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ABSTRACT

We identify machine learning methods that can rapidly distinguish specific categories of mechanisms within a complex
CAD assembly with the objective of appreciably reducing user time in preparing models for analysis. We propose a
new random forest model, CubitEDT and compare with a similar deep learning approach. Custom geometric features
are computed using an embedded 3rd party CAD kernel based on common queries often used in meshing applications.
We also demonstrate comparable or improved accuracy over current published deep learning classification procedures.
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1. INTRODUCTION

Complex assemblies frequently include many common
mechanisms such as bolts, screws, springs, bearings
and so forth. In practice, analysts will spend extensive
time identifying and then transforming each mecha-
nism to prepare for analysis. For example, bolted con-
nections may require specific geometric simplifications,
specialized meshing and boundary condition assign-
ment. For assemblies with hundreds of bolts, model
preparation can be tedious and often error prone. This
work uses machine learning methods to rapidly clas-
sify CAD parts into categories of mechanisms. Once
classified the analyst is able to preview and apply
category-specific solutions to quickly transform them
to a simulation-ready form.

Figure 1 illustrates the environment as implemented
in CubitTM[1] where volumes of a CAD assembly are
first grouped using our proposed classification proce-
dure in real time. In this example, volumes classified
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as bolts can be quickly reduced to a simulation-ready
form with a single operation that may include auto-
matic defeaturing, meshing and boundary condition
assignment. The user may preview the reduced form
from a wide variety of options and apply the reduction
operation to multiple bolts at the same time. Moti-
vated by specific user-driven use cases, additional re-
duction operations continue to be developed for other
part categories.

The focus of this research note is to identify a machine
learning model that can predict specific categories of
mechanisms in real time from a set of parts in a com-
plex CAD assembly. Our objective is to facilitate rapid
category-specific reduction operations with the aim of
appreciably reducing user time in preparing models for
analysis.

2. CLASSIFICATION

2.1 Background

ML-based part classification is often used for rapid
sorting of mechanisms for industrial manufacturing
processes. Lambourne et. al. [2] suggests sorting cur-
rent part classification models into one of four groups:
point cloud, volumetric, image-based and graph-based
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Figure 1: Proposed environment for classification and reduction of fasteners. Each CAD volume is grouped according
to a fixed set of categories. In this example, multiple bolt simplification options are presented to the user. They can
then rapidly apply similar operations to all bolts in the assembly.

approaches. Reference [2] provides a brief review of
each of these methods, citing several examples along
with their benefits and drawbacks.

For our application, a complex CAD assembly is usu-
ally produced by advanced 3D design tools such as
Solidworks [3] or PTC Creo [4] often for the purposes
of design and manufacturing. Analysts normally use
a modified form of the original CAD assembly as the
basis for a computational simulation model. The as-
sembly data consists of multiple parts typically de-
scribed in a file format such as .step or .sat. They will
describe a hierarchical arrangement of entities includ-
ing vertices, curves, surfaces and volumes or boundary
representation (BREP) and where each entity has an
underlying numerical description. These formats often
use metadata conventions that can identify a name or
other attribute which can aid in part classification.
However, as we frequently encounter data from nu-
merous sources including legacy CAD assemblies, we
cannot assume a consistent metadata convention and
must use other means for classification.

We propose a new machine learning approach to part
classification based exclusively on derived numerical
properties of the BREP. Our method takes advantage
of third party CAD evaluation libraries to compute
common features such as genus, moments of inertia,
volume, tight bounding box, surface areas, etc.

2.2 Features
Training data comes in the form of a fixed length vec-
tor, where each value represents a numerical attribute
of a geometric volume. We selected 46 features based
on common characteristics of curves, surfaces and vol-
umes frequently used for mesh generation. Each fea-
ture is easily computed or derived from common query
functions of a 3D geometric modeling kernel [5]. Table
1 is a sampling of the features computed for each CAD
volume that are used for training data.

We initially noted long training times (i.e. hours or
days) with our Neural Network (NN) when using the
full 46 features. Our features were highly correlated
and determined that feature reduction would reduce
the computational time. We reduced the number of
features from 46 to 9 features which resulted in a com-
putation time of approximately 9 minutes. Our ap-
proach to selecting features was heuristic, there was
uncertainty over which of the features would be useful
for generating the classification model. This led us to
explore pruning the features using Spearman’s corre-
lation coefficient [6] which measures monotonic rela-
tionships between features. A stepwise removal of fea-
tures was conducted, eliminating features that had the
highest correlation until the remaining features had a
Spearman’s ρ of 0.29 or less. Additional modifications
to the NN parameters has since improved the perfor-
mance of the 46 and 9 feature NN model computation



times (see table 3). Nonetheless, the reduced set of 9
features that resulted from this procedure are shown
in table 1 indicated with ∗.

