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2 | Five Point Synopsis

The choice of distribution used for survival (or time-to-event) analysis 1s often
motivated by precedent, ease of use, or empirically demonstrated best fit to the
data

* However, each of the commonly used parametric survival distributions represents
a different fundamental underlying process mechanism

* Choosing the model based on accepted practical considerations fails to leverage
process knowledge that could offer insight into the characteristic mechanism

* Conversely, the model that best fits the data may offer insight into the dominant
mechanism governing the process at hand, accelerating comprehension

* Simulation of the common distributions via atomistic representations of their
respective core mechanisms exposes informative heuristics for choosing
distribution models and interpreting model fit



3 | Addressing a Common Gap

* How often have you seen statements similar to these when reading scholarly
journals or technical works?

* The xxx distribution / hazard function can accommodate an appropriate shape for
matching. ..

* c.g, (Adelian et al.,, 2015), (Billinton & Allen, 1987)

* The yyy distribution has often been used to describe...
* c.g, (George, Seals, & Aban, 2014)

* The zzz distribution fits these data well...
* c.g, (Surendran & Tota-Maharaj, 2015), (Zare et al., 2014)

* Such statements imply that the author has made a conventional, non-controversial
choice of distribution to describe the phenomena of interest — however:

* The relative suitability of the chosen distribution 5. alternatives may not be addressed
* Insight from the fundamental mechanism underlying the distribution may be lost



4+ I Common Distributions in Parametric Survival Analysis

Five of the most common distributions used in parametric survival analysis:
* Lognormal — the logarithm of the distribution is normally distributed
* Exponential — constant hazard rate (event probability); special case of Weibull

* Weibull — shortest time to failure for elements of a system depending on all
elements to function

* Fréchet — longest time to failure for elements of a system depending on any of
multiple elements to function

* Loglogistic — the logarithm of the distribution is logistically distributed — time to
event for a system comprised of cooperatively interacting elements

The shapes of the distributions differ because they
model fundamentally different system archetypes




5 ‘ Example — Fit All Common Distributions to a Sample Data Set

Sample is N = 5000 points random Lognormal
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7 I Mechanistic Perspective on the Normal Distribution

The Normal distribution is not commonly used for survival analysis; however, it
provides a familiar platform for introducing the mechanistic perspective.

The Central Limit Theorem has been framed in various ways — one construction is
that the distribution of sample means produced by randomly drawing samples from
any fixed distribution will yield the Normal distribution.

An implication of this perspective is that the normal distribution may be
contemplated as a summation of many small uncorrelated effects (€;).

Xt = Xg T+ €;

-
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Demonstration — Generate Synthetic Normal Data

Start with 5,000,000 random uniform observations between +1

Summary Statistics

Mean -0.000134

2
Std Dev 0.5772901 N —
Std Err Mean 0.0002582 V12

Upper 95% Mean 0.0003718
Lower 95% Mean  -0.00064

N 5000000

~ 0.57735

Empirical SD matches theoretical
expectation for a uniformly distributed
variable over a span of two (2) units

Carve into 25,000 samples of 200 observations each and take
sample means: Each result is equivalent to summing 200
uniform random uncorrelated fluctuations between +0.005
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Mean(Data)
-0.015466011
0.0431644838
-0.02016792
0.0032842523
0.0300040112
0.0094529965
0.0147012687
0.0582764187
0.0210799995
-0.02462875
0.031939952
-0.013106945
-0.05453438
-0.070809957
-0.030572554



9

Demonstration — Fit Synthetic Normal Data

-02 -0.16  -0.1 -0.06 0 0.04 008 0.12 0.16

— Normal(-0.0001,0.04072)

Summary Statistics

Mean -0.000134
Std Dev 0.0407185
Std Err Mean 0.0002575
Upper 95% Mean 0.0003705
Lower 95% Mean -0.000639
N 25000

Fitted Normal

Parameter Estimates

Type Parameter Estimate Lower 95%  Upper 95%
Location -0.000134 -0.000639 0.0003705
Dispersion o 0.0407185 0.0403647 0.0410786
Measure
-2*LogLikelihood -89107.75
AlCc -89103.75
BIC -89087.49
Goodness-of-Fit Test
KSL Test

D Prob>D

0.003675 > 0.1500

Note: Ho = The data is from the Normal
distribution. Small p-values reject Ho.



