions to build a physical
model of ICS processes. It then uses the model to inform
a physical process-aware dynamic analysis to induce and
extract the limited set of legitimate API calls unique to
each process-control phase behavior, which differentiates from
attacker’s activities. Through the API calls, SCAPHY estab-
lishes a PHYSical world Impact Call Specialization (PHYSICS)
constraints, which attackers must circumvent or inject (atypical
APIs) to attack the physical world. In addition, SCAPHY
develops a new reference model, SCADA Software Stack (S3)
to characterizes the internal software and hardware layers to
access the physical. For example, calling ReadFile indicates
process-monitoring and WriteFile indicates process-altering,
both of which accesses an ICS device object handle (e.g, COM
Ports), the 3rd layer in S3, to access physical devices. Through
S3, SCAPHY can detect attacks that circumvent legitimate S3

layers (e.g., SCADA rootkits) but sends disruptive signals
to the physical. Further, SCAPHY’s physical model detects
disruptive effects of control signals such as when a physical
process has an inconsistent state or in outside setpoint ranges.

III. THREAT MODEL AND ASSUMPTIONS

We assume a threat model similar to ICS detection approaches
for SCADA-originated attacks [3–5, 19, 42, 46]. We assume
the Purdue model [6], whereby SCADA hosts send control
signals to actuators. We assume the attacker has compromised
the SCADA host with root privileges, can utilize legitimate ICS
protocols, or install malware to attack the physical world. We
make the following practical assumption about our system: The
attacker cannot tamper the network interface where SCAPHY
listens for ICS signals. We note that ICS control signals are
typically due to real-time safety needs and processing power.
We do not consider indirect attacks (such as side channels)
that do not pass through the interface that SCAPHY monitors,
such as attacks not originating from SCADA. We note that
over 90% of in-the-wild ICS attacks are SCADA-originated [3,
4, 7, 46]. Malware that originates and runs entirely on PLC
such as in [47] are rarely seen in the wild, and are mostly
academic or notional. This is due to attacker’s practical cost of
developing reusable malware code for embedded architectures
which device platforms are mostly based on [4, 48]. We note
that preventing Man-in-the-middle PLC sensor tampering has
been explored and prevented by existing work [49–53] and in

secure deployments by channelling sensor data via data diode
gateways [54], and hence is outside the scope of this work.

IV. SCAPHY APPROACH

Input and Output. SCAPHY’s takes as input, an ICS scenario
(OPC data & function block logic) and outputs (i) a physical
model and (ii) PHYSICS constraints. The physical model maps
each ICS element to a process and assigns each element state,
an impact vector based on how the state impacts process out-
comes. SCAPHY uses this physical model to detect signals that
are disruptive to process outcomes. PHYSICS constraints are a
set of API calls of legitimate process-control behaviors, which
differentiates from attacker’s activities, such that he must inject
into or circumvent them to attack processes, allowing SCAPHY
to detect it as a violation of PHYSICS constraints.

Deployment. SCAPHY can be deployed as a kernel driver or in
a hypervisor hosting SCADA virtual machines (VM). For our
work, we deployed SCAPHY in Dom 0 of XEN hypervisor. We
chose this approach because many ICS settings use virtual so-
lutions to provide compute redundancy in SCADA [55–58]. In
the hypervisor, SCAPHY analyzes only state-changing signals
leaving the physical interface. These signals perform WRITE
operation on a device based on the protocol function codes. ICS
protocols such as Modbus, IEC, and DNP3 have function code
that specifies WRITES and READS operations. For example,
DNP3 0x02 and Modbus 0x05 denotes WRITE signal [10,
59]. Although many traffic analyzers exist to identify WRITE
function codes in ICS protocols [11, 12, 60], we prototyped
SCAPHY for Modbus and IEC traffic. Further, we leverage
LibVMI to monitor API calls in SCADA VMs [61, 62].

A. End-to-End Operation

SCAPHY works in four phases as shown in Figure 3. 1
SCAPHY parses ICS scenario files to extract, analyze, and
partition ICS elements into terminal and non-terminal sets
based on OPC tags. Terminal elements identifies processes.
2 SCAPHY then traces each element’s connections to map

dependent element sequences to their process. SCAPHY then
loads the scenario in a SCADA engine [25, 31] and performs
a physical process-aware dynamic analysis 3 , whereby the
engine is induced to execute code paths of process-control
operations by iteratively switching each element state. During
this, SCAPHY records the API calls executed during process-
altering and process-monitoring phases separately, to estab-
lish a PHYSical world Impact Call Specialization (PHYSICS)
constraints, which identifies the limited set of API calls of

4

(a) Industroyer’s IEC 60870 Attack Traffic Sig-
nals

(b) IEC 60870 APCI Session START

(c) IEC 60870 APCI TEST

(d) Industroyer Payload Addressed to Circuit
Breaker IOA 4 OPC tag

(e) Power Load Balancing Part Ladder Logic

(f) SCAPHY Output on detecting Industroyer attack

Fig. 4: Delienation of Industroyer’s power grid attack signals based on the IEC 60870-5-104 Communication Protocol

legitimate process-control behaviors. Further, the change in
process output caused by each state switching is averaged
over several scan cycles to derive an impact vector for each
state relative to others. States without significant impact to the
process are pruned. For states with an oscillating impact (i.e.,
process output may increase or decrease), SCAPHY derives
a set point range, which defines a minimum and maximum
impact vector for the process. SCAPHY raises an alert when
executed APIs in process-control phase deviates from the
PHYSICS constraints. SCAPHY 4 analyzes control signal to
detect process inconsistent state and outside setpoint outcomes,
as well as missing, extraneous, and out-of-order signals. If any
of these is detected, SCAPHY computes an anomaly score.

B. Detecting Industroyer Attack Behavior with SCAPHY

Industroyer shutdown Ukranian power station by maliciously
opening circuit breakers connected to load lines [3]. This attack
disrupted the load balancing of power demand and supply, a
known weakness in power systems, leading to outtages [63].
To replicate the attack, we adapted an open-source Texas Pan
Handle power grid setup in a U.S. National Lab. Our lab
setup is detailed in Section VI. We executed Industroyer in
its "intended" environment; a SCADA host with COM ports
and OPC, connected to an IEC 608070 device with simulated
circuit breaker RTUs. SCAPHY raised detection alarm in under
9 seconds for a PHYSICS injection violation and a process
inconsistent state anomaly.

Industroyer PHYSICS Violation. Industroyer executed sev-
eral LoadLibrary calls, although a normal SCADA API, was
performed after Industroyer entered the process-altering phase
indicated by a prior CreateFile(WRITE) call. We found that
LoadLibray is normal for process-monitoring and initialization
but not process-altering, per the PHYSICS constraints estab-
lished from the power scenario. We found that Industoryer used
LoadLibrary to load OPCClientDemo.dll, to gain OPC capabil-
ity. Thereafter, Industroyer transitioned to process-monitoring
indicated by a ReadFile call. It then invoked IOPCBrows-
eServerAddressSpace OPC call to extract circuit breaker Infor-
mation Object Addresses (IOAs) to send its payload as shown
in Figure 4d. OPC calls are typical of initialization, but not
process-monitoring. In addition, Industroyer created new ICS

device handles while already in the process-altering phase (to
highjack COM Ports) which is malicious in process-altering.

Industroyer’s Physical Anomalies. The Industroyer attack
generated eight IEC 608070 signals as shown in Figure 4,
comprising of two IEC 60870 Application Protocol Control
Information (ACPI) START frames to begin its communication,
two ACPI TEST frames to check controller status, and one
Application Service Data Unit (ASDU) payload sent to the
circuit breaker IOA. Industroyer also issued three last TEST
signals to verify controller’s post attack status as shown
in Figure 4c. Based on the physical model mapping of the
element IOA in the payload, SCAPHY identified the target
process as load balancing (LB). LB’s dependency elements
are load lines LOADS.0-5, breaker BRK.0, and Branch.0 as
shown in Figure 4e. SCAPHY output (Figure 4f) show that
Industroyer issued a WRITE signal to BRK.0 (i.e., indicated by
SIGNAL*), with no signals for the other elements (missing) in
LB’s control session. However, BRK.0’s new open state has an
opposing impact vector to load lines’s OFF state per SCAPHY
physical model, allowing SCAPHY to detect an inconsistent
state anomaly (detailed in Subsection V-C). Using BRK.0’s
impact vector of 65%, SCAPHY derived a high anomaly score.

V. SYSTEM DESIGN

The goal of SCAPHY is to (I) identify the limited set of legit-
mate API calls of SCADA process-control execution phases
that differentiates from attacker activities, and (II) build a
physical model of ICS processes to identity disruptive physical
effects and control signals. To achieve (I), we leverage the
physical model in (II) to inform a physical process-aware dy-
namic analysis. To achieve (II), we leverage OPC conventions
to generate a process dependency and impact graph (PDIG).

A. Automated Physical Process Comprehension

OPC Points and Tags Analysis. SCAPHY parses OPC points
and tags to discover ICS element’s physical identifiers such
as their IOA [42]. OPC naming conventions allows SCAPHY
to extract element’s possible states, which allows SCAPHY to
automatically switch element states during impact modelling.

5

For example, the full OPC tag in the Industroyer example
BRK.0.BOOL=1 denotes an element BRK, an ID of 0, and
a boolean state of 1. By the BOOL tag, SCAPHY knows to
switch its state between 1 and 0, as opposed to to an integer.

