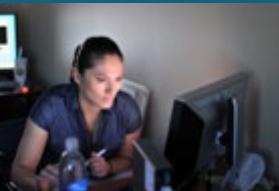
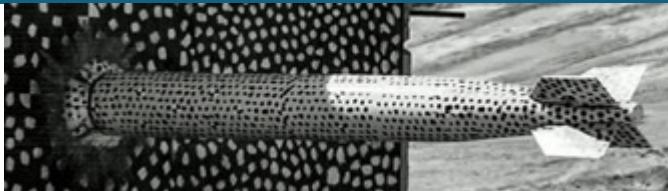


Sandia
National
Laboratories

Heuristic Perspectives on Parametric Survival Analysis



PRESENTED BY

Thor D. Osborn, PhD, MBA, CAP

tdosbor@sandia.gov

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

2 Five Point Synopsis

- The choice of distribution used for survival (or time-to-event) analysis is often motivated by precedent, ease of use, or empirically demonstrated best fit to the data
- However, each of the commonly used parametric survival distributions represents a different fundamental underlying process mechanism
- Choosing the model based on accepted practical considerations fails to leverage process knowledge that could offer insight into the characteristic mechanism
- Conversely, the model that best fits the data may offer insight into the dominant mechanism governing the process at hand, accelerating comprehension
- Simulation of the common distributions via atomistic representations of their respective core mechanisms exposes informative heuristics for choosing distribution models and interpreting model fit

Addressing a Common Gap

- How often have you seen statements similar to these when reading scholarly journals or technical works?
 - The xxx distribution / hazard function can accommodate an appropriate shape for matching...
 - e.g., (Adelian et al., 2015), (Billinton & Allen, 1987)
 - The yyy distribution has often been used to describe...
 - e.g., (George, Seals, & Aban, 2014)
 - The zzz distribution fits these data well...
 - e.g., (Surendran & Tota-Maharaj, 2015), (Zare et al., 2014)
- Such statements imply that the author has made a conventional, non-controversial choice of distribution to describe the phenomena of interest – however:
 - The relative suitability of the chosen distribution *vs.* alternatives may not be addressed
 - Insight from the fundamental mechanism underlying the distribution may be lost

Common Distributions in Parametric Survival Analysis

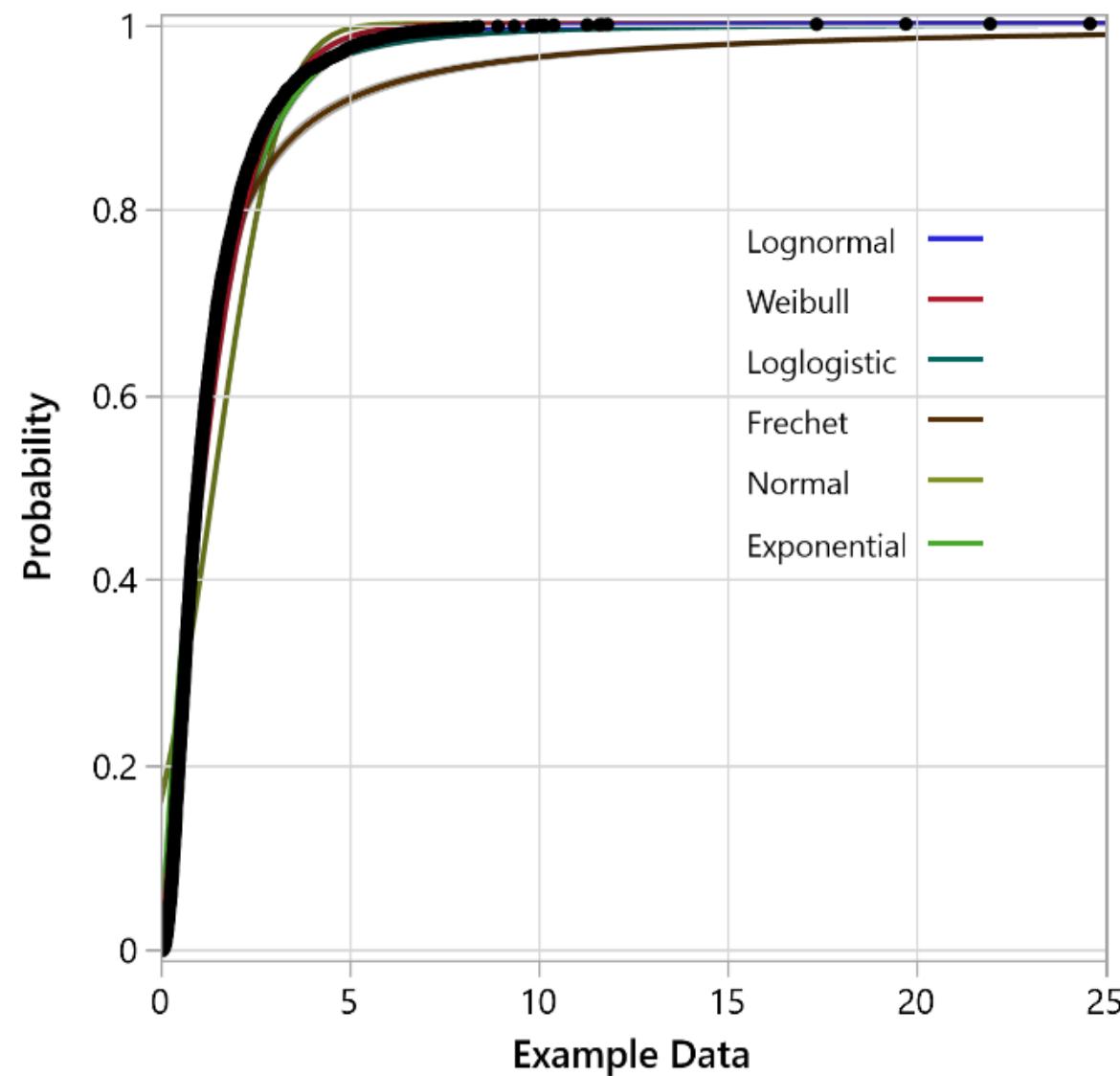
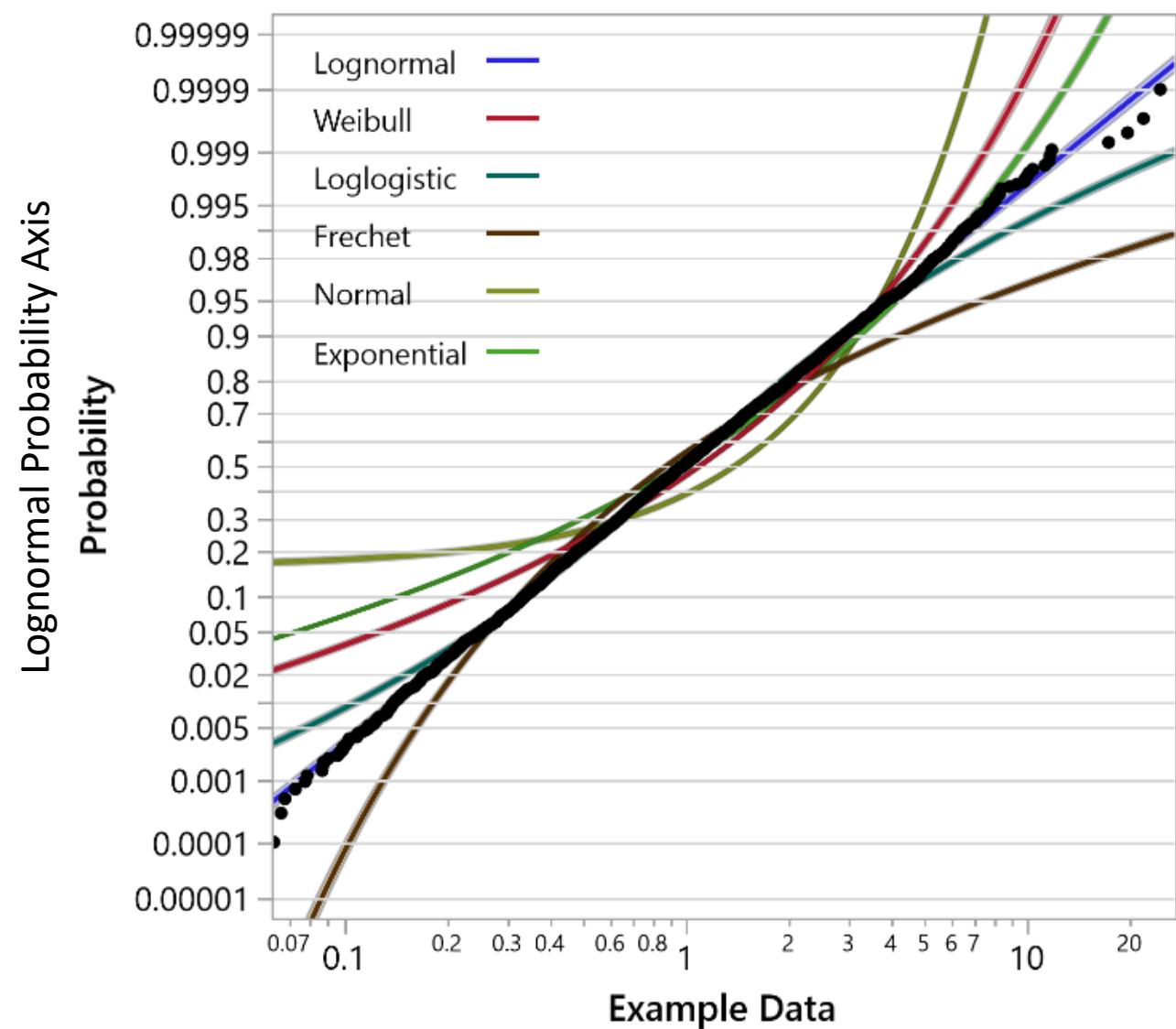
Five of the most common distributions used in parametric survival analysis:

