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Five Point Synopsis2

• The choice of  distribution used for survival (or time-to-event) analysis is often 
motivated by precedent, ease of  use, or empirically demonstrated best fit to the 
data

• However, each of  the commonly used parametric survival distributions represents 
a different fundamental underlying process mechanism

• Choosing the model based on accepted practical considerations fails to leverage 
process knowledge that could offer insight into the characteristic mechanism

• Conversely, the model that best fits the data may offer insight into the dominant 
mechanism governing the process at hand, accelerating comprehension

• Simulation of  the common distributions via atomistic representations of  their 
respective core mechanisms exposes informative heuristics for choosing 
distribution models and interpreting model fit



Addressing a Common Gap

• How often have you seen statements similar to these when reading scholarly 
journals or technical works?
• The xxx distribution / hazard function can accommodate an appropriate shape for 

matching…
• e.g., (Adelian et al., 2015), (Billinton & Allen, 1987)

• The yyy distribution has often been used to describe…
• e.g., (George, Seals, & Aban, 2014)

• The zzz distribution fits these data well…
• e.g., (Surendran & Tota-Maharaj, 2015), (Zare et al., 2014)

• Such statements imply that the author has made a conventional, non-controversial 
choice of  distribution to describe the phenomena of  interest – however:
• The relative suitability of  the chosen distribution vs. alternatives may not be addressed
• Insight from the fundamental mechanism underlying the distribution may be lost
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Common Distributions in Parametric Survival Analysis

Five of  the most common distributions used in parametric survival analysis:

• Lognormal – the logarithm of  the distribution is normally distributed

• Exponential – constant hazard rate (event probability); special case of  Weibull

• Weibull – shortest time to failure for elements of  a system depending on all 
elements to function

• Fréchet – longest time to failure for elements of  a system depending on any of  
multiple elements to function

• Loglogistic – the logarithm of  the distribution is logistically distributed – time to 
event for a system comprised of  cooperatively interacting elements

4

The shapes of the distributions differ because they 
model fundamentally different system archetypes



Example – Fit All Common Distributions to a Sample Data Set5
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Underlying Mechanisms



Mechanistic Perspective on the Normal Distribution

The Normal distribution is not commonly used for survival analysis; however, it 
provides a familiar platform for introducing the mechanistic perspective.

The Central Limit Theorem has been framed in various ways – one construction is 
that the distribution of  sample means produced by randomly drawing samples from 
any fixed distribution will yield the Normal distribution.  

An implication of this perspective is that the normal distribution may be 
contemplated as a summation of  many small uncorrelated effects (ϵi). 

7

𝑥𝑥𝑡𝑡 = 𝑥𝑥0 + �
𝑖𝑖=1

𝑡𝑡

𝜖𝜖𝑖𝑖



Demonstration – Generate Synthetic Normal Data8

Carve into 25,000 samples of 200 observations each and take 
sample means:  Each result is equivalent to summing 200 
uniform random uncorrelated fluctuations between ±0.005

Start with 5,000,000 random uniform observations  between ±1

2 0.57735
12

≈ ≈

Empirical SD matches theoretical 
expectation for a uniformly distributed 
variable over a span of two (2) units



Demonstration – Fit Synthetic Normal Data9



Mechanistic Perspective on the Lognormal Distribution

Each small random fluctuation 𝜖𝜖𝑖𝑖 increases or decreases 𝑥𝑥 in proportion to 
the current basis.

The value of 𝑥𝑥 at time 𝑡𝑡 results from the multiplicative effect of  many small 
fluctuations on the original value of  𝑥𝑥 at time 0.

Logarithmic transformation yields the corresponding summation.

For infinitesimal fluctuations 𝜖𝜖𝑖𝑖 ≪ 1, ln 1 + 𝜖𝜖𝑖𝑖 may be approximated as 
𝜖𝜖𝑖𝑖 based on the Taylor series expansion.

Rearranging, the growth of 𝑥𝑥 over the time interval is clearly lognormal, as 
taking the logarithm reveals a summation of  small fluctuations.
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A simple mathematical form results if  we adopt Kalecki’s approach to Gibrat’s law of  proportionate effect, as 
recast by Sutton (Kalecki, 1945; Sutton, 1997):



Demonstration – Generate and Fit Synthetic Lognormal Data11

Carve into 25,000 samples of 200 observations each and take 
within-sample products as:

Start with 5,000,000 random uniform observations  between ±1
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Demonstration – Fit Synthetic Lognormal Data12



Mechanistic Perspective on the Weibull and Fréchet 
Distributions

The Fréchet distribution represents maximal extreme values.  The 
Fréchet may be used for a set of  samples of  observations drawn from a 
random process where each sample is represented by its maximum
value.  