Element Partitioning and Process Identification. A physical
process comprises of elements that work together to achieve
a process outcome, which is determined by the state of a
terminal element. For example, the tank in the level control
process of the FL water plant is the terminal element because
the process output depends on the water level held by the tank,
which is measured by a level meter sensor. SCAPHY parti-
tions ICS elements into two sets; terminal and non-terminal
sets (ETerm, ENTerm). SCAPHY identifies unique processes
based on ETerm. To partition elements, SCAPHY analyzes
OPC Alarms data and extracts process identifiers, which are
unique tuples of a sensor and terminal element which uniquely
identifies processes. SCAPHY represents processes in the form
of Pj = (SID, ETermj

); where SID is a process sensor
ID and ETermj is a terminal element for process Pj . SID
monitors ETermj state, which corresponds to the outcome of
P . For example, SCAPHY represents the level control process
as LevelControl=(meter,tank). Other elements the plant such
as pumps and valves are in ENTerm. Based on identifying all
processes, SCAPHY partitions the set of elements E such that:

(E = ETerm ∪ ENTerm) (1)

{∀i, j ∈ (ETerm, ENTerm); i ̸= j; i ∩ j = ∅} (2)

|ETerm| := |P | (3)

|ETerm| equals the number of processes, |P |
Process Dependency Mapping. After identifying processes,
SCAPHY analyzes element’s connections (also called 2-wire
diagrams) to map non-terminal elements to their connected
processes. This connection describes the physical and sequen-
tial logic of elements, which captures the information flow be-
tween them. Connection schemas are automatically generated
by SCADA programs during design of ICS scenarios. From
each ETerm node, SCAPHY traces its connection paths until
all elements connected to ETerm are identified. Each process
now has a list of paths, PATHS, which contain their dependency
paths, DepPath. DepPath is a set of ENTerm nodes arranged
in sequential order from the ETerm node identifying process
p, and given as follows:

DepPath(p) := {ENTerm0 , ..., ENTermn} (4)

PATHS(p) := {DepPathi(p), ..., DepPathn(p)} (5)

SCAPHY then aggregates all elements in all DepPath of a
process into a dependency element set DEP (P) such that:

{∀i ∈ PATHS(p) : DEP (p) :=

n[
j=0

i(p)} (6)

where DEP (P), the dependency element set of P , is the union
of all elements in all the dependency paths of a process path-
list PATHS. SCAPHY keeps tracks of the internal ordering
among these elements as developed from Equation 4. SCAPHY
uses this order information to detect out-of-order signals.

Functional Inter-Process Relationships. SCAPHY identifies
functional relationship between processes who share common
elements among them. If a shared element is in ETerm of

P1 and in ENTerm in P2, then P1 depends on P2. SCAPHY
models such element as an inter-process transfer points (PTP),
and P1 and P2 as PTP sink and PTP source respectively.
PTP instances is common among physical elements of the
Boolean type such as valves, switches, and relays. SCAPHY
leverages PTP instances to detect attacks spanning multiple
processes, such as in the Florida water poisoning attack (shown
in Subsection VI-B). PTP events occur when a control signal
causes a PTP element to change state, which causes the PTP
sink to assume the value of the PTP source’s ETerm. Through
this, SCAPHY detects disruptive impact on the PTP sink
process stemming from the PTP source. Further, when pro-
cesses share an element that is non-terminal to both processes,
SCAPHY models this as multiplexed (MP) elements. When a
MP state change causes an anomaly, SCAPHY aggregates the
anomaly score based on all affected processes.

B. Modelling Process Dependency and Impact

SCAPHY models how each dependency element state of a
process impacts the process using a novel process dependency
and impact graph (PDIG) model. SCAPHY leverages PDIG to
automatically know which elements maps to what process and
which elements states decrease or increase the process output.

Sketching PDIG Gragh. PDIG is a set of vertices which
represents elements, and edges which connects element nodes
based on their relationships. Undirected process edges connect
terminal elements to each non-terminal element in the same
DEP (p) of the process. Undirected element edges connect
non-terminal elements that don’t have any ordering constraints.
Directed element edges connect two non-terminal elements that
have ordering constraints among them in the direction of the
ordering. Each element node has an attribute that captures
its possible states and impact vector. In the PDIG, SCAPHY
automatically identifies and annotates PTP instances when
there is an undirected element edge from a terminal element
(of the PTP source) to a non-terminal element (i.e., the PTP
element). Further, multiplexed elements are identified when an
element has more than one process edge.

Deriving Impact to Model Physical Effects. SCAPHY
assigns each element state an impact vector IC(s) based on
how they impact a process. IC(s) is used in anomaly scoring of
disruptive impact based on the affected element state. SCAPHY
also uses IC(s) to prune out non-impactful states, which
reduces the number of elements to consider during attack
detection. To derive IC(s), SCAPHY leverages a SCADA ICS
engine to drive the physical process under analysis. In our
work, we leveraged in the Siemens S7 WinSPS program [31]
and FactoryIO ICS Engine [25] to load and drive physical
processes. SCAPHY then iteratively switches each state in the
process and analyzes the moving average of process outputs
via reading the process sensor element. SCAPHY stops eval-
uating the change in output when successive output changes
become negligible (less than 1%) or reaches a steady state.
We normalize IC(s) with respect to the scan cycles analyzed,
which bounds its value between 0.0 and 1.0. This succinctly
describes the impact of each state relative to other states.

Formulation of IC(s) We define a process outcome transi-
tion set τn, which is a set of ordered outcomes o for a process

6

(a) Process operation scan cycles

(b) Computation of Impact Coefficient

(c) A plot of IC(s) to scan cycles

(d) Plot of Aggregate Slices to scan cycles

Fig. 5: SCAPHY Impact Coefficient IC(s) Derivation for Each Element State

from scan cycle cj to cn:

τn := {o(cj), o(cj+1), o(cj+2), ..., o(cn)} (7)

where cj is the first scan cycle following SCAPHY switching
of an elemetary state and cn is the last or current scan cycle
observed where 0 ≤ j ≤ n, n ∈ Z. SCAPHY keeps track of
the highest or lowest recorded outcome ψ (i.e., the boundary
outcome). For any scan cycle cj , we define the IC(s) of the
element state under analysis as follows:

IC(s) =

nP
i=j

o(ci)−o(ci−1)
ab(ψ−o(ci−1))

|τn|
(8)

where o(ci)− o(ci−1) is change in process outcome, ab(ψ −
o(ci)) is the absolute difference between the highest or lowest
outcome and the preceding value at the scan cycle i − 1.
Further, |τn| is cardinality of the scan cycles from cj to cn.

We see that o(ci)−o(ci−1)
ab(ψ−o(ci−1))

is the ratio of the current
process change (i.e., o(ci) − o(ci−1)) to maximum change
(ψ − o(ci−1)). If we aggregate this ratio for each scan cycle,
we can compute IC(s) instantaneously at any scan cycles we
chose without having to always compute IC(s) through all
previous scan cycles. Using the aggregate ratio to compute the
instantaneous derivation of IC(s) is given as follows:

IC(s) =
δ

δT
Aggregate_Slice(o(cn)) (9)

where, for all scan cycles T , Aggregate_Slice(o(cn)) is the

Algorithm 1 DeriveImpactCoefficient(IC(s))
Input: ElementState s, Process p
Output: IC(s): ▷ Initialization
Cycle, CycleMAX ← GetCycleBatchAndMax
ψ ← GetOutcomeBoundCalib
OPREV ← GetProcessInitOutcome(p)
SteadyState← GetSteadyState(p)
Aggregate_Slice← 0
while CycleMAX > 0 do

SDK_RunSim(s, p)
Oci ← GetProcessOutcome(p)
ODIFF ← Oci −OPREV

Aggregate_Slice← (Aggregate_Slice+ODIFF)
Aggregate_Slice← Aggregate_Slice/ABS(OPREV)− ψ)
IC(s) ← Aggregate_Slice/Cycle ▷ check if steady state is

reached, if so return IC(s)
if ODIFF < SteadyState then

Return IC(s)
else

Cycle++
CycleMAX −−
ψ ← UpdateOutcomeBound(ψ,Oci) ▷ update ψ if neccesary

Return IC(s)

sum of current process change to maximum change from cj
to cn, and defined as:

{∀ci ∈ T : Aggregate_Slice(o(cn)) :=
nX

i=j

o(ci)− o(ci−1)

ψ − o(ci−1)
}

(10)
Figure 5b illustrates a derivation of IC(s) through scan cycles
c1 to c4. At each scan cycle transition, the generated process
outcomes, 9.19 through 2.15 were inputted into the IC(s)
formula to compute the IC(s) scores. Notice that at scan
cycle c4, the difference in the subsequent IC(s) (i.e., from
c3) was negligible (i.e., 0). SCAPHY uses this observation
as a heuristic to detect steady states. Otherwise, SCAPHY
sets a maximum bound to stop the simulation. Figure 5d
shows IC(s) for the end scan cycle cn (n = 4) using the
iterative form and the instantaneous IC(s) form (green dotted
line). The Aggregate_Slice(o(cn)) function is a straight line
(Aggregate_Slice(cn) = mT) drawn from origin to the point
cn ∈ T , where m is the slope. Taking the derivative of
Aggregate_Slice(cn) = mT gives the instantaneous IC(s).

Algorithm 1 shows SCAPHY algorithmic approach to de-
rive to IC(s). Aggregate_Slice is the aggregate ratio of
measured impact to maximum possible impact, and Cycles
is the total cycle batches in terms of scan cycles.