- Lognormal – the logarithm of the distribution is normally distributed
- Exponential – constant hazard rate (event probability); special case of Weibull
- Weibull – shortest time to failure for elements of a system depending on all elements to function
- Fréchet – longest time to failure for elements of a system depending on any of multiple elements to function
- Loglogistic – the logarithm of the distribution is logistically distributed – time to event for a system comprised of cooperatively interacting elements

The shapes of the distributions differ because they model fundamentally different system archetypes

Example – Fit All Common Distributions to a Sample Data Set

Sample is $N = 5000$ points random Lognormal



Underlying Mechanisms

Mechanistic Perspective on the Normal Distribution

The Normal distribution is not commonly used for survival analysis; however, it provides a familiar platform for introducing the mechanistic perspective.

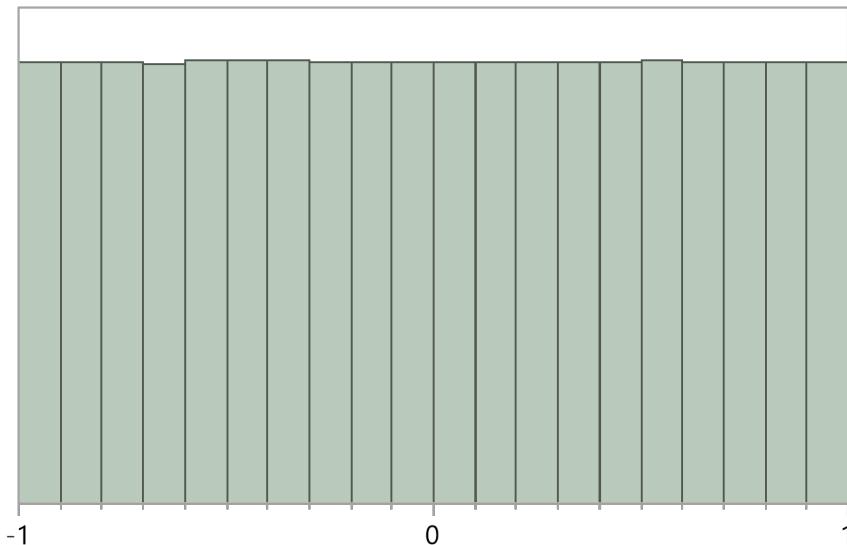
The Central Limit Theorem has been framed in various ways – one construction is that the distribution of sample means produced by randomly drawing samples from any fixed distribution will yield the Normal distribution.

An implication of this perspective is that the normal distribution may be contemplated as a summation of many small uncorrelated effects (ϵ_i).

$$x_t = x_0 + \sum_{i=1}^t \epsilon_i$$

Demonstration – Generate Synthetic Normal Data

Start with 5,000,000 random uniform observations between ± 1



Summary Statistics	
Mean	-0.000134
Std Dev	0.5772901
Std Err Mean	0.0002582
Upper 95% Mean	0.0003718
Lower 95% Mean	-0.00064
N	5000000

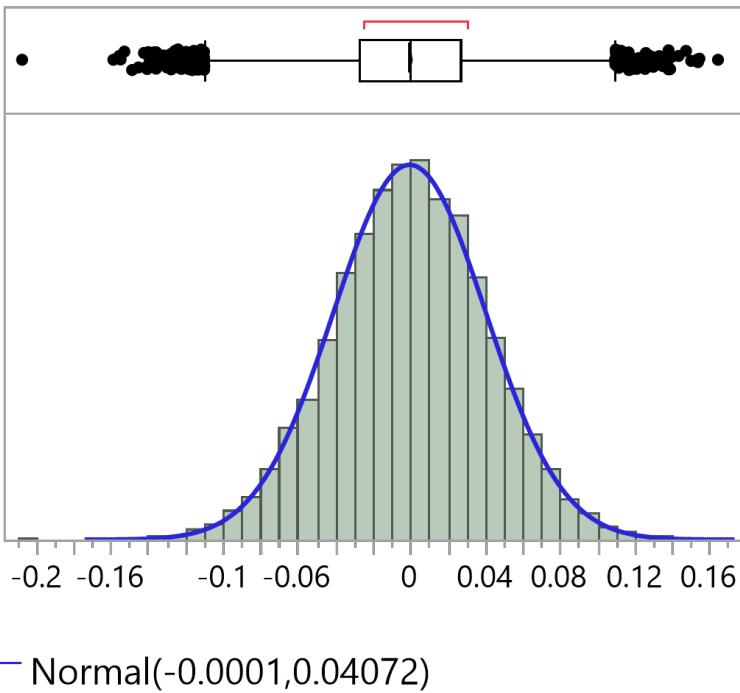
$$\approx \frac{2}{\sqrt{12}} \approx 0.57735$$

Empirical SD matches theoretical expectation for a uniformly distributed variable over a span of two (2) units

Carve into 25,000 samples of 200 observations each and take sample means: Each result is equivalent to summing 200 uniform random uncorrelated fluctuations between ± 0.005

	Sample	Mean(Data)
1	1	-0.015466011
2	2	0.0431644838
3	3	-0.02016792
4	4	0.0032842523
5	5	0.0300040112
6	6	0.0094529965
7	7	0.0147012687
8	8	0.0582764187
9	9	0.0210799995
10	10	-0.02462875
11	11	0.031939952
12	12	-0.013106945
13	13	-0.05453438
14	14	-0.070809957
15	15	-0.030572554

Demonstration – Fit Synthetic Normal Data



Summary Statistics	
Mean	-0.000134
Std Dev	0.0407185
Std Err Mean	0.0002575
Upper 95% Mean	0.0003705
Lower 95% Mean	-0.000639
N	25000

Fitted Normal				
Parameter Estimates				
Type	Parameter	Estimate	Lower 95%	Upper 95%
Location	μ	-0.000134	-0.000639	0.0003705
Dispersion	σ	0.0407185	0.0403647	0.0410786
Measure				
-2^*LogLikelihood		-89107.75		
AICc		-89103.75		
BIC		-89087.49		
Goodness-of-Fit Test				
KSL Test				
D	Prob>D			
0.003675	>	0.1500		

Note: H_0 = The data is from the Normal distribution. Small p-values reject H_0 .