10 I Mechanistic Perspective on the Lognormal Distribution

A simple mathematical form results if we adopt Kalecki’s approach to Gibrat’s law of proportionate effect, as

recast by Sutton (Kalecki, 1945; Sutton, 1997):

Each small random fluctuation €; increases or decreases X in proportion to

the current basis.

The value of x at time ¢ results from the multiplicative effect of many small

fluctuations on the original value of x at time 0,

Logarithmic transformation yields the corresponding summation.

For infinitesimal fluctuations €; < 1, In(1 + €;) may be approximated as
€; based on the Taylor series expansion.

Rearranging, the growth of X over the time interval is clearly lognormal, as
taking the logarithm reveals a summation of small fluctuations.

Xt — Xt—1 = €tXt—1
t
Xt = Xo 1_[(1 +€;)
i=1

t
Inx; = Inxy + ZIn(l + €;)
i=1

t

Inx; = Inxg + ZEi

i=1




11 I Demonstration — Generate and Fit Synthetic Lognormal Data

Start with 5,000,000 random uniform observations between +1

Summary Statistics Sample Fluctuation Product
Mean -0.000134 1 1 054451099
Std Dev 0.5772901 j i ;Eii;z
Std Err Mean 0.0002582 :
Upper 95% Mean 0.0003718 : : 076704534
5 5 1.25331796
Lower 95% Mean -0.00064 ‘ 6 5 0.87479432
N 5000000 7 7 0.95993534
8 8 24141732
9 g 1.10827065
10 10 0.4256548
11 11 1.3612483
-1 0 1 12 12 0.54600655
13 13 024923194
Carve into 25,000 samples of 200 observations each and take 1‘5* 1: g;;:ﬂg:

within-sample products as:

200
Product. — 1—[ {4 Observation;
roduct; = | 1( 10
l:




2 I Demonstration — Fit Synthetic Lognormal Data

Fluctuation Product
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— LogNormal(-0.337,0.8162)
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Quantiles

100.0% maximum
99.5%

97.5%

90.0%

75.0% quartile
50.0% median
25.0% quartile
10.0%

2.5%

0.5%

0.0%  minimum

19.3797595
5.63618996
3.46749643
2.02321679
1.23962293
0.7183036
0.412731
0.25050556
0.14144813
0.08358822
0.01071355

Summary Statistics

Mean 0.9932891
Std Dev 0.9555733
Std Err Mean 0.0060436
Upper 95% Mean 1.0051349
Lower 95% Mean 0.9814433
N 25000

Fitted LogNormal

Parameter Estimates

Type Parameter Estimate Lower 95%  Upper 95%
Scale p -0.336956 -0.347074 -0.326838
Shape o 0.8162028 0.8091006 0.8234096

Measure

-2*LogLikelihood 43944.519
AlCc 43948.52
BIC 43964.773

Goodness-of-Fit Test

Kolmogorov's D
D Prob>D

0.004710 > 0.1500

Note: Ho = The data is from the LogNormal
distribution. Small p-values reject Ho.



13 I Mechanistic Perspective on the Weibull and Fréchet
Distributions

The Fréchet distribution represents maximal extreme values. The
Fréchet may be used for a set of samples of observations drawn from a
random process where each sample is represented by its maximum
value.

The Weibull distribution represents minimal extreme values. The
Weibull may be used for a set of samples drawn from a random process
where each sample is represented by its minimum value.




14 ‘ Example — Generate Synthetic

100,000 random values grouped in samples
of 20 (5,000 samples)

[oc= T s TR Y S A e
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Random Uniform

04369458593
0.0374987419
04430181412
0.3010679858
0.3553666447
0.2121213775
0.1621927414
06296886236
0.9866800073
0.1778434103
0.2534119368
0.1026394516
0.1302897299

0473981397
0.0568378926
0.2189468192
0.6204989851

0.232053266
0.9349860428
0.3415118409
0.0720837915
0.3525312331
09204713975

Pareto
1.3326770589
1.0192937167
1.3399218676
1.1961414306
1.2454996598
1.1266015425
1.0925163388
16432985531