C. Characterizing Physical and Signal Anomalies

Inconsistent State. SCAPHY detects when a process is in
inconsistent state when two dependency element states have
opposing impact vectors. Recall that state’s IC(s) in the PDIG
drives process output in one direction towards its goal (i.e,
not opposing direction). For example, Industroyer attacked LB
process aims for a LB factor of 1.0 between power supply and
demand. Although LB is affected by several factors, the states
of load lines and circuit breakers play a role. If load decreases
or disconnect (e.g., due to low demand), process-control re-
acts by sending control signals to open circuit breakers to
bring back the balance. So, load disconnecting is balanced
by breaker opening and drives the process towards its goal.
However, a control session involving opening circuit breakers
and connecting load lines is inconsistent and disruptive to

7

Fig. 6: SCADA Software Stack (S3) and SCADA Execution Phases: Showing SCADA Host Interactions with S3 Layers to access the Physical World

load balance and should never occur in any legitimate setting.
SCAPHY’s IC(s) model captures this element state relation-
ships and detects such inconsistent state physical anomalies.
Through this, SCAPHY detected the Industroyer attack based
on physical effects of the attack signal (Section IV).

Outside Setpoint. SCAPHY detects when control signals drive
a process to exceed what it is operationally caliberated for
based on learning the highest and lowest bounds of the process
output recovered during the IC(s) derivation.

Signal Anomalies. SCAPHY detects (i) missing signals when a
process’ control session traffic has incomplete signals based on
the number of its process’ dependency elements. We observe
that targeted attacks send isolated or incomplete signals to
disrupt a specific element. (ii) Extraneous signals arise when
a process’ control session traffic contains signals for elements
not associated with the process. (iii) Out-of-Order signals
occur when analyzed sequence of signals in a process’ control
session are not in the expected ordered flow based on PDIG’s
element ordering. Although not all process requires control
signals be ordered, some device logic demand ordering con-
straints on the incoming signals to properly operate a process.

Scoring Anomalies. SCAPHY computes anomaly scores based
on affected element’s IC(s). Let m be number of affected
elements, and si is the state transitioned by the suspicious
control signals. Let n be the number of the process depen-
dency elements and ICMAX

(j) be the maximum IC(s) for an
element. Anomaly score is given by:

{∀j ∈ DEP (p) : Anomaly_Score =

mP
i=0

IC(si)

nP
j=0

ICMAX (j)

} (11)

Using ICMAX
in the denominator normalizes and bounds

the scores between 0 and 1 which succinctly captures the
deviation measure relative to all process elements. Based
on this normalization, we calibrated a detection threshold
boundary for low, medium, high anomalies as 0.0-0.25, 0.26-
0.60, and 0.61-1.0 respectfully. We found that this produced
the best accuracy categorization for all scenarios we tested.
However, as with all anomaly systems, operators can fine tune
this threshold boundaries based on their need.

D. Analyzing Physical World-Targeted Executions in SCADA

Given an ICS scenario (OPC data and Function block logic),
SCAPHY aims to generate the limited set of API calls unique

to legitimate SCADA process-control operations, referred to
as PHYSical world Impact Call Specialization (PHYSICS)
constraints. To do this, SCAPHY leverages its physical model
to inform a physical process-aware dynamic analysis, whereby
a SCADA engine is induced to execute code paths of process-
monitoring and altering behaviors. However, this requires first
knowing each phase identifier and boundary

Leveraging SCADA Software Stack (S3) to Characterize
Process-Control Behaviors. Through in-depth analysis of
process-control in diverse ICS settings, we introduce a new
reference model, SCADA Software Stack (S3). S3 layers does
not replace Purdue ICS Levels [33]. Rather, it breakdown Pur-
due Level 2 (i.e., control systems) into 5 layers to characterize
the internal software and hardware layers involved in SCADA
process-control, as shown in Figure 6. We hope that via S3,
Antivirus companies can develop SCADA-specific host agents
to monitor accesses to specific S3 layers to detect attacks.
We describe the S3 layers shown in Figure 6 using Windows
operating system (OS) due to its dominance in ICS.

SCADA programs (S4) do not access ICS devices directly
but do so using device objects (S2), which are software handles
that enable the OS to mediate access to physical I/O (S0). To
support diverse ICS devices, Windows provides a Driver Model
(WDM) to allow device vendors to run ICS drivers (S1) in the
kernel. In WDM, driver objects of an ICS driver represent
instances of ICS devices the driver supports. For example,
Windows supports 16550 UART devices via Windows Serial
Driver, which allows SCADA programs to declare device
objects, called COM ports, to communicate with devices.

ICS Callback Functions. To access devices, SCADA pro-
grams invoke ICS callback functions (S3) registered during
ICS driver load. This callback function invokes CreateFile
which returns the device object handle as shown in Figure 6.
Parameters lpFileName specifies device object name (e.g.,
COM1); dwDesiredAcces specifies READ or WRITE ac-
cess mode; dwShareMode enables SCADA programs to deny
other programs (such as malware) access to physical devices.
Unfortunately, attackers (Havex, Industroyer, Oldrea) subvert
this access control by killing benign SCADA processes to
release their ICS handles. For example, Industroyer killed
D2MultiCommService.exe and hijacked all serial COM ports
to the Siemens SPIROTEC device. Havex [46] scanned COM
Ports to discover connected devices. After obtaining device
handles, SCADA programs (and attackers) can invoke Read-
File to read device states or WriteFile to send signals to them.
Based on this analysis of S3 layers, SCAPHY can monitor

8

Physical World Dependency & Impact Model PHYSICS Constraints ICS program files
ICS Industry physical OPC PDIG IC behavior verify time OPC points and tags
scenarios processes ID ETerm nodes avg/max calls stack TP FP (min) size element wires

load balancing 1.1 c-breaker 6 .71/.76 6 7 6 0 4.3 9K 19 35power grid Power Plan pwr distribution 1.2 load lines 4 .59/.66 4 6 4 0 3.5 9K 19 35
level control 2.1 holding tank 4 .56/.86 10 12 10 0 6.2 11.5K 13 23water treatment Water Plan. dosing 2.2 dose valve 2 .66/.86 4 11 4 0 5 11.5K 4 9
pallet alignment 3.2 Axes X,Z 6 .47/.62 8 13 8 0 5.9 9K 10 19auto warehouse Manufactur throughput 3.2 entry conveyor 2 .7/.84 4 11 3 1 5.5 9K 6 11
product quality 4.1 clamp lid/base 2 .67/.77 4 7 4 0 7 9.5K 8 19assembler Manufactur load balancing 4.2 conveyor2 5 .8/.84 6 14 6 0 4.6 9.5K 11 19
load alignment 5.1 push clamp 3 .47/.71 7 13 7 0 7.2 7.8K 7 13palletizer Shipping prod protection 5.2 entry conveyor 6 .32/.69 4 17 4 0 5 7.8K 9 13
heat setpoint 6.1 room space 3 .46/.79 8 12 7 1 6.1 6K 8 15hvac system Gas heat flow 6.2 vent 3 .6/.82 6 19 6 0 5 6K 7 14
path throughput 7.1 load/unload 2 .47/.6 7 13 7 0 5 6.2K 9 14converge station Shipping alt throughput 7.2 transfer 3 .67/.88 6 12 5 1 4.8 6.2K 9 17
alignment 8.1 control arm 2 .8/.8 6 15 5 1 2.6 8K 11 23production line Manufactur throughput 8.2 conveyors 4 .6/.72 6 16 6 0 3.3 8K 11 14
sort accuracy 9.1 unloader 2 .54/.85 4 13 4 0 4.7 9K 6 13sort station Shipping throughput 9.2 conveyor 7 .5/.9 6 17 6 0 4.4 9K 16 14
accuracy 10.1 pusher1-2 6 .53/.72 5 12 4 1 5.9 4.9K 17 19separator Shipping throughput 10.2 conveyors 7 .69/.81 4 8 4 0 4.8 4.9K 15 10
prod safety 11.1 conveyor1-3 5 .77/.83 6 13 6 0 9.2 11K 13 14elevator Manufactur throughput 11.2 entry conveyor 5 .33/.68 4 19 4 0 5 11K 12 24
spacing 12.1 buffer conveyor 6 .63/.71 6 13 6 0 5.7 9K 17 9queue processor Manufactur throughput 12.2 entry conveyor 2 .67/.8 5 11 4 1 4.7 9K 14 11

TABLE II: ICS Scenarios: SCAPHY’s physical world modelling results and generated SCADA PHYSICS constraints with Diverse ICS Industry Applications

CreateFile, [WriteFile | ReadFile] to triage attacker’s process-
altering and process-monitoring activities, respectively.

Identifying Process-Control Phase Windows. Existing exe-
cution phase analysis for web servers [64] rely on developer-
supplied boundaries to identify phase transitions. This ap-
proach is manual and will not work if boundaries are not
available such as in proprietary settings like ICS. However,
SCAPHY leverages S3 layers to analyze the cyclical nature
of SCADA process-control to identify its transitions from
process-monitoring to process-altering. We know that access-
ing device objects (S2) using CreateFile in the "WRITE"
mode is a process-altering behavior, and in "READ" mode is
process-monitoring, but we need to know when they start and
ends (i.e., phase window) to accurately specialize the extracted
API calls. Based on the cyclical API call stack behavior of
these phases shown in Figure 2, we know that process-altering
follows process-monitoring. As shown, after process-altering
are a few memory freeing operations which we found was to
free up memory buffers used in physical-model computations.

We analyze process-monitoring to know its phase window.
Process-Monitoring comprise of two main sub phases; process
state representation (reading the process state), and event
handling (analyzing events to see if change is needed). If no
change is needed, it repeats as shown in Figure 2. SCAPHY an-
alyzes the changing IP register and call stack depths of the loop
structure to identify the end of event handling the first time it
returns to the IP it started. When event handling ends but IP
returns to a different location and call stack depth, SCAPHY
identifies this as the start of process-altering execution. Finally,
SCAPHY performs a final check by confirming the expected
S3 phase identifiers in each phase, which are [CreateFile,
ReadFile || WriteFile], CloseHandle API call sequences for
process-monitoring and process-altering respectfully.