Mechanistic Perspective on the Lognormal Distribution

A simple mathematical form results if we adopt Kalecki's approach to Gibrat's law of proportionate effect, as recast by Sutton (Kalecki, 1945; Sutton, 1997):

Each small random fluctuation ϵ_i increases or decreases x in proportion to the current basis.

The value of x at time t results from the multiplicative effect of many small fluctuations on the original value of x at time 0.

Logarithmic transformation yields the corresponding summation.

For infinitesimal fluctuations $\epsilon_i \ll 1$, $\ln(1 + \epsilon_i)$ may be approximated as ϵ_i based on the Taylor series expansion.

Rearranging, the growth of x over the time interval is clearly lognormal, as taking the logarithm reveals a summation of small fluctuations.

$$x_t - x_{t-1} = \epsilon_t x_{t-1}$$

$$x_t = x_0 \prod_{i=1}^t (1 + \epsilon_i)$$

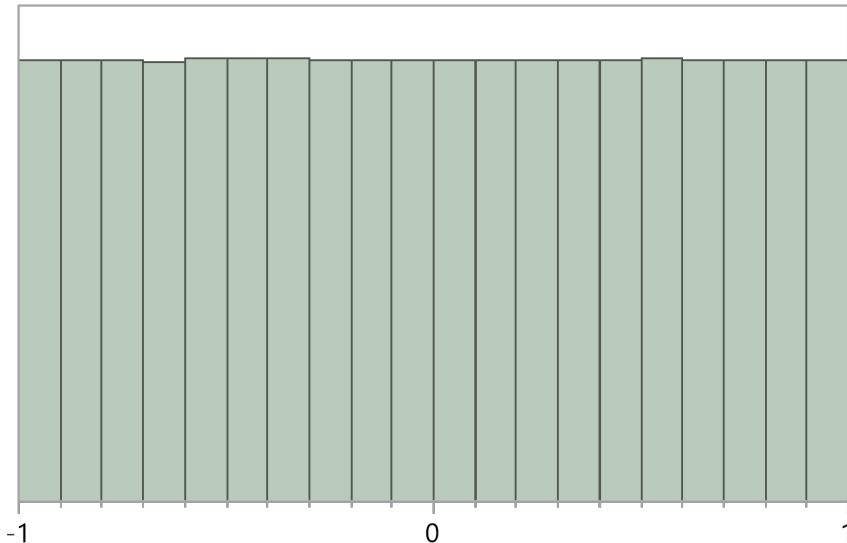
$$\ln x_t = \ln x_0 + \sum_{i=1}^t \ln(1 + \epsilon_i)$$

$$\ln x_t = \ln x_0 + \sum_{i=1}^t \epsilon_i$$

$$\frac{x_t}{x_0} = e^{\sum_{i=1}^t \epsilon_i}$$

Demonstration – Generate and Fit Synthetic Lognormal Data

Start with 5,000,000 random uniform observations between ± 1



Summary Statistics	
Mean	-0.000134
Std Dev	0.5772901
Std Err Mean	0.0002582
Upper 95% Mean	0.0003718
Lower 95% Mean	-0.00064
N	5000000

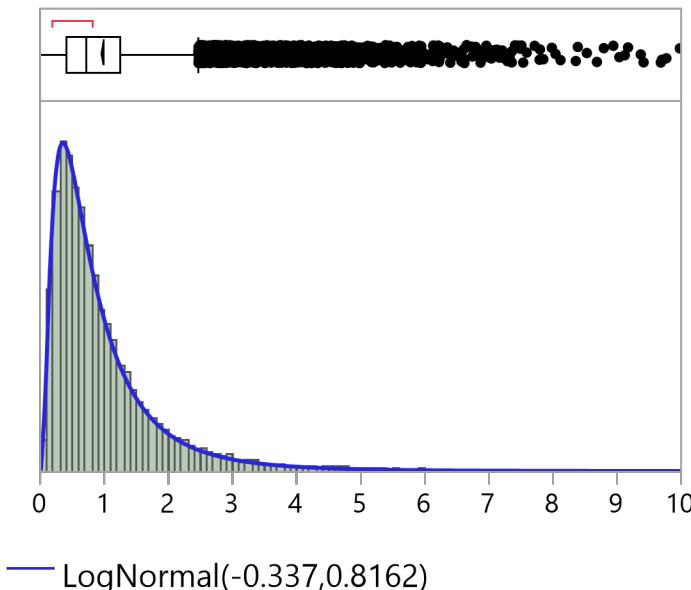
	Sample	Fluctuation Product
1	1	0.54451099
2	2	1.70781912
3	3	0.48427478
4	4	0.76704634
5	5	1.25331796
6	6	0.87479432
7	7	0.95993534
8	8	2.4141732
9	9	1.10827065
10	10	0.4256548
11	11	1.3612483
12	12	0.54600655
13	13	0.24923194
14	14	0.17580188
15	15	0.38964198

Carve into 25,000 samples of 200 observations each and take within-sample products as:

$$Product_j = \prod_{i=1}^{200} \left(1 + \frac{Observation_i}{10}\right)$$

Demonstration – Fit Synthetic Lognormal Data

Fluctuation Product



Quantiles	
100.0%	maximum 19.3797595
99.5%	5.63618996
97.5%	3.46749643
90.0%	2.02321679
75.0%	quartile 1.23962293
50.0%	median 0.7183036
25.0%	quartile 0.412731
10.0%	0.25050556
2.5%	0.14144813
0.5%	0.08358822
0.0%	minimum 0.01071355

Summary Statistics	
Mean	0.9932891
Std Dev	0.9555733
Std Err Mean	0.0060436
Upper 95% Mean	1.0051349
Lower 95% Mean	0.9814433
N	25000

Fitted LogNormal

Parameter Estimates

Type	Parameter	Estimate	Lower 95%	Upper 95%
Scale	μ	-0.336956	-0.347074	-0.326838
Shape	σ	0.8162028	0.8091006	0.8234096
Measure				
-2*LogLikelihood		43944.519		
AICc		43948.52		
BIC		43964.773		

Goodness-of-Fit Test

Kolmogorov's D

D	Prob>D
---	--------

0.004710 > 0.1500

Note: H_0 = The data is from the LogNormal distribution. Small p-values reject H_0 .

Mechanistic Perspective on the Weibull and Fréchet Distributions

The Fréchet distribution represents maximal extreme values. The Fréchet may be used for a set of samples of observations drawn from a random process where each sample is represented by its maximum value.

The Weibull distribution represents minimal extreme values. The Weibull may be used for a set of samples drawn from a random process where each sample is represented by its minimum value.