2.3 Labels
Supervised learning methods for classification also re-
quire at least one label associated with each vector of
features corresponding to a single volume. For this
application, we initially selected 8 labels that reflect
common simulation use cases at Sandia Laboratories
including: bolt, pin, washer, nut, spring, gear, ball and
race. One additional category other, was used to rep-
resent all volumes not identified as one of our initial 8
categories.

Table 1: A small sample of the 46 features computed
for each CAD volume used for training data.

Feature Description

genus∗ number of through holes
min aspect tight bbox. min l/w ratio
max aspect tight bbox. max l/w ratio
bbox ratio∗ vol. volume / vol. tight bbox.
area vol ratio surface area / volume
principal moments∗∗ ordered moments (3 vals.)
cylinder surfs ratio area cylinders / tot. area
planar surfs ratio area planar / tot. area
blend surfs ratio area blends / tot. area
reversal angle ratio∗ len. crv. w/ext. θ > 315◦

corner angle ratio len. crv. w/ext. θ > 225◦

side angle ratio∗ len. crv. w/ext. θ > 135◦

end angle ratio len. crv. w/ext. θ > 0◦

area interior surfs∗ area surfs w/crv 0◦ > θ > 135◦

len linear curvs∗ len. linear crvs. / total len.
area high curvature∗ area surfs. w/high curvature

∗ indicates features used in reduced set
∗∗ smallest and largest values used for reduced features

2.4 Generating training data
To generate training data, a python-based tool was de-
veloped that used a 3D CAD kernel to perform eval-
uations on each volume. While any CAD kernel with
the relevant evaluators could be used, we developed
our tool using both the Spatial ACIS [5] and Sandia
SGM kernels. To evaluate our methods we used 5035
single-part ACIS files labeled manually by displaying
an image of the object and selecting from one of the
above 9 categories, computing its features and then
writing the result to a .csv file with its given label.

2.5 Machine Learning methods
We investigated the following classification ap-
proaches: ensembles of decision trees (EDT) random

forest [7] using Scikit-learn [8] and deep learning tech-
nique using neural networks (NN) with PyTorch [9].

Our NN consisted of the scaled set of 46 features as our
input layer and 9 nodes in our output layer represent-
ing each of our initial 9 classification categories. This
sequential linear network contained a hidden layer us-
ing a batch size of 128 which doubled in size between
Sigmoid Activations to provide the final 9 class output.

An EDT is a collection of individual decision trees,
each of which is trained on a subset of the full train-
ing data. At evaluation time, the EDTs prediction is
a weighted sum of the predictions of each of its indi-
vidual trees. In prior work, [10][11] the authors used
a regression EDT to predict mesh quality based on
local geometric features of a CAD model. This work
uses a similar approach where we extend EDT to use
geometric features for classification.

2.6 Results
We report initial results in table 2 from both NN and
EDT models using both the full 46 features and the
reduced set of 9 features. To evaluate our results, we
use K-Fold cross validation [12] using k = 5 and n = 5,
where we assign a randomized 80% for training, and
20% testing over a total of 25 iterations.

Performance of both methods are also reported in ta-
ble 3 where the total time for training is reported for
each of our 4 models. The reported performance in
table 3 is the average training time for one occurrence
of our K Fold cross validation procedure.

These results show an obvious performance benefit to
using EDT over neural networks for our training set,
with about a three orders magnitude difference. While
both models were above 95% precision and recall when
using the full features set, we note a significant de-
grading of accuracy for reduced features on NN. We
observed that although we achieved a small perfor-
mance improvement for both EDT and NN on our re-
duced features, there was minimal benefit in pruning
features.

2.7 In-situ training and classification
Soon after developing our initial classification meth-
ods, it became apparent that our users wanted an
interactive method to enhance their training data or
add additional custom categories. To accommodate,
we have developed a classify option within our CAD-
based geometry and meshing tool [1] that can dynam-
ically add data to an existing category and/or create
additional categories.

In practice, the user may select one or more volumes
from within the CAD environment and provide their
own label. Features are then computed on the selected
volume(s) and exported to a persistent .csv file, which
will add data to the training set. This then triggers a
retraining procedure where all training data is trained



Table 2: Accuracy of EDT and NN models on 5035 CAD parts using 5X5 K fold cross validation.