Physical Process-Aware Dynamic Analysis. SCAPHY lever-
ages an ICS emulation engine (FactoryIO [25]) and a SCADA
engine (Siemens S7 WinSPS [31]) to perform a physical-
process-aware dynamic analysis of process-control behavior to

generate PHYSICS constraints. FactoryIO (which also provides
a SCADA engine) provides an environment to setup and drive
physical processes. Its emulation engine supports interfacing
with real hardware-in-the-loop PLCs using real ICS protocols
such as Modbus, and allows loading of generic ICS scenario
function blocks. On starting each process, we monitor the
SCADA host API executions to know when each process-
control phase start based on the phase windows. For each
process, we induce the SCADA execution to re-compute the
process control variable (CV) (i.e., to send to the physical) by
iteratively switching each element state in the process. This
drives SCADA execution down the process-monitoring and
process-altering code paths to effect change on the process,
enabling SCAPHY to record the API calls of each phase.

Process-Aware PHYSICS Constraints. SCAPHY’s physical
world model enables generated PHYSICS constraints to be
process-aware, i.e., generated per physical process. Although
many code paths exist in SCADA executions, our PHYSICS
constraints cover only process-control paths. SCAPHY covers
these paths by inducing the legitimate SCADA process-control
logic to react to each element state change, ensuring that all
"state-changing" relevant logic paths are dynamically covered.
Because element states are derived from the deployed envi-
ronment via OPC, SCAPHY’s PHYSICS constraints succinctly
represent the limited legitimate APIs to control the physical.

PHYSICS Violations by Injection. To perform attacks, at-
tackers execute atypical APIs outside of benign process-control
phase. SCAPHY detects APIs not in established PHYSICS
constraints as injection violations. As such, SCAPHY can detect
when malicious code injected into benign SCADA programs
run (as was done by Stuxnet [7]) as wells as redirected
API calls via hooking the Import Address Table. Stuxnet-type
attacks will evade existing tools that whitelists benign SCADA
programs. However, because SCAPHY focuses on executed
APIs, not the executor, injected APIs will be detected.

PHYSICS Violations by Bypass. Rootkits can bypass the S3

layers and directly send malicious signals to physical I/O using

9

MITRE ICS Attack In-the-wild MITRE Physical Process PHYSICS Physical Anom. Signal Anom. Metrics
Attack ID Description ICS Reference ICS TTP IDs (in Table II)) bypass inject incons setpoint miss extran ooo TP FP

T872 wipe host/registers Killdisk Evasion 1.1, 1.2, 4.1 ✓ ✓ ✓ 3 0
T836 modify parameter Stuxnet Impair proc contrl 4.1, 4.2, 8.1, 8.2 ✓ ✓ ✓ 3 0
T831 contrl manipulation Stuxnet Impact control 2.1, 2.2, 6.2 ✓ ✓ ✓ 3 1
T889 kernel driver attack Blaster Modify Program fxn 5.1, 5.2, 10.2 ✓ ✓ 2 0
T855 unauthorised cmd msg Industroyer Impair proc contrl 3.1, 3.2, 11.1 ✓ ✓ ✓ 3 1Pr

oc
es

s
A

lte
ri

ng

M1.2 corrupt registers Triton Impair proc ctl 7.1, 10.2, 11.2 ✓ ✓ ✓ ✓ 4 0
T874 library hooking Triton Execution 5.1, 5.2, 10.1, 10.2 ✓ 1 0
T801 monitor proc state Industroyer Collection 6.1,6.2, 8.1 ✓ 1 0
T861 points/tags identifica. Backdoor.Oldrea Collection (OPC) 6.1, 6.2, 8.2 ✓ 1 0
T816 device shutdown Industroyer Inhibit Resp fxn 7.1, 9.1, 9.2, 7.2 ✓ 1 0
T888 network Enumeration Havex(as is) Discovery fxn 4.1, 4.2, 8.1, 8.2 ✓ 1 0

N
on

-P
ro

ce
ss

A
lte

ri
ng

T805 block serial COM Industroyer(as is) Inhibit Resp fxn 1.1, 1.2, 9.1 ✓ 1 0

TABLE III: Deployed Attacks and Detection Metrics. We leverage the MITRE ICS Attack Framework [65] to categorize the attack TTPs

a direct driver call 0x6b DeviceIOControl. However, because
SCAPHY sees all WRITE traffic on the physical interface (S0),
it detects the attack as Bypass violation because no S2 activity
was seen, allowing SCAPHY to know that a kernel-space entity
bypassed proper process-altering S3 channels to send signals.

VI. EVALUATION

We evaluate SCAPHY’s ability to (i) accurately detect a variety
of ICS attacks across diverse ICS scenarios, and (ii) outperform
existing tools in detection accuracy. We launched 40 ICS
attacks on 24 diverse ICS scenarios across 5 ICS industries
to show SCAPHY versatility, as shown in Table II. SCAPHY
detected 95% of all attacks, including real ICS malware
(Havex1 and Industroyer2), with only 3.5% false positives.
Due to lack of research resources to support diverse ICS
security research [27–30], we make available over 200GB of
new ICS experiments and ICS attacks against both SCADA
and physical targets, developed for FactoryIO ICS Engine [25].

Experimental Setup. We leveraged a U.S. national lab state-
of-the-art ICS testbed, which supports fast deployment of
ICS topologies, OPC, HMIs, and Windows 7 SCADA VMs,
prepared with ICS resources to control physical processes such
as UART interfaces and Windows Serial Driver. For SCADA
control, we used 3 platforms: S7 WinSPS [31], MyScada [66],
and FactoryIO SDK. This makes our testbed suited to evaluate
SCAPHY against ICS attacks in realistic settings. To sup-
port diverse processes, we leveraged Simulink [67], Power-
World [68], and FactoryIO [25] Engine to emulate physical
process components in Remote Terminal Units (RTUs).

ICS Attacks Performed. We performed diverse modern
attacks from 4 categories: attacks that (I) maliciously alter
element states in running processes, (II) blocks SCADA ac-
cess to the physical, (III) collects attack-relevant data from
SCADA, and (IV) exploit bugs in ICS devices. We leveraged
Mitre ICS Attack Framework and ICSSploit [69] to develop
realistic attacks, indicated in "In-the-wild" column of Table III
and Table IV, each tailored against their pertinent ICS target.

Physical World Model and PHYSICS Constraints. Table II
presents our analyzed ICS scenarios details and SCAPHY’s
derived physical world models and PHYSICS constraints. To
verify accuracy of generated PHYSICS constraints (API calls),
we produced forensic execution traces of our SCADA program
using the Time-Travel debugging feature of Windows Debug-
ger (WinDBG), which we manually stepped to see the APIs

17f249736efc0c31c44e96fb72c1efcc028857ac7
22cb8230281b86fa944d3043ae906016c8b5984d9

of each process-control path. Table II column 8-11 shows the
number of unique process-altering APIs called on average per
path. As shown, we found that only few unique APIs were
seen (most times in loops) depicting that process-altering is
very specialized per physical domain, but the high stack depth
shows that process-altering is executed deep in SCADA logic.
We found that the false positives (FP) were due to rare element
states not parsed correctly from OPC. SCAPHY’s physical
model allowed for an efficient impact analysis of dependency
elements, which allowed SCAPHY to prune non-impactful
elements from the original pool extracted from OPC. We
observe that many ICS elements such as sensors and repeaters
do not have an operational impact on process output, hence
were pruned off during IC(s) derivation. As such, we saw over
50% reduction (on avg) from extracted OPC elements to PDIG
nodes. This outperforms naively analyzing all states regardless
of impact as done in [20] (compared in Subsection VI-D).

Further, the reduced element pool contributed to an IC(s)
(impact) average above 70% of their process output, showing
that SCAPHY modelled the relevant or impactful elements
whose malicious state change are more disruptive to the pro-
cess. SCAPHY physical-process-aware dynamic analysis takes
about 6 mins, which is reasonable per deployed scenarios sizes
(last 3 columns). Our ICS scenarios are adapted from real-
world models developed by domain experts. For example, our
power grid scenario was adapted from an open-source Texas
Pan Handle power grid [26], simulated in PowerWorld RTUs.
We use the power grid example to explain Table II: SCAPHY
accurately identified the process terminal element (ETerm) as
circuit breaker and load lines. As shown, SCAPHY’s impact
analysis pruned the OPC element pool of 19 nodes to 10 PDIG
nodes, which allows SCAPHY to be efficient. The average
impact of all PDG nodes was over 50% with max at 0.76 and
0.66, meaning that attack involving them are most disruptive.