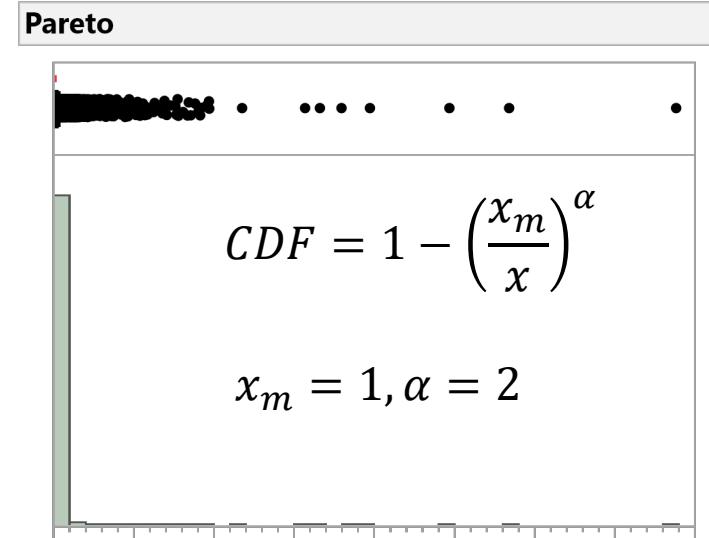
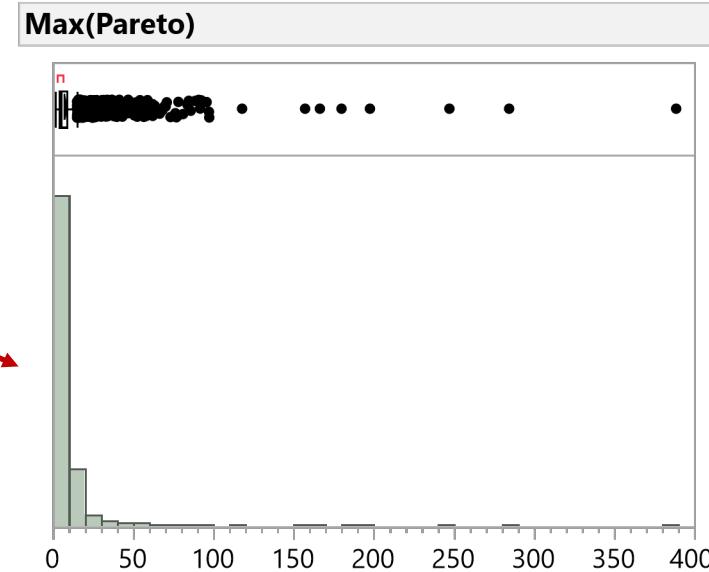
Example – Generate Synthetic Fréchet Data

100,000 random values grouped in samples of 20 (5,000 samples)

	Random Uniform	Pareto	Sample
1	0.4369458593	1.3326770589	1
2	0.0374987419	1.0192937167	1
3	0.4430181412	1.3399218676	1
4	0.3010679858	1.1961414306	1
5	0.3553666447	1.2454996598	1
6	0.2121213775	1.1266015425	1
7	0.1621927414	1.0925163388	1
8	0.6296886236	1.6432985531	1
9	0.9866800073	8.6645897917	1
10	0.1778434103	1.1028659512	1
11	0.2534119368	1.1573360442	1
12	0.1026394516	1.0556416428	1
13	0.1302897299	1.0722910984	1
14	0.473981397	1.3787942012	1
15	0.0568378926	1.0296907892	1
16	0.2189468192	1.1315133892	1
17	0.6204989851	1.6232803412	1
18	0.232053366	1.141128309	1
19	0.9349860428	3.9219016576	1
20	0.3415118409	1.2323271452	1
21	0.0720837915	1.0381153663	2
22	0.3525312331	1.2427695058	2
23	0.9204713975	3.545996678	2

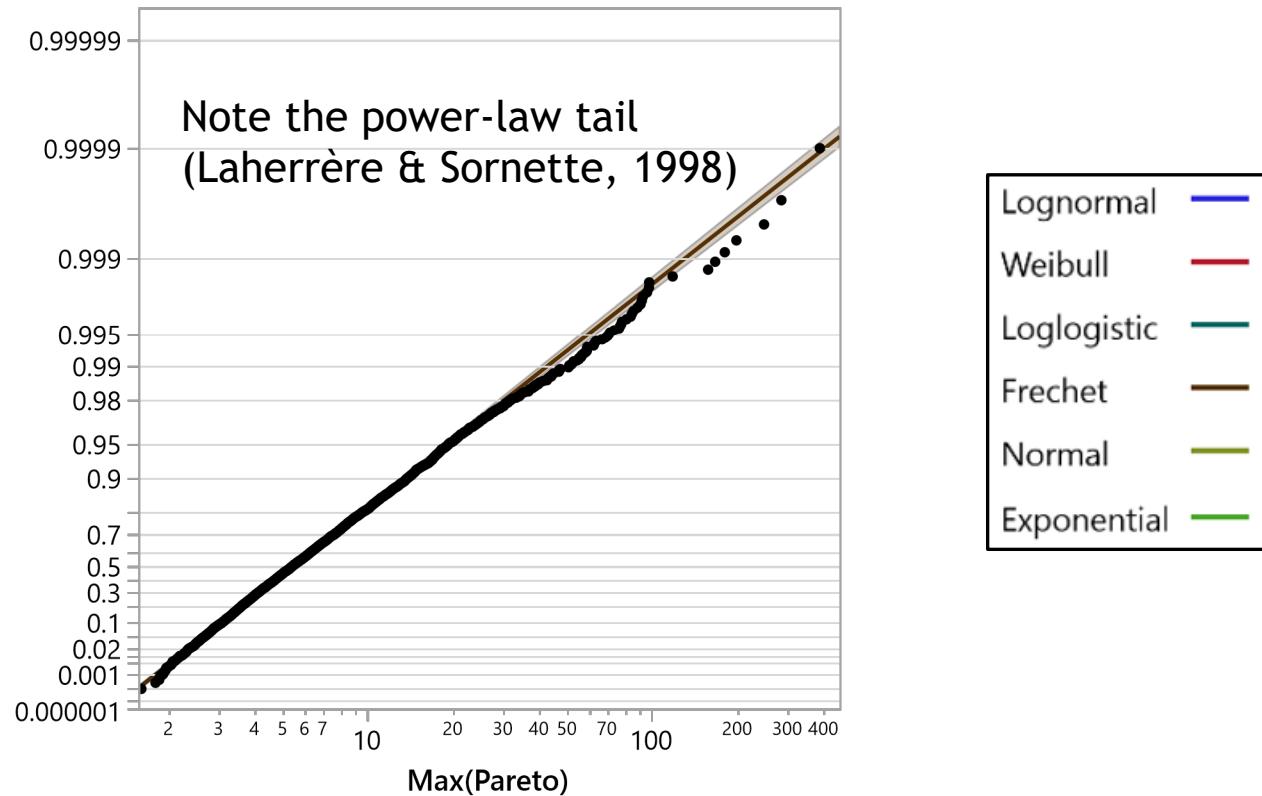
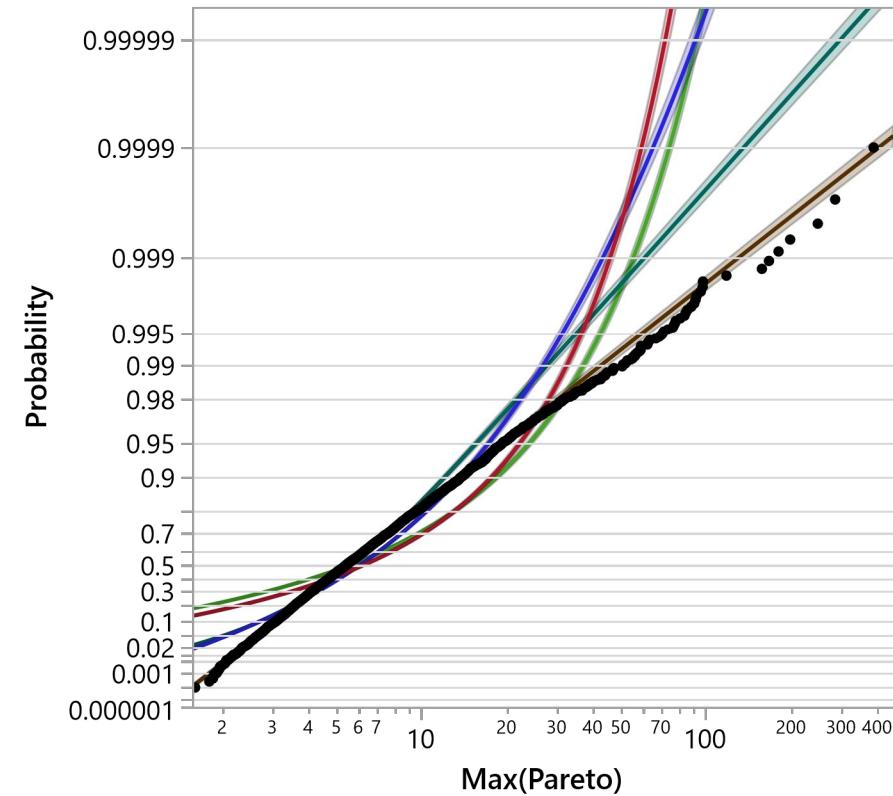
Sample 1