8.6645897917

1.1028659512
1.1573360442
1.0556416428
1.0722910984
1.3787942012
1.0296907892
11315133892
1.6232803412

1.141128309
3.9219016576
1.2323271452
1.0381153663
1.2427695058

3.545996678

Sample
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1
1
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2
2

— Sample 1

Max (Sample j)
for
j =1 to 5000

Frechet Data

Pareto
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15 ‘ Example - Fit Synthetic Fréchet Data

0.99999 0.99999
" Note the power-law tail
‘' 0.9999 \ 0.9999
z (Laherrere & Sornette, 1998)
. Lognormal =
> °
= e :
= 0.999 f Weibull —_— 0.999
Q 2 £
o ‘;; 0.995 4 Loglogistic —— ‘;; 0.995
e o 0.99 o 0.99
a 8 0.98 Frechet — o 0.98
[a o
"G-J’ 0.95 Normal — 0.95
c 0.9 0.9
\§ 07 Exponential — 0.7
L 0.5 0.5
0.3 0.3
0.1 0.1
0.02 0.02 -~
0.001 0.001
0.000001 2 3 4 567 10 20 30 4050 70 100 200 300 400 0.000001 2 3 4 567 10 20 30 4050 70 100 200 300 400
Max(Pareto) Max(Pareto)
Model Comparisons
Distribution AlCc -2Loglikelihood BIC
Frechet 26698497 26694495 26711529 Frechet clearly fits these data
Loglogistic 27427480 27423478 27440512 better than the other common
Lognormal  27753.804  27749.801 27766.836 . L. .
Weibull 30666313  30662.311 30679345 survival distributions shown
Exponential  30899.259  30897.258 30905.776



16 ‘ Example — Generate Synthetic Weibull Data

100,000 random values grouped in samples
of 20 (5,000 samples)

o= R s TR o Y S I N e

—- | s = =
W M| = D WD
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5q Normal
2.5843429656
0.3582783086
13867246571
0.0000898804
0.0005692624
0.6056701697
0.9390482565
0.5607257843
0.3485738455
0.114736994
0.0080481447
0.1781835378
0.6991829743
6.1874438e-8
1.0528093712
45210171687
6.7637043405
0.7180125971
2.5695985864
1.2419774543
0.9385030838
0.6699276249
0.204695956

Scaled Sq Normal
2584.3429656
358.27830863
1386.7246571
0.0898803892
0.5692623855
605.67016966
939.04825651
560.72578425
348.57384549
114.73699404
8.0481447307
178.18353778
£99,18297434
0.0000618744
1052.8093712
4521.0171687
6763.7043405
718.01259714
2569.5985864
12419774543
93850308378
669.92762489

204695956

Sample
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1
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1
1
1
1
1
1
1
1

1
1
1
1
1
2
2
2

Square of random
Normal scaled by
1,000 for readability
of sample minimum

- Sample 1

Min (Sample j)
for
j =1 to 5000

Scaled Sq Normal
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.
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Weibull Probability Axis

Example — Fit Synthetic Weibull Data

0.9999
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0.001 0.01

0.1% 1
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Model Comparisons

Distribution
Weibull
Loglogistic
Lognormal
Frechet
Exponential

AlCc
24272.346
25004.558
25285.879
27997.787
29120.290

-2Loglikelihood

24268.344
25000.556
25281.877
27993.784
29118.289

2 4

30 400

10 * 100

BIC
24285.378
25017.590
25298.911
28010.819
29126.806

Lognormal
Weibull
Loglogistic
Frechet
Normal

Exponential

0.9999
0.995
0.95
0.8

0.6

0.4

0.2

0.1

0.05
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0.01
0.005

Probability

0.001
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0.00001

////
&

1/1

0.00001

0.001 0.01

0.1 0.3
Min(Scaled Sq Normal)

1

2 4

10

30

100

400

Weibull clearly fits these data
better than the other common
survival distributions shown




13 I Mechanistic Perspective on the Loglogistic Distribution

The demonstrations up to this point have all used independent samples. The Loglogistic distribution
is similar to the Lognormal, but occurs when the data in each sample are correlated.

This can be attained for small samples over short sequences by using autocorrelated data.