A. ICS Attack Detection

Table III shows details of attack categories I, II, and III, and
SCAPHY’s detection metrics. Attack category I are shown in
the first row-group, "Process Altering". Category II and III
are shown in the second-row group, Non-Process Altering.
SCAPHY detected PHYSICS bypass and inject attacks for both
categories. However, SCAPHY detected physical and signal
anomalies for only category I, because category II and III do
not send WRITE control signals. That is, they do not alter
running processes but either block SCADA access to the phys-
ical or collect data about physical devices from SCADA. For
example, in T805, Industroyer issued CreateFile on available

10

ICSSPLOIT Attack Real-world In-the-Wild Exploit SCADA Software Stack (S3) Activity Metrics
Attack ID Description Device Targets CVEs/ICSAs Type S4.1 S4.2 S4.3 S3 S2 S1 S0 TP FP FN
SPLOIT1.1 stop controller/CPU Siemens Simatic-1200 ICSA-11-186-01 Unprotected Port - - ✓ ✓ ✓ ✓ ✓ 5 0 2
SPLOIT1.2 remote code execution QNX SDP 660 CVE-2006-062 Buffer Overflow - ✓ ✓ ✓ ✓ ✓ ✓ 4 0 1
SPLOIT1.3 remote device halt Schneider Quantum ICSA-13-077-01 I/O corruption - ✓ ✓ ✓ ✓ ✓ ✓ 5 0 1
SPLOIT1.4 crash RTOS service QNX INETDd CVE-2013-2687 Buffer Overflow - ✓ ✓ ✓ ✓ ✓ ✓ 5 0 1
SPLOIT1.5 RPC device crash WindRiver VXWorks CVE-2015-7599 Integer Overflow - ✓ ✓ ✓ ✓ ✓ ✓ 4 0 1
SPLOIT1.6 denial of service Siemens S7-300/400 CVE-2016-9158 Input Validation - - ✓ ✓ ✓ ✓ ✓ 4 0 2

TABLE IV: Deployed Attacks and Detection Metrics. We leverage Attack Modules ICSSPloit Attack Modules [69] to categorize the attack TTPs

COM ports to block our SCADA program from accessing the
physical ("as is" mean we executed the In-the-wild malware).
Similarly, Havex in T888 enumerated all COM device objects
stored in Registry keys HKLMSYSTEMCurrentControlSetSer-
vices (registry value SERVICE_KERNEL_DRIVER are device
driver services) to identify connected devices by issuing loops
of OueryKey, OpenKey, QueryValueKey API calls. These API
calls were atypical of process-monitoring, allowing SCAPHY
to detect their PHYSICS inject violations.

SCAPHY detected two PHYSICS bypass violations in attack
category I, T872, and T889, which are kernel level attacks that
bypassed SCAPHY monitored S3 layers. Specifically, T889 and
T872 used DeviceIOControl direct driver call to send signals
out the serial I/O. SCAPHY detected the attack because they
sent out WRITE signals without accessing S3 layers, allowing
SCAPHY to know that a kernel-space entity bypassed proper
process-altering and S3 channel to attack the physical. Further,
T872 used the same call to send control code to the storage
device driver to delete whole drives (/DosDevices/C:). The Last
3 columns show detection metrics. Ground truth was derived
from open-source attack data [65, 70]. We found that FPs
were due to missed APIs during PHYSICS analysis due to rare
element states not parsed from OPC.

Evaluating SCADA Software Stack (S3) Activity. For
attack category IV, we demonstrate S3’s ability to pinpoint
steps along SCADA access to the physical, which shows that
S3 layers are practical host monitoring taps for ICS attack
detection. To do this, SCAPHY monitored access to each
S3 layer based on the appropriate API call for each layer.
E.g., the ReadFile accesses S2, the ICS device object. We
leveraged ICSSPLOIT [69] to compile real-world exploits that
were developed as proof-of-concepts exploit code against real
bug in ICS devices. We launched these attacks against their
simulated ICS targets and then check which S3 component
was triggered in the SCADA host. Table IV details the results.
SCAPHY detected all five layers of S3 in all attacks as shown.
However, in layer S4, SCAPHY did not detect initialization
behavior (S4.1). This is because the exploits where self-
contained and did not issue any API to setup environment.
However, SCAPHY detected their process-altering behavior
(S4.3) when the WriteFile API was called to send signal to
the physical. We hope that via S3, Antivirus companies can
develop SCADA-specific host agents to monitor and correlate
accesses to specific S3 layers to detect attacks.

B. Case Study: 2021 Florida Water Plant Poisoning Attack

We replicated the FL incident with realistic water treatment
scenario using FactoryIO Engine[25] and open-source data [27,
28]. The attacker targeted the chemical dosing operation by
manipulating a proportional P parameter to raise toxic levels
of NaOH in the water outside the set point (SV) [1]. Chemical

dosing involves two processes: Level control and Dosing.
The HMI is shown in Figure 7a. Level control aims to fill
a holding tank, TANK.O with chemical based on SV, after
which Dosing will open a valve, VALVE.2 to let chemical into
the water supply [27, 28]. Level control is controlled by a
domain-specific physical model function, Proportional Integral
Derivative (PID). Because SV cannot be reached in one shot,
PID operation involves several "intake" and "discharge" cycles,
(shown in Figure 7d) whereby an intake pump fills chemical
into TANK.O, and a discharge valve remove accesses. P
controls how aggressive the intake and discharge cycles are
driven. E.g, a high P pumps an initial excessive volume into
TANK.O. Figure 7c shows how different P values affect how
SV is reached. SV is set via a hardware dial on the PID
controller, so attacker cannot modify it using cyber means.

Attack and Detection. The attacker issued 2 control signals
to raise P (dumps excessive chemical into TANK.O) and open
VALVE.2. We launched the attack using a Modbus payload,
but in a less suspicious manner, that is, make attack code self-
contained, without triggering any PHYSICS violation. At the
SCADA side, the modbus operation triggered all S3 layers
to send out the signal, which is not by itself malicious. We
focus on the physical aspects to detect the attack and correlate
with the process-altering activity observed at the SCADA host.
SCAPHY’s detected a high outside set point physical anomaly
and a low Extraneous signal anomaly. Figure 7b shows the
detection data SCAPHY outputs to ICS operators
Explanation SCAPHY detection is based on the functional
process relationship captured in the physical model between
Level Control and Dosing. Recall Subsection V-A, VALVE.2 is
a PTP element between Level control (PTP source) and Dosing
(PTP sink). When VALVE.2’s state changes from CLOSE to
OPEN, the Dosing process output assumes TANK.O’s value
(i.e., the ETerm of the PTP Source) which is measured by
the meter sensor LMETER.0. This Dosing process outcome
(LMETER.0’s value) was outside the set point for Dosing
derived during IC(s) derivation, which allow SCAPHY to
detect it. Finally, a high anomaly score is calculated based
on VALVE.2’s IC(s) of 0.87, allowing SCAPHY to detect an
outside setpoint physical anomaly. Further, SCAPHY detects an
extraneous signal anomaly because the signal to open VALVE.2
was "extraneous" in Level control’s process control session.

C. Case Study: SCADA Rootkit that knows SCAPHY approach

We discuss SCAPHY’s ability to detect an evasive rootkit that
knows SCAPHY approach. Recall in Subsection VI-A, Rootkits
T872 and T889 used a direct driver call DeviceIOControl to
send out control signals. SCAPHY detected the attack because
no S2 activity was seen, allowing SCAPHY to know that a
kernel-space entity bypassed proper process-altering and S3

channels to send signals. We analyze a rootkit that lever-
age kernel-space behaviors to perform just enough legitimate

11

(a) Chemical Dosing Operation HMI

(b) SCAPHY Output

(c) Effects of different P’s

(d) Intake/discharge cycles

process-altering behavior (i.e., access device objects in S2
without violating any PHYSICS constraints), without using
DeviceIOControl. The rootkit leverages ZwCreateFile native
API which handles parameters differently in kernel-space than
the userspace CreateFile counterpart [71]. Unlike in userspace,
calling ZwCreateFile with an ICS driver name returns the
driver base address, which can be traversed to locate device
objects in driver data structure. Using this object, the rootkit
can send signals to the device using native ZwWriteFile.

Fig. 8: S3 Initialization at Driver Load: To detect malicious Rootkit Driver-
AddDevice S2 operation to add itself on a Device Stack in Kernel Land
Attack and Detection. We used Metasploit to develop such
rootkit and installed it as an ICS driver. On execution, ZwCre-
ateFile and ZwWriteFile call signified S2 process-altering
activities, which sent out a signal, and no PHYSICS violations
were observed, which evades SCAPHY. To detect this attack,
SCAPHY can (i) ensure that the ICS device objects (used to
access ICS devices) are obtained via proper device identifiers
(e.g., COM1) registered in HKLMSYSTEMCurrentControlSet-
Services Registry during driver loading: (ii) add a feature to
track malicious driver loads in the kernel.
Explanation Option i simply adds more constraints on the
attacker and prevents him from bypassing legitimate SCADA
channels (S3) from kernel space. However, advanced adver-
saries can theoretically find other OS evasions to satisfy these
constraints. In option ii, we note that for the attack to work, the
rootkit has to first attach itself on the device stack of the target
device. Figure 8 shows the steps ICS drivers use to attach
themselves to a device stack during driver load. Device stack
is a kernel data structure that tells the kernel subsystem which
drivers can access I/O of a physical device. Hence SCAPHY can

track when new drivers are added to a device stack, allowing
it to catch when additional drivers are introduced.

We note that rootkits cannot modify the kernel subsystem
(NTOSKRNL.EXE) per Windows Kernel Patch Protection [72],
a feature that prevents third-party components (e.g., drivers)
from "patching" or modifying part of the kernel subsystem,
such as the service descriptor table (SSDT) and device stack.
This prevents rootkits from accesses I/O to a device that it
does not exist on its stack. Figure 8 shows the API sequence
that describes steps from driver loading to registering ICS
callback functions. Note that argument dwServiceType=0x01
in CreateService registers an ICS driver service. Interestingly,
these APIs follows and initializes our proposed S3 layers.
On seeing these APIs after an ICS driver has already been
registered, SCAPHY detects this rootkit.