Max (Sample j)
for
j = 1 to 5000



Example - Fit Synthetic Fréchet Data

Fréchet Probability Axis



Model Comparisons			
Distribution	AICc	-2Loglikelihood	BIC
Frechet	26698.497	26694.495	26711.529
Loglogistic	27427.480	27423.478	27440.512
Lognormal	27753.804	27749.801	27766.836
Weibull	30666.313	30662.311	30679.345
Exponential	30899.259	30897.258	30905.776

Fréchet clearly fits these data better than the other common survival distributions shown

Example – Generate Synthetic Weibull Data

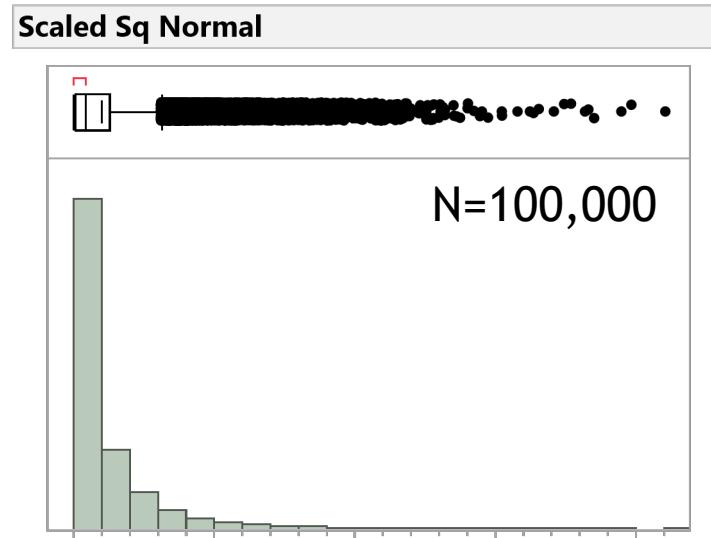
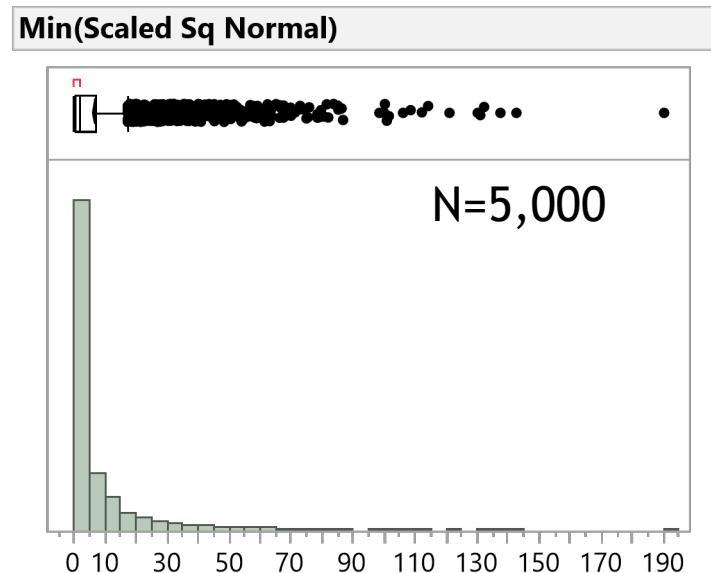
100,000 random values grouped in samples of 20 (5,000 samples)

	Sq Normal	Scaled Sq Normal	Sample	
1	2.5843429656	2584.3429656	1	
2	0.3582783086	358.27830863	1	
3	1.3867246571	1386.7246571	1	
4	0.0000898804	0.0898803892	1	
5	0.0005692624	0.5692623855	1	
6	0.6056701697	605.67016966	1	
7	0.9390482565	939.04825651	1	
8	0.5607257843	560.72578425	1	
9	0.3485738455	348.57384549	1	
10	0.114736994	114.73699404	1	
11	0.0080481447	8.0481447307	1	
12	0.1781835378	178.18353778	1	
13	0.6991829743	699.18297434	1	
14	6.1874438e-8	0.0000618744	1	
15	1.0528093712	1052.8093712	1	
16	4.5210171687	4521.0171687	1	
17	6.7637043405	6763.7043405	1	
18	0.7180125971	718.01259714	1	
19	2.5695985864	2569.5985864	1	
20	1.2419774543	1241.9774543	1	
21	0.9385030838	938.50308378	2	
22	0.6699276249	669.92762489	2	
23	0.204695956	204.695956	2	