EDT NN

46 features 9 features 46 features 9 features

precision recall precision recall precision recall precision recall support

bolt 100.00 98.98 97.46 97.96 98.5 99.0 95 95.6 998
nut 100.00 100.00 100.00 96.15 97.5 86.8 84.0 73.2 114
washer 97.62 97.62 97.44 90.48 94.8 96.2 79.3 76.4 204
spring 100.00 100.00 100.00 91.30 97.2 93.2 89.3 77.6 110
ball 100.00 100.00 100.00 100.00 99.7 100 99.9 100.00 543
race 100.00 100.00 94.29 100.00 95.7 96 90.1 87 148
pin 100.00 100.00 100.00 100.00 98.2 97.8 92.00 94.3 328
gear 100.00 93.33 96.30 86.67 92.0 91.9 79.4 47.2 210
other 98.98 99.79 97.56 98.77 97.8 98.1 89.7 93.9 2380

total 99.40 99.30 97.91 97.72 97.72 95.50 91.02 83.47 5035

Table 3: Performance of EDT and NN models. 5035
models with 5x5 K fold cross validation

EDT NN

46 features 9 features 46 features 9 features

0.83s 0.51s 541s 512s

and the model regenerated in real time ready for sub-
sequent queries. This is facilitated by the efficiency of
the EDT method described above where the full re-
training procedure is usually less than one second on
a desktop cpu.

3. COMPARISON

To compare our procedure with other machine learning
methods, we use the Mechanical Component Bench-
mark (MCB) [13][14] which provides two large data
sets of over 58,000 mechanical parts. The first set (A)
is separated into 68 categories and the second (B) uses
a smaller set of about 18,000 objects separated into 25
categories. Each of the objects is in the form of an
.obj file. We note that the .obj format, often used
in graphics applications, uses only facets (triangles)
to describe the boundary of the object. Although this
format is not well-suited to a topology-based approach
like ours, we were still able to adapt the data for our
EDT classification method.

Faceted formats such as .obj do not normally provide
explicitly defined topology such as vertices, curves and
surfaces. As our features are dependent upon these
topological entities, to utilize this data we first gen-
erate a mesh-based BREP [15], breaking the surfaces
and curves where angles exceeded 135 degrees. We
also noted that many of the .obj parts are comprised
of multiple independent shells or volumes where our
method assumes a single volume. As well, we also
noted many of the objects had gaps or overlaps in
their triangle representations which could not be ro-
bustly represented using our current methods [15]. As

a consequence, we discarded those that did not meet
our criteria prior to evaluation.

To facilitate consistency in evaluation, MCB includes
separate training and testing collections of parts for
both sets A and B. For set A we tested 5713 objects
on 68 classes and set B, 2679 objects on 25 classes.
We compared our results to multiple published deep
learning models reported in, Kim, et. al [2] on the
same data sets. We replicate their data in table 4 and
add our results as CubitEDT for comparison.

Table 4: Comparison of 7 deep learning models to
CubitEDT (our model). Replicates data from [2] for
Accuracy over Object and Average Precision for both
MCB sets A (68 classes) and B (25 classes) and adds
results from our CubitEDT model

Accuracy (%) Precision (%)

Method A B A B

PointCNN 93.89 93.67 90.13 93.86
PointNet++ 87.45 93.91 73.45 91.33
SpiderCNN 93.59 89.31 86.64 82.47
MVCNN 64.67 79.17 77.69 79.82
RotationNet 97.35 94.73 87.58 84.87
DLAN 93.53 91.38 89.80 90.14
VRN 93.53 85.44 85.72 77.36

CubitEDT 97.04 92.9 91.79 85.81

We note that CubitEDT accuracy and precision are
on par or better than most of the other reported deep
learning methods. Kim, et. al [2] does not report
performance metrics for comparison.

4. CONCLUSION

We have demonstrated a new machine learning
method for classifying mechanical mechanisms in a
CAD-based environment that takes advantage of 3D
CAD kernel queries. We have shown that our ran-
dom forest approach (CubitEDT ) yielded improved



accuracy and significantly better performance than a
deep learning approach (neural network) and was bet-
ter suited for in-situ training and retraining. We also
identified a minimal set of 9 features that could be
quickly computed and used as the basis for training
data. Comparison of our EDT approach with other
published deep learning approaches yielded compara-
ble or better accuracy.
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