The Weibull distribution represents minimal extreme values.  The 
Weibull may be used for a set of  samples drawn from a random process 
where each sample is represented by its minimum value.
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Example – Generate Synthetic Fréchet Data14

100,000 random values grouped in samples 
of 20 (5,000 samples)

𝐶𝐶𝐶𝐶𝐶𝐶 = 1 −
𝑥𝑥𝑚𝑚
𝑥𝑥

𝛼𝛼

𝑥𝑥𝑚𝑚 = 1,𝛼𝛼 = 2

Max (Sample j)
for 

j = 1 to 5000

Sample 1



Example - Fit Synthetic Fréchet Data15
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(Laherrère & Sornette, 1998)

Fréchet clearly fits these data 
better than the other common 
survival distributions shown



Example – Generate Synthetic Weibull Data16

100,000 random values grouped in samples 
of 20 (5,000 samples)

Sample 1

N=100,000

N=5,000

Square of random 
Normal scaled by 
1,000 for readability 
of sample minimum

Min (Sample j)
for 

j = 1 to 5000



Example – Fit Synthetic Weibull Data17
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Weibull clearly fits these data 
better than the other common 
survival distributions shown



Mechanistic Perspective on the Loglogistic Distribution

The demonstrations up to this point have all used independent samples.  The Loglogistic distribution 
is similar to the Lognormal, but occurs when the data in each sample are correlated.  

This can be attained for small samples over short sequences by using autocorrelated data.

If Y1 and Y2 are independent normally -distributed random variables then correlated normally-
distributed random variables X1 and X2 may be generated as follows (Cordes, 2019):

Where the value of φ necessary to produce the correlation coefficient  is determined by:
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Demonstration – Generate and Fit Synthetic Loglogistic Data19

Similar to generation of synthetic Lognormal
data except that fluctuations are pre-processed
using the correlation scheme described by 
Cordes so that resulting products are based on 
correlated fluctuations.



Example – San Francisco 
Zoning Variance Analysis



The San Francisco Zoning Variance Process21

Process Step San Francisco
Assemble Preliminary Variance 
Application and Exhibits

Applicant fills out application form and gathers necessary 
drawings, evidence, and justification per variance requirements

Preliminary Review and Revision Applicant has Intake Appointment with a Planner to ensure 
application meets requirements

Submit Plan Applicant submits revised application and materials to Planning 
Department

Verify Need for Variance Assigned Planner checks plan against Planning Code, San 
Francisco General Plan and Planning Department policies

Community Notification Planning Department notifies property owners within 300 feet 
of subject property

Community Input Assigned Planner gathers comments and concerns from the 
neighborhood during the notification period

Public Hearing Conducted by Zoning Administrator
Final Determination Zoning Administrator issues Decision

Process is characterized by substantial interaction among the Applicant, Assigned Planner, and 
Local Property Owners, converging to a single formal decision by the Zoning Administrator



Survival Analysis of San Francisco Zoning Variance Cases22

Loglogistic outcome makes sense given 
the cooperative action among multiple 
parties necessary to resolve each case



Closing Remarks



Heuristics for Distribution Selection and Interpretation of 
Empirical Results

24

Distribution Characteristic Behavior Example
Lognormal
Product of many 
small fluctuations

Where the final outcome of a process is the result 
of a long sequence of small, independent 
incremental steps, each building on the result of 
all prior impacts

Plant growth / growth of terminal 
organs (Koyama, Yamamoto, & 
Ushio, 2016); Age of disease onset 
(Limpert, Stahel, & Abbt, 2001)

Fréchet
Maximum 
extreme values

Where the final outcome of a process represents 
the greatest duration among an ensemble of 
independent subprocesses

Annual maximum daily rainfall 
(Papalexiou & Koutsoyiannis, 2013)

Weibull
Minimum extreme 
values

Where the final outcome of a process represents 
the least duration among an ensemble of 
independent subprocesses

Failure of a complex, non-
redundant system

Loglogistic
Cooperation 
among groups

Where the final outcome of a process results from 
the collective action of two or more entities 
having mutual influence over each other

San Francisco zoning variance 
approval process; Job offer 
acceptance process
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