D. Comparing SCAPHY with Existing Techniques

We compared SCAPHY to existing ICS techniques that use
physical models [20] and traffic classifier [5]. [20] analyzes
sensor data’s cumulative sum of residuals, and raises alarm if
the difference between sensor and expected behavior is higher
than a threshold. [5] analyzes spatial-temporal properties of
ICS signals such as packet arrival times and size, using a
REBTree classifier. [5] raises alarm when traffic features are
outside a running average. To do this comparison, we use
sensor and traffic data from the experiments presented in
Table II, which we parsed into @.ARFF format. We leveraged
open-source tools to setup these techniques. For [5], we
leveraged WEKA [73] to generates a REPTree classifier that
builds a decision tree using information gain and variance in
the extracted traffic fields. For [5], we leveraged Scikit-Learn
to generate a linear regressive model to fit the sensors values
of the physical elements in the normal running mode.

To launch attacks, we follow the format in Table III, which
produced 40 attacks and 146 normal instances. Table V shows
the results. Existing tools did not detect any SCADA attacks
due not being able to reason about SCADA execution behavior.
However, this is where SCAPHY detected most attacks (90%,
and 95% overall). [20] detected 19 attacks (47.5%), with a
high FP of 37 (25%). Its FP is due to flagging high sensor
deviations that are part of benign behaviors. One of those
instances is the Florida water attack where a high proportional
P variable causes a high but temporary sensor value. Although
it deviates significantly from expected set point, it is benign
in the Level Control process, and only anomalous in the
Dosing process if dosing valve is open. Unlike SCAPHY’s
physical model, existing linear models [20–23] based on sensor
deviations do not capture these inter-process relationships
(such as between the Dosing and Level Control process),
hence are prone to false alarms due to high but temporary
benign deviations. SCAPHY’s physical model TP is due to
approximating analog states. That is for an analog voltage level
of 0 - 10v, SCAPHY switches just three levels 0v, 5v, 10v,
which saves space but is less precise. [5] detected 11 attacks
(27.5%), but with low FP (12.3%) because most modern
attack is similar to benign. SCAPHY signal anomaly had more
FPs because it flagged many benign missing signals, showing
that missing signals are not good indicator for attacks, which
we can mitigate by raising its detection threshold.

12

Attack Detection Metrics
Techniques Approach Attacks/ SCADA Physical CTRL Signals

Normal TP FP FN TP FP FN TP FP FN
Sensor [20] Linear 40/146 - - - 19 37 21 - - -
Analysis Regressive M.
Traffic [5] Decision Tree 40/146 - - - - - - 11 18 29
Analysis Classifier
Hybrid SCADA Corr. 40/146 36 5 4 21 14 19 18 21 2
SCAPHY with Physical

TABLE V: Comparison with Existing Techniques

VII. DISCUSSIONS

Robustness of PHYSICS Constraints. PHYSICS constraints
should be generated per physical process and SCADA pro-
gram. Although, PHYSICS constraints are domain-specific
(e.g., power scenarios), we found that process-altering
PHYSICS constraints generated from different SCADA pro-
gram do not differ much. In our work, we tested 3 SCADA
platforms and they produced very similar API calls. We
observe that this is because the physical-model functions (e.g.,
PID) adhere to strict invariants of the physical model. As such,
when SCADA platforms update features, the core physical-
model logic to drive physical processes is rarely updated.
LibVMI. is the state-of-the-art VM introspection tool [61, 62]
and allows SCAPHY to monitor API calls executed in SCADA
VMs per system process. Through this, SCAPHY can analyze
each processes’ physical world-targeted executions.
ICS Attack Difficulty. Unlike in IT, developing ICS attacks is
hard due to finding the right SCADA environment and physical
device target. As such, we spent months developing many
modern attack scenarios, and tested more attacks than existing
work, including a few ICS malware to run on ICS targets.
Further, in attack category IV we executed real ICS attacks in
the SCADA hosts that exploits historical ICS device CVEs.

VIII. LIMITATIONS AND FUTURE WORK

Based on our evaluations, SCAPHY greatly limits at-
tacker’s abilities to cause process disruptions. However, in
Subsection VI-C, we see that an advanced attacker can find
ways (such as using rop chains [74]) to present "good" data
to SCAPHY. Although we showed that detecting malicious
driver rootkits can mitigate the problem, rootkits can theo-
retically circumvent our assumed Windows kernel protections.
As future work, we will investigate robust techniques to block
SCADA rootkits from loading. In addition, we will investigate
integrating call stack data as additional security layer when
legitimate API calls are executed. This approach is reasonable
given that the process-control behaviors have well-defined call
stack behavior as was shown in Figure 2.

IX. RELATED WORKS

What differentiates ICS from IT systems is that physical tasks
follow immutable laws of physics [20, 21], which can be
learned to build prediction models [75]. Several works [20,
76] leveraged this idea to fit observed sensor data in a Linear
Dynamic State Space [20] or Auto Regressive Models [22]
to predict when observed behavior deviates from expected.
However, in real-world ICS settings, such models may not be
available or easily derived [23, 24]. Further, physical models
trigger false alarms when in production due to noise and config

changes, such that benign states are outside the model [23]. We
found that these physical models cannot reason across multiple
processes, which leads to false alarms when a high sensor
deviation is benign in one process but anomalous in another.

Statistical analysis of ICS traffic [5, 9–19] are effective
against noisy and abnormal traffic such as attacker’s probings,
and illegal protocol fields. However, modern ICS attacks
evade them by not only using legitimate protocols but employ
knowledge of ICS parameters to cause specific (i.e., not
noisy) process disruptions [2–4]. Similarly, host agents [41]
that monitor system calls executions in SCADA hosts cannot
accurately detect modern attacks because they make use of
same system calls as benign SCADA programs. Network flow-
based detection approaches [9, 11, 12, 36] detects attacks
based on abnormal traffic function codes and channels, such as
demonstrated in [77, 78]. However, they are evaded by modern
attacks such as Industroyer and FL water plant attacks, which
uses legitimate HMI channels and function codes. Further,
timing analysis [5, 10, 37] are effective for catching anomalous
round trip time delays and inter-arrival times. However, they
are only effective against attack behaviors that are chatty [10,
19] such as attacker scans, but not targeted attacks.

Sequence/Pattern-based techniques [11, 59, 79] are promis-
ing to detect anomalous communication patterns such as iso-
lated signals. However, without knowing the physical behavior
the signal impacts on the physical world, or if a flagged signal
is actually malicious (since anomalous may or may not disrupt
a process), it is prone to false positives since benign events
such as noise may have same pattern. Further, pattern-based
modeling of traffic baseline suffers from slight configuration
changes (e.g., addition of new devices), which causes false
positives due to model’s high sensitivity [11, 79]. In SCAPHY,
each signal is weighed based on their physical impact, which
is essential to not only triaging isolated signals, but sequences
of signals that may impact processes at different impact levels.
State-based approaches [79] detects critical states in ICS but
requires manual rules, which do not scale. In addition, they
track and store all state transitions, which grows exponentially
when ICS parameters increase. In contrast, SCAPHY is stateless
and only tracks current element states. Further, by only focus-
ing on a far-reduced pool of impactful element (i.e., prunes
non-impactful elements), SCAPHY increases its scalability.

X. CONCLUSION

We present SCAPHY to detect ICS attacks in SCADA by
leveraging the unique execution phases of SCADA to identify
the limited set of legitimate behaviors to control the physi-
cal world, which differentiates from attacker’s activities. To
extract unique behaviors of each SCADA execution phase,
SCAPHY first leverages OPC conventions to generate a novel
physical process dependency and impact graph (PDIG) to
detect disruptive physical states. SCAPHY then uses PDIG to
inform a physical process-aware dynamic analysis, whereby
code paths of process-control operations are induced to execute
API call behaviors unique to legitimate process-control phase.
Through this, SCAPHY detects attacker’s activities that violates
legitimate process-control behaviors. We evaluated SCAPHY
with diverse ICS scenarios and attacks. SCAPHY detected 95%
of all attacks, and outperformed existing tools.

13

REFERENCES

[1] Oldsmar Water Treatment Facility Cyber Attack. https://www.
dragos.com/blog/industry-news/recommendations-following-
the-oldsmar-water-treatment-facility-cyber-attack/.

[2] Defense Use Case. “Analysis of the cyber attack on the
Ukrainian power grid”. In: Electricity Information Sharing and
Analysis Center (E-ISAC) (2016).

[3] WIN32/INDUSTROYER: A new threat for industrial control
systems. https://www.welivesecurity.com/wp-content/uploads/
2017/06/Win32_Industroyer.pdf.

[4] Ruimin Sun et al. “SoK: Attacks on Industrial Control Logic
and Formal Verification-Based Defenses”. In: arXiv preprint
arXiv:2006.04806 (2020).

[5] Stanislav Ponomarev. Intrusion Detection System of industrial
control networks using network telemetry. Louisiana Tech
University, 2015.

[6] What is the Purdue Model for ICS Security? https : / / www.
zscaler . com / resources / security - terms - glossary / what - is -
purdue-model-ics-security.

[7] W32.Stuxnet Dossier. https://www.wired.com/images_blogs/
threatlevel/2011/02/Symantec-Stuxnet-Update-Feb-2011.pdf.

[8] Ransomware Attack leads to shutdown of Major U.S. Pipeline
System. https://www.washingtonpost.com/business/2021/05/
08/cyber-attack-colonial-pipeline/.

[9] Jeong-Han Yun et al. “Burst-based anomaly detection on the
DNP3 protocol”. In: International Journal of Control and
Automation 6.2 (2013), pp. 313–324.

[10] Celine Irvene et al. “If I Knew Then What I Know Now: On
Reevaluating DNP3 Security using Power Substation Traffic”.
In: Proceedings of the Fifth Annual Industrial Control System
Security (ICSS) Workshop. 2019, pp. 48–59.