If Y1 and Y2 are independent normally -distributed random variables then correlated normally-
distributed random variables X1 and X2 may be generated as follows (Cordes, 2019):

Xy =cos¢p Y, +sing- Y,
X, =sing-Y; +cos¢-Y,

Where the value of ¢ necessary to produce the correlation coefficient is determined by:

1
) =§sin‘1p-X1-X2
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Demonstration — Generate and Fit Synthetic Loglogistic Data

Similar to generation of synthetic Lognormal
data except that fluctuations are pre-processed
using the correlation scheme described by
Cordes so that resulting products are based on
correlated fluctuations.

Synthetic Product
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Probability

0.99999
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0.98

0.0001 5
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0.0001

001 01°%

Model Comparisons

Distribution
Loglogistic
Lognormal
Frechet
Weibull
Exponential

2 4

1

AlCc -2Loglikelihood

24380.438
24491.281
25478.359
25729.508
55339.088

24376.435
24487.279
25474.356
25725.506
55337.087

10 *° 100 1000 10000
Synthetic Product

BIC
24393.470
24504.313
25491.391
25742.540
55345.604

80000



Example — San Francisco
Zoning Variance Analysis




21 ‘ The San Francisco Zoning Variance Process

Process Step San Francisco

Assemble Preliminary Variance Applicant fills out application form and gathers necessary
Application and Exhibits drawings, evidence, and justification per variance requirements

Preliminary Review and Revision Applicant has Intake Appointment with a Planner to ensure
application meets requirements

mwplicant submits revised application and materials to Planning

Department

Assigned Planner checks plan against Planning Code, San
Francisco General Plan and Planning Department policies

Planning Department notifies property owners within 300 feet
of subject property

Assigned Planner gathers comments and concerns from the
neighborhood during the notification period

[ P Conducted by Zoning Administrator

Final Determination Zoning Administrator issues Decision

Process is characterized by substantial interaction among the Applicant, Assigned Planner, and
Local Property Owners, converging to a single formal decision by the Zoning Administrator




22 I Survival Analysis of San Francisco Zoning Variance Cases

Distribution Scale

@ Monparametric O i 0.99999

|:| Legnormal O — 0.9999

L] weibull (} —_—

A Leglogistic ® — 0.299

L] Frechet O — 0.995

[] Marmal (} -_ > 0.58

[ sev O — 3 0.9

L] Logistic O — % 0.7

[T Lev O — & 0.4

] Exponential O — 0.2

O LogGenGamma — ggg

[ ] GenGamma — 0.005

L] TH Lognormal —

[ TH weibull —_ 0.001

L] TH Loglogistic — 0.0001

[ ] TH Frechet — 1

|:| DS Lagnormal i

[ ] DS Weibull b

[] ps Loglogistic -_

[] DS Frechet o

Statistics
Model Comparisons
Distribution AlCc -2Lloglikelihood
Loglogistic 85336.196  85332.194
Lognormal 85601.223  85597.221

2040 o0

200400

10 100
Duration
BIC
85349829
85614 .855

1000

2000 a00y

Distribution Profiler

* 1
0.8
205 06
&' [0.48969, o
g051031] o4 |

0.2
(] (] = (] (]
= = = —
& F 2 B
139.7265
Duration

Loglogistic outcome makes sense given
the cooperative action among multiple
parties necessary to resolve each case
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Heuristics for Distribution Selection and Interpretation of
Empirical Results

Distribution

Example

Lognormal Where the final outcome of a process is the result Plant growth / growth of terminal
e Te [/ o) @111011)"A Of @ long sequence of small, independent organs (Koyama, Yamamoto, &
Sul i 0T stale) k3 incremental steps, each building on the result of  Ushio, 2016); Age of disease onset
all prior impacts (Limpert, Stahel, & Abbt, 2001)

Fréchet Where the final outcome of a process represents  Annual maximum daily rainfall
Maximum the greatest duration among an ensemble of (Papalexiou & Koutsoyiannis, 2013)
extreme values independent subprocesses

Weibull Where the final outcome of a process represents  Failure of a complex, non-
== the least duration among an ensemble of redundant system
values independent subprocesses

Loglogistic Where the final outcome of a process results from San Francisco zoning variance
Cooperation the collective action of two or more entities approval process; Job offer
among groups having mutual influence over each other acceptance process
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