Sample 1

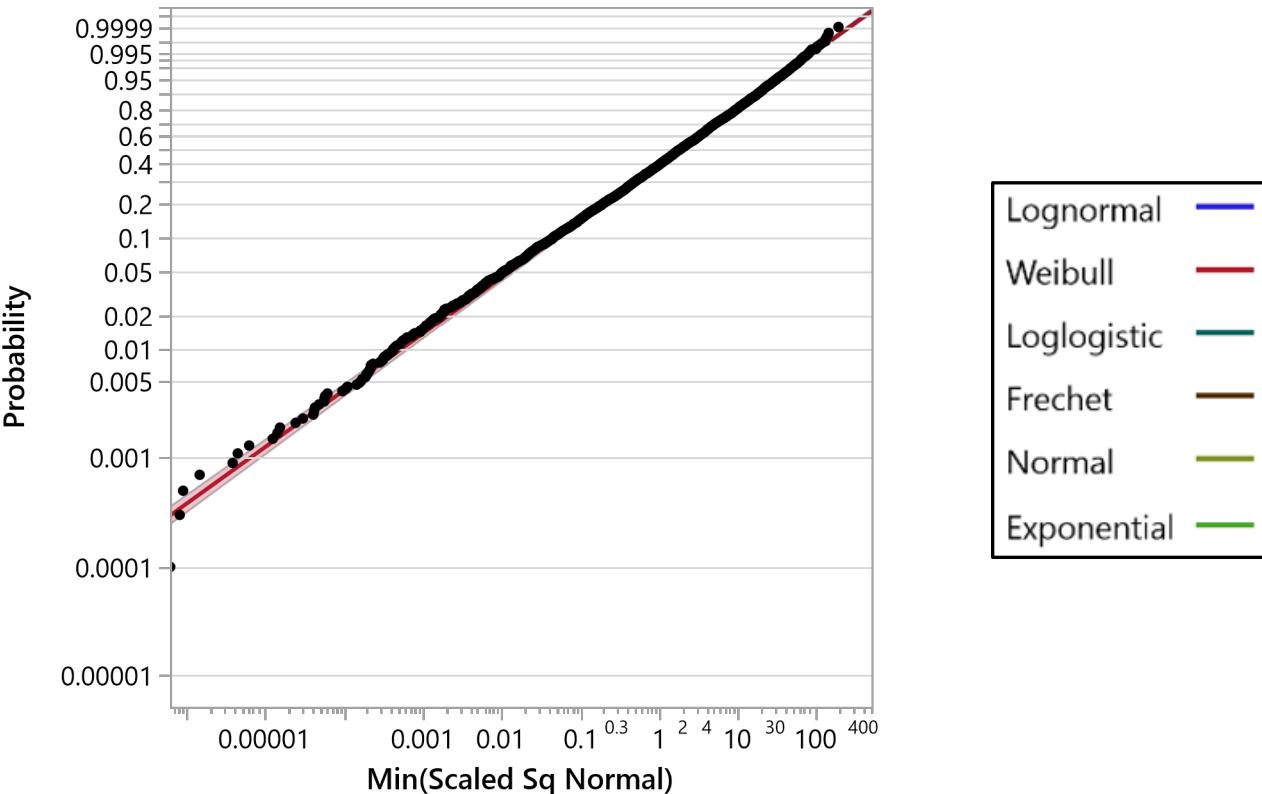
Min (Sample j)
for
j = 1 to 5000

Square of random
Normal scaled by
1,000 for readability
of sample minimum

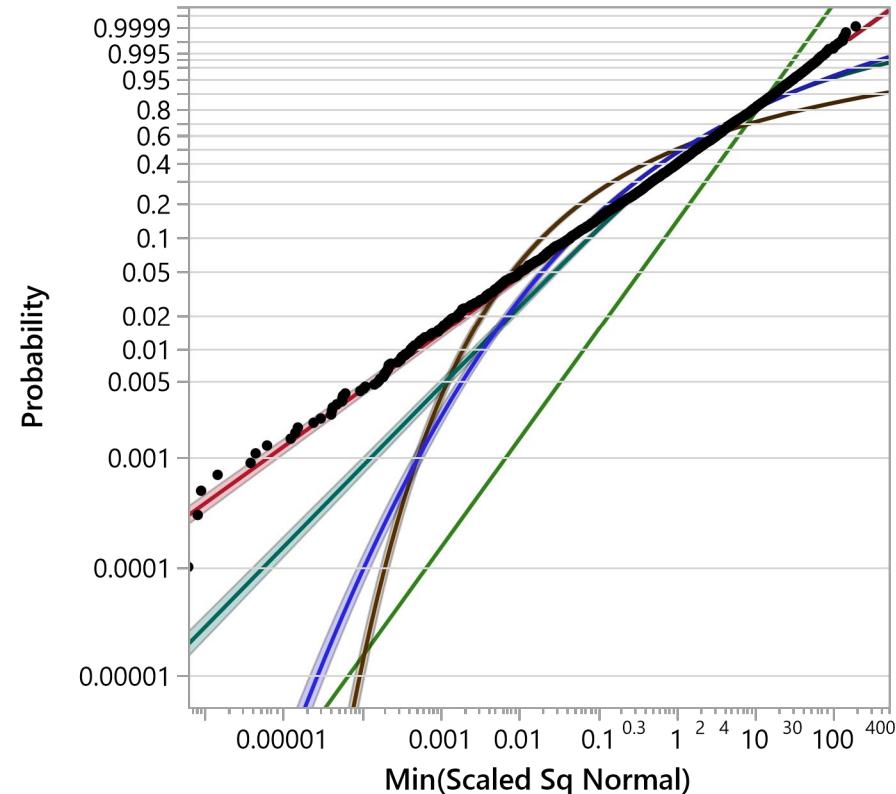


Example – Fit Synthetic Weibull Data

Weibull Probability Axis



Lognormal	Blue
Weibull	Red
Loglogistic	Teal
Frechet	Brown
Normal	Olive
Exponential	Green



Model Comparisons			
Distribution	AICc	-2Loglikelihood	BIC
Weibull	24272.346	24268.344	24285.378
Loglogistic	25004.558	25000.556	25017.590
Lognormal	25285.879	25281.877	25298.911
Frechet	27997.787	27993.784	28010.819
Exponential	29120.290	29118.289	29126.806

Weibull clearly fits these data better than the other common survival distributions shown

Mechanistic Perspective on the Loglogistic Distribution

The demonstrations up to this point have all used independent samples. The Loglogistic distribution is similar to the Lognormal, but occurs when the data in each sample are correlated.

This can be attained for small samples over short sequences by using autocorrelated data.

If Y_1 and Y_2 are independent normally-distributed random variables then correlated normally-distributed random variables X_1 and X_2 may be generated as follows (Cordes, 2019):

$$X_1 = \cos \phi \cdot Y_1 + \sin \phi \cdot Y_2$$

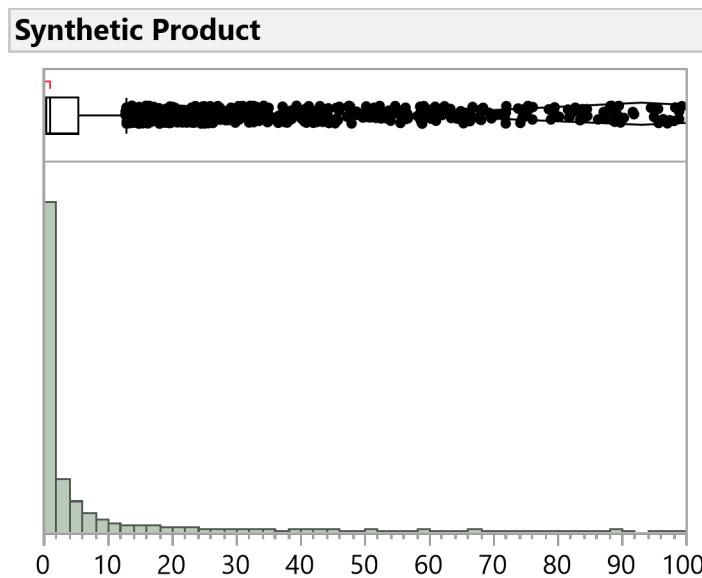
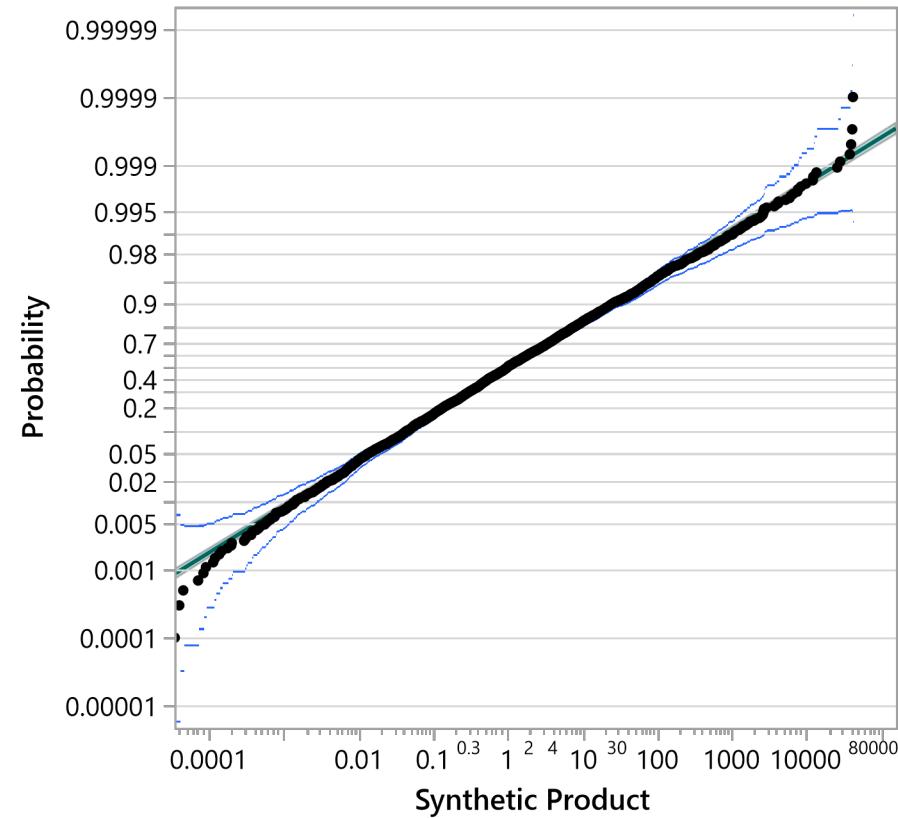
$$X_2 = \sin \phi \cdot Y_1 + \cos \phi \cdot Y_2$$

Where the value of ϕ necessary to produce the correlation coefficient is determined by:

$$\phi = \frac{1}{2} \sin^{-1} \rho \cdot X_1 \cdot X_2$$

Demonstration – Generate and Fit Synthetic Loglogistic Data

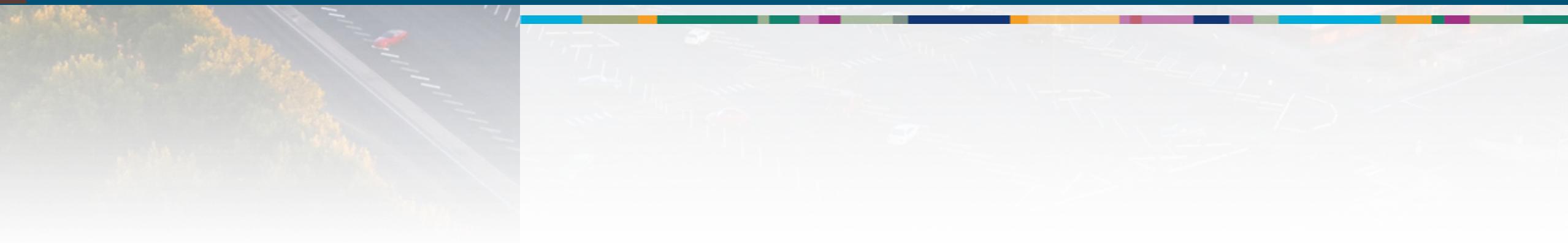
Similar to generation of synthetic Lognormal data except that fluctuations are pre-processed using the correlation scheme described by Cordes so that resulting products are based on *correlated* fluctuations.