[11] Niv Goldenberg and Avishai Wool. “Accurate modeling of
Modbus/TCP for intrusion detection in SCADA systems”. In:
international journal of critical infrastructure protection 6.2
(2013), pp. 63–75.

[12] James Halvorsen and Julian L Rrushi. “Target Discovery
Differentials for 0-Knowledge Detection of ICS Malware”.
In: 2017 IEEE 15th Intl Conf on Dependable, Autonomic and
Secure Computing. IEEE. 2017, pp. 542–549.

[13] Basem Al-Madani, Ahmad Shawahna, and Mohammad
Qureshi. “Anomaly detection for industrial control networks
using machine learning with the help from the inter-arrival
curves”. In: arXiv preprint arXiv:1911.05692 (2019).

[14] Nils Svendsen and Stephen Wolthusen. “Modeling and de-
tecting anomalies in SCADA systems”. In: International Con-
ference on Critical Infrastructure Protection. Springer. 2008,
pp. 101–113.

[15] Leandros A Maglaras and Jianmin Jiang. “Intrusion detec-
tion in SCADA systems using machine learning techniques”.
In: 2014 Science and Information Conference. IEEE. 2014,
pp. 626–631.

[16] Barnaby Stewart et al. “A novel intrusion detection mechanism
for scada systems which automatically adapts to network topol-
ogy changes”. In: EAI Endorsed Transactions on Industrial
Networks and Intelligent Systems 4.10 (2017).

[17] Leandros A Maglaras, Jianmin Jiang, and Tiago Cruz. “Inte-
grated OCSVM mechanism for intrusion detection in SCADA
systems”. In: Electronics Letters 50.25 (2014), pp. 1935–1936.

[18] Tiago Cruz et al. “Improving cyber-security awareness on in-
dustrial control systems: the CockpitCI approach”. In: Journal
of Information Warfare 13.4 (2014), pp. 27–41.

[19] David Formby et al. “Who’s in Control of Your Control
System? Device Fingerprinting for Cyber-Physical Systems.”
In: NDSS. 2016.

[20] Hamid Reza Ghaeini et al. “State-aware anomaly detection for
industrial control systems”. In: Proceedings of the 33rd Annual
ACM Symposium on Applied Computing. 2018, pp. 1620–1628.

[21] David I Urbina et al. “Limiting the impact of stealthy attacks
on industrial control systems”. In: Proceedings of the 2016
ACM SIGSAC conference on computer and communications
security. 2016, pp. 1092–1105.

[22] Dina Hadziosmanovic et al. “Through the eye of the PLC:
towards semantic security monitoring for industrial control
systems”. In: Proc. ACSAC. Vol. 14. Citeseer. 2014, p. 22.

[23] Wissam Aoudi, Mikel Iturbe, and Magnus Almgren. “Truth
will out: Departure-based process-level detection of stealthy
attacks on control systems”. In: Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications
Security. 2018, pp. 817–831.

[24] Istvan Kiss, Bela Genge, and Piroska Haller. “A clustering-
based approach to detect cyber attacks in process control
systems”. In: 2015 IEEE 13th international conference on
industrial informatics (INDIN). IEEE. 2015, pp. 142–148.

[25] Next Gen PLC Training. https://factoryio.com.
[26] ACTIVSg2000: 2000-bus synthetic grid on footprint of Texas.

https : / /electricgrids .engr. tamu.edu/electric- grid- test - cases/
activsg2000/.

[27] Jonathan Goh et al. “A dataset to support research in the
design of secure water treatment systems”. In: International
conference on critical information infrastructures security.
Springer. 2016, pp. 88–99.

[28] Secure Water Treatment (SWaT). https : / / itrust . sutd . edu . sg /
itrust-labs-home/itrust-labs_swat/.

[29] Thomas Morris and Wei Gao. “Industrial control system traffic
data sets for intrusion detection research”. In: International
Conference on Critical Infrastructure Protection. Springer.
2014, pp. 65–78.

[30] Thomas Morris et al. “A control system testbed to vali-
date critical infrastructure protection concepts”. In: Interna-
tional Journal of Critical Infrastructure Protection 4.2 (2011),
pp. 88–103.

[31] WinSPS-S7 Programming AND simulation tool for Siemens S7-
300-PLCs. https://www.mhj-tools.com/?page=winsps-s7.

[32] Dangerous Stuff: Hackers Tried to Poison Water Supply of
Florida Town. https : / / www. nytimes . com / 2021 / 02 / 08 / us /
oldsmar-florida-water-supply-hack.html.

[33] Rockwell Automation. Converged Plantwide Ethernet (CPwE)
Design and Implementation Guide. 2011.

[34] John Mulder et al. “WeaselBoard: zero-day exploit detec-
tion for programmable logic controllers”. In: Sandia report
SAND2013-8274, Sandia national laboratories (2013).

[35] David Formby and Raheem Beyah. “Temporal execution be-
havior for host anomaly detection in programmable logic
controllers”. In: IEEE Transactions on Information Forensics
and Security 15 (2019), pp. 1455–1469.

[36] Chetna Singh, Ashwin Nivangune, and Mrinal Patwardhan.
“Function code based vulnerability analysis of DNP3”. In:
2016 IEEE International Conference on Advanced Networks
and Telecommunications Systems. IEEE. 2016, pp. 1–6.

[37] Ihab Darwish and Tarek Saadawi. “Attack Detection and Mit-
igation Techniques in Industrial Control System-Smart Grid
DNP3”. In: 2018 1st International Conference on Data Intel-
ligence and Security (ICDIS). IEEE. 2018, pp. 131–134.

[38] Huan Yang, Liang Cheng, and Mooi Choo Chuah. “Deep-
learning-based network intrusion detection for SCADA sys-
tems”. In: 2019 IEEE Conference on Communications and
Network Security (CNS). IEEE. 2019, pp. 1–7.

[39] Ihab Darwish and Tarek Saadawi. “Attack Detection and
Mitigation Techniques in Industrial Control System -Smart
Grid DNP3”. In: 2018 1st International Conference on Data
Intelligence and Security (ICDIS). 2018, pp. 131–134. DOI:
10.1109/ICDIS.2018.00028.

[40] Mohamed Niang et al. “Formal Verification for Validation of
PSEEL’s PLC Program.” In: ICINCO (1). 2017, pp. 567–574.

14

https://www.dragos.com/blog/industry-news/recommendations-following-the-oldsmar-water-treatment-facility-cyber-attack/
https://www.dragos.com/blog/industry-news/recommendations-following-the-oldsmar-water-treatment-facility-cyber-attack/
https://www.dragos.com/blog/industry-news/recommendations-following-the-oldsmar-water-treatment-facility-cyber-attack/
https://www.welivesecurity.com/wp-content/uploads/2017/06/Win32_Industroyer.pdf
https://www.welivesecurity.com/wp-content/uploads/2017/06/Win32_Industroyer.pdf
https://www.zscaler.com/resources/security-terms-glossary/what-is-purdue-model-ics-security
https://www.zscaler.com/resources/security-terms-glossary/what-is-purdue-model-ics-security
https://www.zscaler.com/resources/security-terms-glossary/what-is-purdue-model-ics-security
https://www.wired.com/images_blogs/threatlevel/2011/02/Symantec-Stuxnet-Update-Feb-2011.pdf
https://www.wired.com/images_blogs/threatlevel/2011/02/Symantec-Stuxnet-Update-Feb-2011.pdf
https://www.washingtonpost.com/business/2021/05/08/cyber-attack-colonial-pipeline/
https://www.washingtonpost.com/business/2021/05/08/cyber-attack-colonial-pipeline/
https://factoryio.com
https://electricgrids.engr.tamu.edu/electric-grid-test-cases/activsg2000/
https://electricgrids.engr.tamu.edu/electric-grid-test-cases/activsg2000/
https://itrust.sutd.edu.sg/itrust-labs-home/itrust-labs_swat/
https://itrust.sutd.edu.sg/itrust-labs-home/itrust-labs_swat/
https://www.mhj-tools.com/?page=winsps-s7
https://www.nytimes.com/2021/02/08/us/oldsmar-florida-water-supply-hack.html
https://www.nytimes.com/2021/02/08/us/oldsmar-florida-water-supply-hack.html
https://doi.org/10.1109/ICDIS.2018.00028

[41] Jae-Myeong Lee and Sugwon Hong. “Keeping host sanity for
security of the SCADA systems”. In: IEEE Access 8 (2020),
pp. 62954–62968.

[42] Benjamin Green, Marina Krotofil, and Ali Abbasi. “On the
significance of process comprehension for conducting targeted
ICS attacks”. In: Proceedings of the 2017 Workshop on Cyber-
Physical Systems Security and PrivaCy. 2017, pp. 57–67.

[43] Omar Alrawi et al. “Forecasting Malware Capabilities From
Cyber Attack Memory Images”. In: 30th USENIX Security
Symposium. 2021.

[44] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea.
“S2E: A platform for in-vivo multi-path analysis of software
systems”. In: Acm Sigplan Notices 46.3 (2011), pp. 265–278.

[45] Insu Yun et al. “{QSYM}: A practical concolic execution en-
gine tailored for hybrid fuzzing”. In: 27th {USENIX} Security
Symposium ({USENIX} Security 18). 2018, pp. 745–761.

[46] Julian Rrushi et al. “A quantitative evaluation of the target
selection of havex ics malware plugin”. In: Industrial Control
System Security (ICSS) Workshop. 2015.

