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Where are we in QIS? Where are we going?

CATALYZING THE QUANTUM
ECOSYSTEM

COMPUTATIONAL POWER

« Broader utility
» Mature quantum and

classical engineering

© Fault
Tolerance

« Initial demonstrations of controlled coherence

« Theory/application of perfect quantum hardware
« Notional quantum error correction

« Contrived demonstrations of supremacy




Quantum Systems Address Major Challenges in QIS

QSA Approach
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4QSA Addresses the Scientific Foundations for Quantum
Computation
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Catalyzing national leadership in quantum
information science to co-design the algorithms,
gquantum devices, and engineering solutions needed to
deliver certified quantum advantage in Department of
Energy scientific applications.
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QSA Approach: Co-Design Across the Stack
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QSA Approach: Co-Design Across the Stack
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Science Emerging from the QSA

Quantum phases of matter on a 256-atom
programmable quantum simulator

1. Load 2. Rearrange _ 3. Readout

Quantum-enhanced sensing of displacements
and electric fields with two-dimensional
trapped-ion crystals
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Gilmore et al., Science 373, 6555 Ebadi et al., Nature 595, 227-232

Performance of the rigorous renormalization group for first-order phase transitions and topological phases
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https://journals.aps.org/prb/abstract/10.1103/PhysRevB.103.195122

This is a photonics meeting. How Does Photonics Fit In?

* Obviously
* Optical control for AMO systems
* Ryan Camacho’s “Optical Backplane”
* Quantum networks of heterogeneous hardware

* Less obviously
* Photonic quantum computing and its implications:

* If we're going to use photonics technology to network heterogeneous
hardware together, why not integrate photonic computation as well?

* If photonic quantum computing is integrated into a heterogeneous quantum
environment, what is the proper role for it to play?
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