Model Comparisons

Distribution	AICc	-2Loglikelihood	BIC
Loglogistic	24380.438	24376.435	24393.470
Lognormal	24491.281	24487.279	24504.313
Frechet	25478.359	25474.356	25491.391
Weibull	25729.508	25725.506	25742.540
Exponential	55339.088	55337.087	55345.604

Example – San Francisco Zoning Variance Analysis

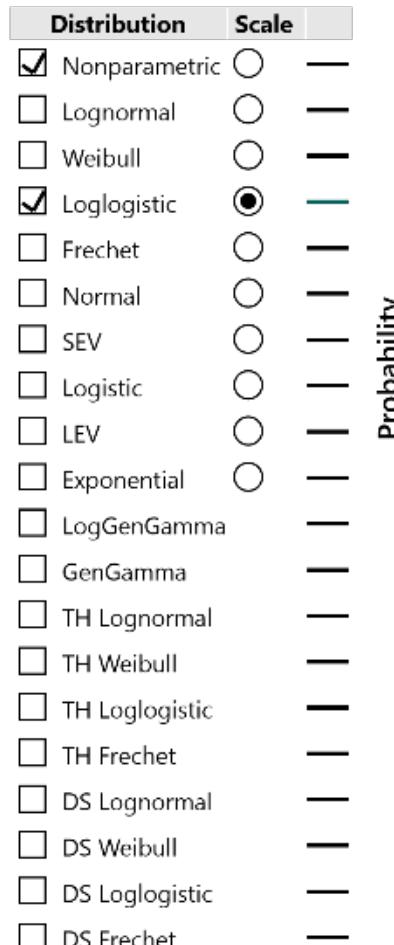
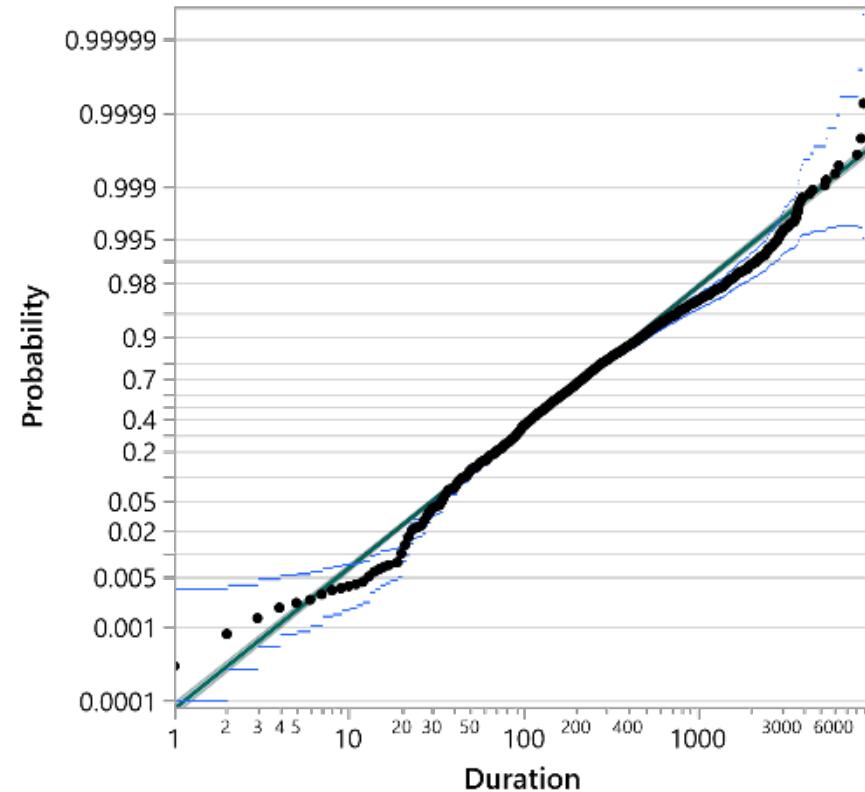
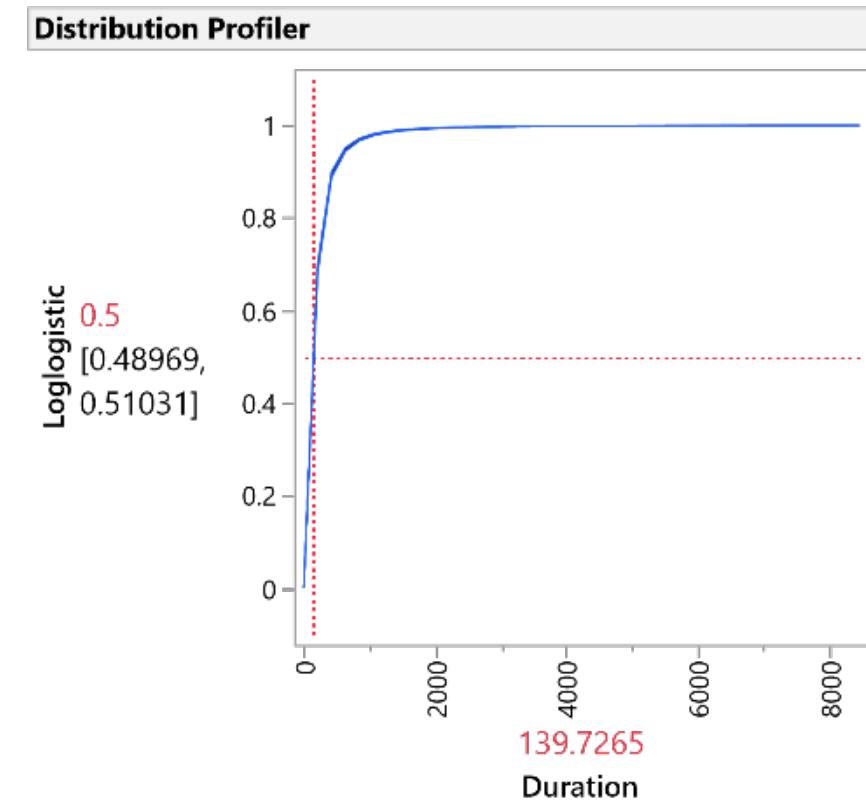


The San Francisco Zoning Variance Process

Process Step	San Francisco
Assemble Preliminary Variance Application and Exhibits	Applicant fills out application form and gathers necessary drawings, evidence, and justification per variance requirements
Preliminary Review and Revision	Applicant has Intake Appointment with a Planner to ensure application meets requirements
Submit Plan	Applicant submits revised application and materials to Planning Department
Verify Need for Variance	Assigned Planner checks plan against Planning Code, San Francisco General Plan and Planning Department policies
Community Notification	Planning Department notifies property owners within 300 feet of subject property
Community Input	Assigned Planner gathers comments and concerns from the neighborhood during the notification period
Public Hearing	Conducted by Zoning Administrator
Final Determination	Zoning Administrator issues Decision