[47] Luis Garcia et al. “Hey, My Malware Knows Physics! At-
tacking PLCs with Physical Model Aware Rootkit.” In: NDSS.
2017.

[48] GuardLogix Controller Systems. https : / / literature .
rockwellautomation.com/idc/groups/literature/documents/rm/
1756-rm093_-en-p.pdf.

[49] Anhtuan Le, Utz Roedig, and Awais Rashid. “LASARUS:
Lightweight Attack Surface Reduction for Legacy Industrial
Control Systems”. In: June 2017, pp. 36–52. ISBN: 978-3-319-
62104-3. DOI: 10.1007/978-3-319-62105-0_3.

[50] Mohsen Salehi and Siavash Bayat-Sarmadi. PLCDefender:
Improving Remote Attestation Techniques for PLCs Using
Physical Model. 2021. DOI: 10.1109/JIOT.2020.3040237.

[51] Zeyu Yang et al. “PLC-Sleuth: Detecting and Localizing
{PLC} Intrusions Using Control Invariants”. In: 23rd Inter-
national Symposium on Research in Attacks, Intrusions and
Defenses ({RAID} 2020). 2020, pp. 333–348.

[52] Chuadhry Mujeeb Ahmed et al. “Noiseprint: Attack detection
using sensor and process noise fingerprint in cyber physical
systems”. In: Proceedings of the 2018 on Asia Conference on
Computer and Communications Security. 2018, pp. 483–497.

[53] Long Cheng, Ke Tian, and Danfeng Yao. “Orpheus: Enforcing
cyber-physical execution semantics to defend against data-
oriented attacks”. In: Proceedings of the 33rd Annual Com-
puter Security Applications Conference. 2017, pp. 315–326.

[54] Prevent intrusion and maintain network integrity with Data
Diodes. https://advenica.com/en/cds/data-diodes.

[55] Antoine Lemay, José Fernandez, and Scott Knight. “An iso-
lated virtual cluster for SCADA network security research”. In:
1st International Symposium for ICS & SCADA Cyber Security
Research 2013 (ICS-CSR 2013) 1. 2013, pp. 88–96.

[56] Qais Qassim et al. “A survey of SCADA testbed implementa-
tion approaches”. In: Indian Journal of Science and Technology
10.26 (2017), pp. 1–8.

[57] Daniel T Sullivan and Edward J Colbert. Demonstration of
SCADA Virtualization Capability in the US Army Research
Laboratory (ARL)/Sustaining Base Network Assurance Branch
(SBNAB) SCADA Hardware Testbed. Tech. rep. RAYTHEON
TECHNICAL SERVICES CO LLC DULLES VA, 2015.

[58] Avik Dayal et al. “VSCADA: A reconfigurable virtual SCADA
test-bed for simulating power utility control center operations”.
In: 2015 IEEE Power & Energy Society General Meeting.
IEEE. 2015, pp. 1–5.

[59] Igor Nai Fovino et al. “Modbus/DNP3 state-based intrusion
detection system”. In: 2010 24th IEEE International Confer-
ence on Advanced Information Networking and Applications.
IEEE. 2010, pp. 729–736.

[60] VTSCADA. https://www.vtscada.com/help/Content/Welcome.
htm?tocpath=Welcome.

[61] Haiquan Xiong et al. “Libvmi: a library for bridging the
semantic gap between guest OS and VMM”. In: 2012 IEEE
12th International Conference on Computer and Information
Technology. IEEE. 2012, pp. 549–556.

[62] Tamas K Lengyel et al. “Scalability, fidelity and stealth in the
drakvuf dynamic malware analysis system”. In: Proceedings of
the 30th Annual Computer Security Applications Conference.
2014, pp. 386–395.

[63] Saleh Soltan, Prateek Mittal, and H Vincent Poor. “BlackIoT:
IoT botnet of high wattage devices can disrupt the power grid”.
In: 27th {USENIX} Security Symposium ({USENIX} Security
18). 2018, pp. 15–32.

[64] Seyedhamed Ghavamnia et al. “Temporal system call spe-
cialization for attack surface reduction”. In: 29th Security
Symposium ({USENIX} Security 20). 2020, pp. 1749–1766.

[65] ATTACK for Industrial Control Systems. https : / /collaborate .
mitre.org/attackics/index.php/Main_Page.

[66] MYSCADA SCADA Automation and HMI Solutions. https : / /
www.myscada.org/en/.

[67] Simulation and Model Based Design. https://www.mathworks.
com/products/simulink.html.

[68] The Visual Approach to Electric Power System. https://www.
powerworld.com.

[69] ICSSPLOIT. https : / / github . com / dark - lbp / isf / tree / master /
icssploit.

[70] Metasploit Modules for SCADA-related Vulnerabilities. https:
//scadahacker.com/resources/msf-scada.html.

[71] Using Nt and Zw Versions of the Native System Services
Routines. https : / / docs . microsoft . com / en - us / windows -
hardware/drivers /kernel /using- nt- and- zw- versions- of- the-
native-system-services-routines.

[72] Mark Ermolov and Artem Shishkin. Microsoft Windows 8.1
Kernel Patch Protection Analysis.

[73] Mark Hall et al. “The WEKA data mining software: an up-
date”. In: ACM SIGKDD explorations newsletter 11.1 (2009),
pp. 10–18.

[74] Andrea Bittau et al. “Hacking blind”. In: 2014 IEEE Sympo-
sium on Security and Privacy. IEEE. 2014, pp. 227–242.

[75] Lennart Ljung. “System identification”. In: Signal analysis and
prediction. Springer, 1998, pp. 163–173.

[76] Yong Wang et al. “Srid: State relation based intrusion detec-
tion for false data injection attacks in scada”. In: European
symposium on research in computer security. Springer. 2014,
pp. 401–418.

[77] Samuel East et al. “A Taxonomy of Attacks on the DNP3 Pro-
tocol”. In: International Conference on Critical Infrastructure
Protection. Springer. 2009, pp. 67–81.

[78] Nicholas Rodofile, Kenneth Radke, and Ernest Foo. “Real-time
and interactive attacks on DNP3 critical infrastructure using
Scapy”. In: Proceedings of the 13th Australasian Information
Security Conference (AISC 2015)[Conferences in Research
and Practice in Information Technology (CRPIT), Volume161].
Australian Computer Society Inc. 2015, pp. 67–70.

[79] Alfonso Valdes and Steven Cheung. “Communication pattern
anomaly detection in process control systems”. In: 2009 IEEE
Conference on Technologies for Homeland Security. IEEE.
2009, pp. 22–29.

XI. ADDITIONAL TECHNICAL MATERIAL

15

https://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm093_-en-p.pdf
https://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm093_-en-p.pdf
https://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm093_-en-p.pdf
https://doi.org/10.1007/978-3-319-62105-0_3
https://doi.org/10.1109/JIOT.2020.3040237
https://advenica.com/en/cds/data-diodes
https://www.vtscada.com/help/Content/Welcome.htm?tocpath=Welcome
https://www.vtscada.com/help/Content/Welcome.htm?tocpath=Welcome
https://collaborate.mitre.org/attackics/index.php/Main_Page
https://collaborate.mitre.org/attackics/index.php/Main_Page
https://www.myscada.org/en/
https://www.myscada.org/en/
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://www.powerworld.com
https://www.powerworld.com
https://github.com/dark-lbp/isf/tree/master/icssploit
https://github.com/dark-lbp/isf/tree/master/icssploit
https://scadahacker.com/resources/msf-scada.html
https://scadahacker.com/resources/msf-scada.html
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/using-nt-and-zw-versions-of-the-native-system-services-routines
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/using-nt-and-zw-versions-of-the-native-system-services-routines
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/using-nt-and-zw-versions-of-the-native-system-services-routines

(a) HMI for Elevator (Advanced) Scene

(b) HMI for Queue Processor Scene

(c) HMI for Converge Station Scene

(d) HMI for Sorting Station Scene

(e) Graphical HMI for AssemblerArm Positioning

(f) HMI for Production Line Scene

(g) HMI for Automated Warehouse Scene

(h) HMI for Chemical Dosing Scene

(i) 2-wire or Logic Schema diagram: Ladder logic for the
Sorting Station

(j) HMI for Assembler Scene

(k) HMI for Buffer Station Scene

(l) HMI for Palletizer Scene

(m) HMI for Separating Station Scene

(n) Sorting Station | PLC Memory Map

16

Fig. 10: The Purdue ICS Model

Fig. 11: Power ICS Scenario: Showing Load Lines Elements

(a) Normal (b) Attacked
Fig. 12: Adapted Texas Pan Handle Power Grid: Showing Visualization of Normal and Disrupted Load Lines

Fig. 13: Complete water treatment plant based on [27, 28]: Showing the chemical dosing operation that was attacked in the Florida water poisoning attack

17

	Introduction
	Background and Motivation
	Real-World Motivating Examples
	ICS/SCADA Operations
	SCADA Host Attacks and Security Challenges

	 Threat Model and Assumptions
	 Scaphy Approach
	End-to-End Operation
	Detecting Industroyer Attack Behavior with Scaphy

	 System Design
	Automated Physical Process Comprehension
	Modelling Process Dependency and Impact
	Characterizing Physical and Signal Anomalies
	Analyzing Physical World-Targeted Executions in SCADA

	 EVALUATION
	ICS Attack Detection
	Case Study: 2021 Florida Water Plant Poisoning Attack
	Case Study: SCADA Rootkit that knows Scaphy approach
	Comparing Scaphy with Existing Techniques

	 Discussions
	 LIMITATIONS AND FUTURE WORK
	 RELATED WORKS
	 CONCLUSION
	 Additional Technical Material