Process is characterized by substantial interaction among the Applicant, Assigned Planner, and Local Property Owners, converging to a single formal decision by the Zoning Administrator

Survival Analysis of San Francisco Zoning Variance Cases



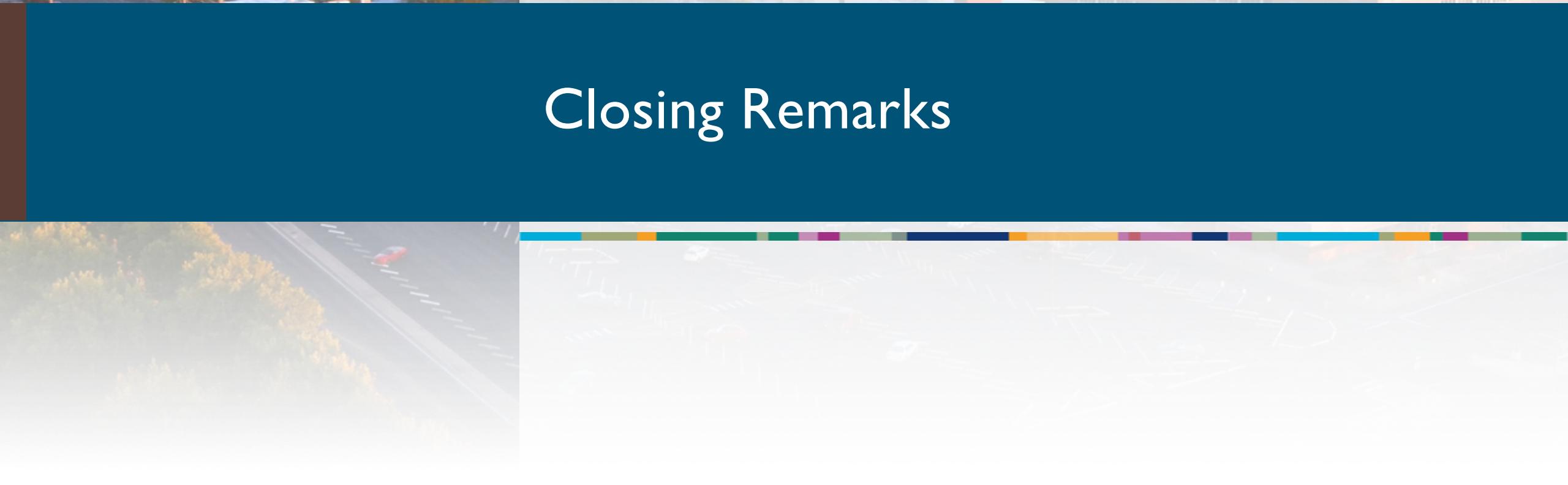
Statistics

Model Comparisons

Distribution	AICc	-2Loglikelihood	BIC
Loglogistic	85336.196	85332.194	85349.829
Lognormal	85601.223	85597.221	85614.855

Loglogistic outcome makes sense given the cooperative action among multiple parties necessary to resolve each case

Closing Remarks



Heuristics for Distribution Selection and Interpretation of Empirical Results

Distribution	Characteristic Behavior	Example
Lognormal <i>Product of many small fluctuations</i>	<p>Where the final outcome of a process is the result of a long sequence of small, independent incremental steps, each building on the result of all prior impacts</p>	<p>Plant growth / growth of terminal organs (Koyama, Yamamoto, & Ushio, 2016); Age of disease onset (Limpert, Stahel, & Abbt, 2001)</p>
Fréchet <i>Maximum extreme values</i>	<p>Where the final outcome of a process represents the greatest duration among an ensemble of independent subprocesses</p>	<p>Annual maximum daily rainfall (Papalexiou & Koutsoyiannis, 2013)</p>
Weibull <i>Minimum extreme values</i>	<p>Where the final outcome of a process represents the least duration among an ensemble of independent subprocesses</p>	<p>Failure of a complex, non-redundant system</p>
Loglogistic <i>Cooperation among groups</i>	<p>Where the final outcome of a process results from the collective action of two or more entities having mutual influence over each other</p>	<p>San Francisco zoning variance approval process; Job offer acceptance process</p>

Bibliography

Adelian, R., Jamali, J., Zare, N., Ayatollahi, S. M. T., Pooladfar, G. R., & Roustaei, N. (2015). Comparison of Cox's Regression Model and Parametric Models in Evaluating the Prognostic Factors for Survival after Liver Transplantation in Shiraz during 2000-2012. *International journal of organ transplantation medicine*, 6(3), 119-125.

Babińska, M., Chudek, J., Chełmecka, E., Janik, M., Klimek, K., & Owczarek, A. (2015). Limitations of Cox Proportional Hazards Analysis in Mortality Prediction of Patients with Acute Coronary Syndrome. 43(1), 33. doi:<https://doi.org/10.1515/slgr-2015-0040>

Billinton, R., & Allan, R. N. (1992). *Reliability Evaluation of Engineering Systems*: Springer.

Box, G. E. P. (1979). Robustness in the Strategy of Scientific Model Building (MRC Technical Summary Report #1954). Retrieved from <https://apps.dtic.mil/docs/citations/ADA070213>

Brown, G., & Sanders, J. W. (1981). Lognormal Genesis. *Journal of Applied Probability*, 18(2), 542-547.

Cox, D. R. (1972). Regression Models and Life-Tables. *Journal of the Royal Statistical Society B*, 34(2), 187-220.

Department of City Planning. (2018). *Zoning Handbook*. Retrieved from www.nyc.gov/planning.

Focke, W. W., Westhuizen, I. v. d., Musee, N., & Loots, M. T. (2017). Kinetic interpretation of log-logistic dose-time response curves. *Scientific Reports*, 1-11. doi:10.1038/s41598-017-02474-w

George, B., Seals, S., & Aban, I. (2014). Survival analysis and regression models. *Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology*, 21(4), 686-694. doi:10.1007/s12350-014-9908-2

Hill, A. V. (1910). The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. *The Journal of Physiology*, 40(suppl), i-vii. doi:10.1113/jphysiol.1910.sp001386

K. Jayaraman. (1999). A Statistical Manual for Forestry Research. Retrieved from <http://www.fao.org/3/X6831E/X6831E00.htm#TOC>

Kalecki, M. (1945). On the Gibrat Distribution. *Econometrica*, 13(2), 161-170.

Kleiber, C., & Kotz, S. (2003). *Statistical Size Distributions in Economics and Actuarial Sciences*: John Wiley & Sons, Inc.

Koyama, K., Yamamoto, K., & Ushio, M. (2016). A lognormal distribution of the lengths of terminal twigs on self-similar branches of elm trees. *Proceedings of the Royal Society B*, 284.

Laherrère, J., & Sornette, D. (1998). Stretched exponential distributions in nature and economy: "fat tails" with characteristic scales. *European Physical Journal B*, 2, 525-539.

Limpert, E., Stahel, W. A., & Abbt, M. (2001). Log-normal distributions across the sciences: keys and clues. *BioScience*, 51(5), 341-352.

Papalexiou, S. M., & Koutsoyiannis, D. (2013). Battle of extreme value distributions: A global survey on extreme daily rainfall. *Water Resources Research*, 49, 187-201.

San Francisco Planning Department. (2012). Application Packet for Variance from the Planning Code. Retrieved from <http://www.sfplanning.org>.

Surendran, S., & Tota-Maharaj, K. (2015). Log logistic distribution to model water demand data. *Procedia Engineering*, 119, 798-802.

Sutton, J. (1997). Gibrat's legacy. *Journal of Economic Literature*, 35(March), 40-59.

Zare, A., Mahmoodi, M., Mohammad, K., Zeraati, H., Hosseini, M., & Naieni, K. H. (2014). Comparison between parametric and semi-parametric cox models in modeling transition rates of a multi-state model: application in patients with gastric cancer undergoing surgery at the Iran cancer institute. *Asian Pac J Cancer Prev*, 14(11), 6751-6755. doi:10.7314/apjcp.2013.14.11.6751